Some Properties of Hopf Algebras Attached to Group Varieties

Hiroshi Yanagihara

(Received September 17, 1971)

In the previous paper [8] we developed a theory of invariant semiderivations on group varieties defined over an algebraically closed field k of a positive characteristic p. Let G be a group variety defined over k and g(G)the set of all left invariant semi-derivations of G. Then the direct sum $\mathfrak{D}(G)$ $=k \oplus \mathfrak{g}(G)$ is a subalgebra of $\operatorname{End}_k(k(G))$, where k(G) is the field of the ratoinal functions on G over k. This structure has a close connection with the group multiplication of G. On the other hand $\mathfrak{D}(G)$ may be identified with the set of point distributions of the local ring \mathcal{O} of G at the neutral element e, and then $\mathfrak{D}(G)$ has a structure of a coalgebra induced dually from that of \mathcal{O} as an algebra over k. These structures give to $\mathfrak{D}(G)$ a Hopf algebra structre over k. Using this structure we obtained some results on purely inseparable isogenies of group varieties in [8].

In this paper we shall show that our theory of the Hopf algebras $\mathfrak{D}(G)$ has more applications not only to the theory of purely insparable isogenies of group varieties, but also to the general theory of algebraic groups over a field of a positive charabteristic p. In particular $\mathfrak{D}(G)$ may play a similar role to that of the Lie algebra of invariant derivations on a group variety in the case of characteristic zero.

In §l we give some definitions and results on Hopf algebras over a field which are necessary in the later sections. Let \mathcal{Q} be the category of commutative and cocommutative Hopf algebras over a field k which are a union of finite dimensional Hopf subalgebras. Then it is shown that \mathcal{Q} is an abelian category. In the next section we shall obtain a criterion, in the languages of Hopf algebras, for a morphism of a group variety to another to be separable. For this purpose we give a generalization of the theorem in the paper $\lceil 4 \rceil$ on the existence of convenient pair of local parameters at the neutral elements for a given purely inseparable isogeny of group varieties. As an application of this criterion we give a modification of Serre's results on the group Ext(A, B) in §3, where A and B are commutative group varieties. He treated in $\lceil 6 \rceil$ the case of purely inseparable isogenies of exponent 1 making use of the Galois theory for such isogenies. However we obtain the same result for any purely inseparable isogeny of a commutative group variety using our Hopf algebras. Of course this result may be obtained in a different way if we use the fact that the category of commutative algebraic group schemes over a field is abelian. In §4 we consider a rational representation ϕ of a group variety to the group GL_V of linear transformations of a vector space V over k. Then we give an operation of the Hopf algebra $\mathfrak{H}(G)$ attached to G on V determined by ϕ and show that a subspace W of V is a G-submodule of V if and only if W is a $\mathfrak{H}(G)$ -submodule of V. This is a modification, in a positive characteristic case, of the similar result in the case of characteristic zero, where the Lie algebra of invariant derivations works instead of the Hopf algebra $\mathfrak{H}(G)$. In the last section a condition for a Hopf subalgebra of $\mathfrak{H}(G)$ to be an algebraic one is given. For this purpose some results on formal groups over a field k are shown.

The terminologies are the same as in the paper [8], but as to those of Hopf algebras we shall refer to the book [7] freely.

§1 Preliminary results on Hopf algebras

In this section we give some results on Hopf algebras over a field k. which are necessary in the later. Let $(\mathfrak{H}, m, \eta, \mathcal{A}, \varepsilon, c)$ be a Hopf algebra over a field k with antipode c, where (\mathfrak{H}, m, η) (resp. $(\mathfrak{H}, \mathcal{A}, \varepsilon)$) is the algebra structure with multiplication m and unit η (resp. the coalgebra structure with diagonal \varDelta and augmentation ε). We may sometimes identify k with its image $\eta(k)$ in \mathfrak{H} . We denote by \mathfrak{H}^+ the kernel $\varepsilon^{-1}(0)$ of the augmentation ε . Let \mathfrak{H}' be another Hopf algebra over k and u a Hopf algebra homomorphism. Then we understand by the h-kernel of u the set of the elements x in \mathfrak{D} such such that $(id_{\mathfrak{H}}\otimes u) \ \mathfrak{L}(x) = x \otimes 1$ and denote it by *h*-ker *u*. It is known that *h*ker u is a Hopf subalgebra of \mathfrak{H} if \mathfrak{H} is cocommutative (cf. Lemma 16.1.1 in $\lceil 7 \rceil$). Similarly we denote by *h*-coker *u* the quotent space $\mathfrak{Y}'/\mathfrak{u}(\mathfrak{G}^+)\mathfrak{H}'$, where $u(\mathfrak{G}^+)\mathfrak{G}'$ is the right idal of \mathfrak{G}' generated by $u(\mathfrak{G}^+)$. Then it is also known that h-coker u has a Hopf algebra structure such that the natural homomorphism of H' onto h-coker u is a Hopf algebra homomorphism, if $u(\mathfrak{G}^+)\mathfrak{G}'$ is a two-sided ideal of \mathfrak{G}' (cf. Lemma 16.1.2. in [7]). In particular if \mathfrak{G}' is commutative, h-coker u is a Hopf algebra.

A sequence

$$\cdots \longrightarrow \mathfrak{H}_{i-1} \xrightarrow{\mathfrak{u}_{i-1}} \mathfrak{H}_i \xrightarrow{\mathfrak{u}_i} \mathfrak{H}_{i+1} \xrightarrow{\mathfrak{u}_{i+1}} \cdots$$

of Hopf algebras \mathfrak{H}_i with Hopf algebra homomorphisms u_i is called *exact* if *h*-ker u_i is equal to the image of \mathfrak{H}_{i-1} under u_{i-1} for each *i*. Let $(\mathfrak{H}, m, \eta, \mathcal{A}, \varepsilon, c)$ and $(\mathfrak{H}', m', \eta', \mathcal{A}', \varepsilon', c')$ be two Hopf algebras ovar *k*. Then it is easy to see that the tensor product $\mathfrak{H} \otimes_k \mathfrak{H}'$ has a natural Hopf algebra structure $(\mathfrak{H} \otimes_k \mathfrak{H}', \overline{m}, \overline{\eta}, \overline{\mathcal{A}}, \overline{\varepsilon})$ such that the canonical injections *j* and *j'* of \mathfrak{H} and \mathfrak{H}' into $\mathfrak{H} \otimes_k \mathfrak{H}'$ given by $j(x) = x \otimes 1$ and $j'(y) = 1 \otimes y$ are Hopf algebra homomorphisms respectively. Moreover we have the following

PROPOSITION 1. Let \mathfrak{H} and \mathfrak{H}' be cocommutative Hopf algebras over k. Let

j be the canonical injection of \mathfrak{H} into $\mathfrak{H} \otimes_k \mathfrak{H}'$ defined by $j(x) = x \otimes 1$ and ρ the linear mapping of $\mathfrak{H} \otimes_k \mathfrak{H}'$ onto \mathfrak{H}' defined by $\rho(x \otimes \gamma) = \mathfrak{e}(x) \gamma$. Then the sequence

$$k \xrightarrow{\eta} \mathfrak{H} \xrightarrow{j} \mathfrak{H} \otimes_k \mathfrak{H}' \xrightarrow{\rho} \mathfrak{H}' \xrightarrow{\varepsilon'} k$$

is exact.

PROOF. It is easy to see that j (resp. ρ) is a Hopf algebra homomorphism (resp. an algebra homomorphism). Let x and y be elements of \mathfrak{H} and \mathfrak{H}' respectively, and put $\mathcal{L}(x) = \sum_{(x)} x_{(1)} \otimes x_{(2)}$ and $\mathcal{L}'(y) = \sum_{(y)} y_{(1)} \otimes y_{(2)}$. Then we have $\overline{\mathcal{A}}(x \otimes y) = \sum_{(x), (y)} x_{(1)} \otimes y_{(1)} \otimes x_{(2)} \otimes y_{(2)}$, by definition of $\overline{\mathcal{A}}$, and $(\rho \otimes \rho) \overline{\mathcal{A}}(x \otimes y) =$ $(\rho \otimes \rho)(\sum_{(x), (y)} x_{(1)} \otimes y_{(1)} \otimes x_{(2)} \otimes y_{(2)}) = \sum_{(x), (y)} \varepsilon(x_{(1)}) y_{(1)} \otimes \varepsilon(x_{(2)}) y_{(2)} = \varepsilon(x) \mathcal{L}'(y) =$ $\mathcal{L}'(\varepsilon(x) y) = \mathcal{L}'(\rho(x \otimes y))$. Since we have $\varepsilon' \rho = \overline{\varepsilon}$ and $c' \rho = \overline{c}$, this means that ρ is a Hopf algebra homomorphism. Next we show that h-ker j is $\eta(k)$. Let $\{x_i\}_{i\in I}$ be a basis of \mathfrak{H} over k such that $\eta(1) = x_0$, and let x be an element of h-ker j. If $\mathcal{L}(x) = \sum_{\substack{i,j \in I \\ i,j \notin I}} \xi_{ij} x_i \otimes x_j$, we have $\xi_{ij} = \xi_{ji}$ by cocommutativity of \mathfrak{H} and $\sum_{\substack{i,j \notin I \\ i \neq j}} \xi_{iij} x_i \otimes x_j \otimes 1 = (id_{\mathfrak{H}} \otimes j) \mathcal{L}(x) = x \otimes 1 \otimes 1$. Therefore we have $\xi_{ij} = \xi_{ji} = 0$ for $i \neq j$, $\xi_{ii} = 0$ for $i \neq 0$ and $x = \xi_{00} x_0 = \eta(\xi_{00}) \in \eta(k)$. This means that the sequence $k \xrightarrow{\eta} \mathfrak{H} \mathfrak{H} \mathfrak{H}$ is exact. Now let $\sum_{i} x_i \otimes y_i$ be in h-ker ρ and put $\mathcal{L}(x_i) = \sum_{(y_j)} x_{i,(1)} \otimes x_{i,(2)}$ and $\mathcal{L}'(y_j) = \sum_{(x_i)} y_{j,(1)} \otimes y_{j,(2)}$. Then we have

$$\sum_{i} x_{i} \otimes y_{i} \otimes \mathbf{1} = (\mathrm{id}_{\mathfrak{F} \otimes \mathfrak{F}'} \otimes \rho) \overline{\mathcal{A}} (\sum_{i} x_{i} \otimes y_{i})$$
$$= \sum_{i, (x_{i}), (y_{i})} x_{i, (1)} \otimes y_{i, (1)} \otimes \varepsilon(x_{i, (2)}) y_{i, (2)}$$
$$= \sum_{i, (x_{i})} \varepsilon(x_{i, (2)}) x_{i, (1)} \otimes \mathcal{A}'(y_{i})$$
$$= \sum_{i} x_{i} \otimes \mathcal{A}'(y_{i}),$$

since we have $(\varepsilon \otimes i d_{\mathfrak{H}}) \mathcal{A} = i d_{\mathfrak{H}}$. We may assume that the set $\{x_i\}$ is linearly independent over k, and hence that $\mathcal{A}'(y_i) = y_i \otimes 1$ for each i. This means that y_i is in $k = \eta'(k)$ and that $\sum_i x_i \otimes y_i$ is in the image of j. Conversely it can be seen that h-ker ρ contains the image of j. Therefore the sequence $\mathfrak{H} \xrightarrow{j} \mathfrak{H} \otimes_k \mathfrak{H}' \xrightarrow{\rho} \mathfrak{H}'$ is exact. Lastly the h-kernel of ε' is \mathfrak{H}' , since $(i d_{\mathfrak{H}'} \otimes \varepsilon') \mathcal{A}' = i d_{\mathfrak{H}'}$. This completes the proof. q. e. d.

Let \mathcal{Q} be the category of commutative and cocommutative Hopf algebras over k such that any object of \mathcal{Q} is a union of finite dimensional Hopf subalgebras and that the morphisms of \mathcal{Q} are Hopf algebra homomorphisms. It is known that the full subcategory \mathcal{Q}' of \mathcal{Q} whose objects are of finite dimensions is an abelian category. Using this fact we show that \mathcal{Q} is also abelian. Recall that the group composition of $\operatorname{Hom}_{\mathcal{Q}}(\mathfrak{H}')$ is given by the convolution $f*g=m'(f\otimes g) \varDelta$ for f and g in $\operatorname{Hom}_{\ell}(\mathfrak{H}, \mathfrak{H}')$, that the inverse of f is c'f=fc and that the neutral element of $\operatorname{Hom}_{\ell}(\mathfrak{H}, \mathfrak{H}')$ is $\eta'\varepsilon$. First we give the following lemmas.

LEMMA 1. Let \mathfrak{H}' and \mathfrak{H}'' be Hopf subalgebras of a Hopf algebra \mathfrak{H} over a field k. Then the intersection $\mathfrak{H}' \cap \mathfrak{H}''$ is also a Hopf subalgebra of \mathfrak{H} .

PROOF. Let $\{x_{\lambda}\}_{\lambda \in L}$ be a basis of $\mathfrak{H}' \cap \mathfrak{H}''$ over k and let $\{x_{\lambda}\}_{\lambda \in L} \cup \{x'_{\mu}\}_{\mu \in M}$ (resp. $\{x_{\lambda}\}_{\lambda \in L} \cup \{x''_{\nu}\}_{\nu \in N}$) be a basis of \mathfrak{H}' (resp. of \mathfrak{H}'') over k. Then the set $\{x_{\lambda}\}_{\lambda \in L} \cup \{x''_{\mu}\}_{\mu \in M} \cup \{x''_{\nu}\}_{\nu \in N}$ is linearly independent over k. If x is an element of $\mathfrak{H}' \cap \mathfrak{H}''$, $\mathcal{A}(x)$ is a linear combination of the elements $x_{\lambda} \otimes x_{\lambda'}$, $x_{\lambda} \otimes x'_{\mu'}$, $x'_{\mu} \otimes x_{\lambda'}$ and $x'_{\mu} \otimes x'_{\mu'}$ ($\lambda, \lambda' \in L, \mu, \mu' \in M$) with uniquely determined coefficients in k since x is in \mathfrak{H}' . Similaly $\mathcal{A}(x)$ is a linear combination of the elements $x_{\lambda} \otimes x_{\lambda'}, x_{\lambda} \otimes x''_{\nu'}, x''_{\nu} \otimes x_{\lambda'}$ and $x''_{\nu} \otimes x''_{\nu'}$ ($\lambda, \lambda' \in L \nu$, and $\nu' \in N$), since x is in \mathfrak{H}' . Therefore $\mathcal{A}(x)$ must be a linear combination of the elements $x_{\lambda} \otimes x_{\lambda'}, x_{\lambda} \otimes x'_{\mu'}, x'_{\lambda} \otimes x''_{\nu'}, x''_{\mu} \otimes x_{\lambda'}, x''_{\mu} \otimes x'_{\lambda'}, x''_{\mu} \otimes x''_{\lambda'}$ are linearly independent over k. This means that $\mathfrak{H}' \cap \mathfrak{H}'$ is a subcoalgebra of \mathfrak{H} and hence it is easy to see that $\mathfrak{H}' \cap \mathfrak{H}'$ is a Hopf subalgedra of \mathfrak{H} .

LEMMA 2. Let \mathfrak{G}' be a Hopf subalgebra of a Hopf algebra \mathfrak{G} over a field k and I a coideal of \mathfrak{G} . Then $\mathfrak{G}' \cap I$ is a coideal of \mathfrak{G}' .

The proof of this lemma is exactly the same as that of Lemma l and therefore we omit the detail.

LEMMA 3. Let u be a Hopf algebra homomorphism of \mathfrak{G} into \mathfrak{G}' and \mathfrak{R} a subcoalgebra of \mathfrak{G} such that $u(\mathfrak{R}^+)=0$, where $\mathfrak{R}^+=\mathfrak{R} \cap \mathfrak{G}^+$. Then \mathfrak{R} is contained in the h-kernel of u.

PROOF. By assumption we have $u(x) = \varepsilon' u(x) = \varepsilon(x)$ for any element x in \mathfrak{A} . Therefore if $\Delta(y) = \sum_{(y)} y_{(1)} \otimes y_{(2)}$ for y in \mathfrak{A} , we have

$$(id_{\mathfrak{Y}} \otimes u) \Delta(y) = \sum_{(y)} (id_{\mathfrak{Y}} \otimes u) (y_{(1)} \otimes y_{(2)})$$
$$= \sum_{(y)} \varepsilon(y_{(2)}) y_{(1)} \otimes 1$$
$$= y \otimes 1.$$

This means that y is in the h-kernel of u.

PROPOSITION 2. The category \mathcal{Q} is abelian.

PROOF. It is easy to see that \mathscr{Q} is an additive category with 0-object k and that the product (resp. the coproduct) of \mathfrak{H}_1 and \mathfrak{H}_2 is $\mathfrak{H}_1 \otimes_k \mathfrak{H}_2$ with the projections ρ_1 and ρ_2 (resp. with the injections j_1 and j_2) defined as in Proposition 1. We shall show that \mathscr{Q} has kernels and cokernels of morphisms in \mathscr{Q} and that \mathscr{Q} is normal and conormal in the sense of chapter I in [5]. Then \mathscr{Q} is an

q.e.d.

abelian category by Th.20.1 of Chap. I in 5. Let $u: \mathfrak{H}_1 \to \mathfrak{H}_2$ be a morphism in \mathcal{Q} , and let \Re and \Re' be the *h*-kernel and the *h*-cokernel of *u* respectively. Then \Re is a Hopf subalgebra of \mathfrak{H}_1 and \mathfrak{R}' is a quotient Hopf algebra of \mathfrak{H}_2 . By assumptions on \mathcal{Q} there exist Hopf subalgebras \mathfrak{N}_{α} of finite dimensions such that $\mathfrak{H}_1 = \bigcup \mathfrak{N}_{\alpha}$, and hence we have $\mathfrak{R} = \bigcup \mathfrak{R} \cap \mathfrak{N}_{\alpha}$. But $\mathfrak{R} \cap \mathfrak{N}_{\alpha}$ is a finite dimensional Hopf subalgebra of \Re by Lemma I. Therefore \Re is an object of \mathcal{O} . Similarly there exist Hopf subalgebras of finite dimensions \mathfrak{M}_{β} such that $\mathfrak{H}_2 = \bigcup \mathfrak{M}_{\beta}$. Then $I_{\beta} = \mathfrak{M}_{\beta} \cap u(\mathfrak{H}_1^+) \mathfrak{H}_2$ is a Hopf ideal of \mathfrak{M}_{β} by Lemma 2, since $u(\mathfrak{H}_1^+)\mathfrak{H}_2$ is a Hopf ideal of \mathfrak{H}_2 . If we identify $\mathfrak{M}_\beta/I_\beta$ with its canonical image in $\Re' = \mathfrak{H}_2/u(\mathfrak{H}_1^+)\mathfrak{H}_2$, we have $\Re' = \bigvee_{\beta} \mathfrak{M}_{\beta}/I_{\beta}$, where each $\mathfrak{M}_{\beta}/I_{\beta}$ is of finite dimension over k. Therefore \Re' is also an object in \mathcal{Q} . It is easy to check that \Re and \Re' are the kernel and the cokernel of u in \mathscr{Q} from the definitions and Lemma 3. Next we see that \mathcal{Q} is normal and conormal. Let $u: \mathfrak{H}_1 \to \mathfrak{H}_2$ be an epimorphism in \mathcal{Q} . Then u is a surjection as a linear mapping over k. We must show that (\mathfrak{H}_2, u) is a cokernel of a monomorphism in \mathcal{Q} . In fact let \mathfrak{R} be the *h*-kernel of *u* and let *x* be an element of \mathfrak{R}^+ . There exists a finite dimensional Hopf subalgebra \mathfrak{N} of \mathfrak{H}_1 such that $x \in \mathfrak{N} \cap \mathfrak{R}^+ = \mathfrak{N}^+$, and hence that x is contained in $(u|_{\Re})^{-1}(0) \subset u^{-1}(0)$ by Lemma 16.0.2 in [7]. Since u is an algebra homomorphism, this means that $\Re^+\mathfrak{H}_1$ is contained in $u^{-1}(0)$. Conversely let x be an element of $u^{-1}(0)$ and let \mathfrak{N} be a finite dimensional Hopf subalgebra of \mathfrak{H}_1 such that $x \in \mathfrak{N}$. Then x is contained in $\mathfrak{R}_{\mathfrak{N}}^{\pm}\mathfrak{N}$ by Lemma 16.0.2 in [7], where $\mathfrak{R}_{\mathfrak{N}}$ is the *h*-kernel of the morphism $u|_{\mathfrak{N}}$. It is clear that $\Re_{\Re} = \Re \cap \Re$ and in particular that \Re_{\Re}^+ is contained in \Re^+ . Therefore x is contained in $\Re^+\mathfrak{H}_1$. This means that $u^{-1}(0)$ is equal to $\Re^+\mathfrak{H}_1$ and hence (\mathfrak{H}_2, u) is the cokernel of the canonical injection of \mathfrak{R} into \mathfrak{H}_1 in \mathcal{O} . In other words \mathcal{Q} is conormal. Lastly let $j: \mathfrak{H}_1 \rightarrow \mathfrak{H}_2$ be a monomorphism in \mathcal{Q} . Then we may assume that \mathfrak{H}_1 is a Hopf subalgebra of \mathfrak{H}_2 and $\mathfrak{H}_1^+\mathfrak{H}_2$ is a Hopf ideal of \mathfrak{H}_2 . If π is the natural mapping of \mathfrak{H}_2 onto the quotient space $\mathfrak{L}=$ $\mathfrak{H}_2/\mathfrak{H}_1^+\mathfrak{H}_2$, π is a Hopf algebra homomorphism. We must show that (\mathfrak{H}_1, j) is the kernel of π in \mathcal{Q} . If \mathfrak{H} is the *h*-kernel of *j*, we see that $\mathfrak{H}^+\mathfrak{H}_2 = \mathfrak{H}_1^+\mathfrak{H}_2 = \pi^{-1}(0)$ from the result just obtained in the above. Let x be in \mathfrak{H}^+ and let \mathfrak{M} be a finite dimensional Hopf subalgebra of \mathfrak{H}_2 such that x is in \mathfrak{M} . By Lemma l there exists the smallest Hopf subalgebra \mathfrak{M}_0 of \mathfrak{P}_2 containing x. If $\{x_0 =$ x, x_1, \dots, x_s } is a basis of \mathfrak{M}_0^+ over k, each x_i is in $\mathfrak{H}^+ \subset \mathfrak{H}_1^+ \mathfrak{H}_2$ and hence we have $x_i = \sum y_{ij} z_{ij}$ for $y_{ij} \in \mathfrak{H}_1^+$ and $z_{ij} \in \mathfrak{H}_2$. Then we may assume that \mathfrak{M} contains these elements y_{ij} and z_{ij} , replaceing it with larger one if necessary. Therefore we have $\mathfrak{M}_0^+ \subset \mathfrak{M}_1^+\mathfrak{M}$, where $\mathfrak{M}_1 = \mathfrak{H}_1 \cap \mathfrak{M}$, and the composition of the canonical injection of \mathfrak{M}_0 into \mathfrak{M} and the canonical projection of \mathfrak{M} onto $\mathfrak{M}/\mathfrak{M}_{+}^{+}\mathfrak{M}$ is the zero-morphism in \mathcal{Q} . Since the full subcategory \mathcal{Q}' of \mathcal{Q} is abelian, \mathfrak{M}_1 is the kernel of the morphism $\pi: \mathfrak{M} \to \mathfrak{M}/\mathfrak{M}_1^+\mathfrak{M}$ in \mathscr{Q}' and hence \mathfrak{M}_0 is contained in \mathfrak{M}_1 by Lemma 3. This means that \mathfrak{H} is contained in \mathfrak{H}_1 . Conversely \mathfrak{G} contains \mathfrak{G}_1 by Lemma 3, since \mathfrak{G} is the h-kernel of π and $\pi \cdot j$ is O-morphism in \mathcal{Q} . Therefore \mathfrak{H} is equal to \mathfrak{H}_1 and \mathcal{Q} is normal. q.e.d.

§2 Separability of morphisms of group varieties

In the following let k be an algebraically closed field of a positive characteristic p. Let G and G' be group varieties defined over k and denote by \mathcal{O} and \mathcal{O}' the local rings $\mathcal{O}_{e,G}$ and $\mathcal{O}_{e',G'}$ of G and G' at the neutral elements e and e' respectively. If α is an algebraic homomorphism of G into G' defined over k, there exists a local homomorphism α^* of \mathcal{O}' into \mathcal{O} . First we give a generalization of Theorem in $\lceil 4 \rceil$.

PROPOSITION 3. Let α be an algebraic homomorphism of a group variety G of dimension n into a group variety G' of dimension m. Let G'' be the kernel of α and O'' the local ring of G'' at e. Then if the image $\alpha(G)$ is of dimension r, there exist regular systems $\{t_1, \dots, t_n\}$ and $\{s_1, \dots, s_m\}$ of parameters of O and O' respectively satisfying the following conditions:

- (i) $\alpha^*(s_i) = t_i^{p^e_i}$ for i = 1, 2, ..., r,
- (ii) $\alpha^*(s_j) = 0$ for j = r+1, ..., m,

and (iii) $\{\bar{t}_{r+1}, \dots, \bar{t}_n\}$ is a regular system of parameters of \mathcal{O}'' , where \bar{t}_j is the image of t_j under the natural homomorphism of \mathcal{O} onto \mathcal{O}'' .

Proof. First we assume that α is a separable homomorphism of G onto G'. Then we see that there exist regular systems $\{t_1, \dots, t_n\}$ and $\{s_1, \dots, s_m\}$ of parameters of \mathcal{O} and \mathcal{O}' respectively such that $\alpha^*(s_i) = t_i$ for $i = 1, 2, \dots, m$ (cf. the proof of Proposition 14 in [8]). From this if $\{s'_1, \dots, s'_m\}$ is any regular system of parameters of O', we can easily see that $\{\alpha^*(s_1'), \dots, \alpha^*(s_m'), t_{m+1}, \dots, t_n\}$ is a regular system of parameters of \mathcal{O} . Next we assume that α is a surjective morphism. If we denote by G_1 the quotient group variety G/G'' and by π the canonical homomorphism of G onto G_1 , there exists a purely inseparable isogeny α_1 of G' onto G_1 such that $\alpha = \alpha_1 \pi$. If \mathcal{O}_1 is the local ring of G_1 at the neutral element e_1 , there exist regular systems $\{u_1, \dots, u_m\}$ of parameters of \mathcal{O}_1 and $\{s_1, \dots, s_m\}$ of \mathcal{O}' respectively such that $\alpha_1^*(s_i) = u_i^{p^e_i}$ for $i = 1, 2, \dots$, m by Theorem in [4]. Since π is a separable morphism, there exists a subset $\{t_{m+1}, \dots, t_n\}$ of \mathcal{O} such that $\{t_1 = \pi^*(u_1), \dots, t_m = \pi^*(u_m), t_{m+1}, \dots, t_n\}$ is a regular system of parameters of O as shown in the above. Therefore these $\{t_1, \dots, t_n\}$ and $\{s_1, \dots, s_m\}$ are our solution in this case. In fact we see easily $\{\bar{t}_{m+1}, \dots, \bar{t}_n\}$ is a regular system of parameters of \mathcal{O}'' . In general cases let G_2 be the image $\alpha(G)$ and \mathcal{O}_2 the local ring of G_2 at e'. If \mathfrak{p} is a prime ideal of \mathcal{O}' corresponding to the subvariety G_2 of G', O'/\mathfrak{p} is isomorphic to O_2 . In particular O'/\mathfrak{p} is a regular local ring. Therefore \mathfrak{p} is generated by a subset $\{s_{r+1}, \dots, s_m\}$ of a regular system of parameters of \mathcal{O}' by Theorem 26, Chap. VIII in [9]. Moreover we see that $\{s_1, \dots, s_r, s_{r+1}, \dots, s_m\}$ is a regular system of parameters of O' for any subset $\{s_1, \dots, s_r\}$ of O' such that the image of $\{s_1, \dots, s_r\}$ in $\mathcal{O}'/\mathfrak{p}$ is that of $\mathcal{O}'/\mathfrak{p}$. Combining this with the results obtained in the above for a special case, we see that our assertion is true. q.e.d.

REMARK. (i) The notation being as in Proposition 3, let $\{t'_{r+1}, \dots, t'_n\}$ be any regular system of parameters of \mathcal{O}'' . Then we can find $\{t_1, \dots, t_n\}$ in Proposition 3 satisfying $\bar{t}_i = t'_i$ for $i = r+1, \dots, n$. In fact we may replace $\{t_{r+1}, \dots, t_n\}$ by any set of m-r elements in \mathcal{O} whose image in \mathcal{O}'' is a regular system of parameters of \mathcal{O}'' , since the ideal $(t_1, \dots, t_r)\mathcal{O}$ is the prime ideal corresponding to the subvariety G'' such that \mathcal{O}'' is isomorphic to $\mathcal{O}/(t_1, \dots, t_r)\mathcal{O}$.

(ii) Similarly if $\alpha(G)$ is a normal subgroup of G', $\{s_{r+1}, \dots, s_m\}$ may be replaced with any regular system of parameters of the local ring of the quotient group variety $G'/\alpha(G)$ at the neutral element.

COROLLARY. In Proposition 3, α is a separable morphism if and only if $e_i=0$ for i=1,2,...,r.

PROOF. Let G_1 be the quotient group variety G/G', and π the canonical homomorphism of G onto G_1 . Then there exists a purely inseparable isogeny α_1 of G_1 onto $\alpha(G)$ such that $\alpha = \alpha_1 \pi$. Then α is a separable morphism if and only if α_1 is an isomorphism. On the other hand we know that $e_1 + \dots + e_r = s$, where $[k(G_1): k(\alpha(G))] = [k(G): k(\alpha(G_1)]_i = p^s)$ by Theorm in [4]. This completes the proof. q.e.d.

Let G be a group variety defined over k. Then recall that the Hopf algebra $\mathfrak{D}(G)$ attached to G is the subalgebra $k \oplus \mathfrak{g}(G)$ of the algebra $\operatorname{Hom}_k(k(G), k(G))$ over k, where $\mathfrak{g}(G)$ consists of all the left invariant semi-derivations of G. Moreover if $\{t_1, \dots, t_n\}$ is a regular system of parameters of \mathcal{O} , then there exists a basis $\{I_{e_1\dots e_n} | e_i \geq 0, \sum_i e_i > 0\}$ of $\mathfrak{g}(G)$, which is uniquely determined by the condition that $I_{e_1\dots e_n}(t_1^{e_1}\dots t_n^{e_n}) - 1$ and $I_{e_1\dots e_n}(t_1^{e_1}\dots t_n^{e_n})$ for $(e_1, \dots, e_n) \neq (e_1', \dots e_n')$ are in the maximal ideal of \mathcal{O} (cf. Theorem l in [8]). For convenience, sake we denote by $I_{0\dots 0}$ the identity mapping of k(G). Then $\{I_{e_1\dots e_n} | e_i \geq 0$ for each $i\}$ is called the canonical basis of $\mathfrak{D}(G)$ with respect to $\{t_1, \dots, t_n\}$. Now we have the following

THEOREM 1. Let α be an algebraic homomorphism of a group variety Ginto a group variety G' defined over k, and assume that $\{t_1, \dots, t_n\}$ and $\{s_1, \dots, s_m\}$ are reguar systems of parameters of O and O' satisfying the conditions (i), (ii) and (iii) in Proposition 3. Let $\{I_{a_1\dots a_n}\}$ be the canonical basis of the Hopf algebra $\mathfrak{H}(G)$ attached to G with respect to $\{t_1, \dots, t_n\}$. Then the h-kernel of the Hopf algebra homomorphism α_* of $\mathfrak{H}(G)$ into $\mathfrak{H}(G')$ induced from α is the linear subspace of $\mathfrak{H}(G)$ generated by the elements $I_{a_1\dots a_n}$ such that $a_i < p^{e_i}$ for $i = 1, 2, \dots, r$.

PROOF. Let $\{I'_{b_1...b_m} | b_i \ge 0\}$ be the canonical basis of $\mathfrak{H}(G')$ with respect to $\{s_1,...,s_m\}$. Since $\alpha_*(D)(x) = D(\alpha^*(x))$ for any element x in \mathcal{O}' and any element D in $\mathfrak{H}(G)$, we see that

$$\alpha_*(I_{a_1p^{e_1}\dots a_rp^{e_r}0\dots 0}) = I'_{a_1\dots a_r0\dots 0}$$

$$\alpha_*(I_{b_1\dots b_n}) = 0 \text{ for } (b_1,\dots,b_n) \neq (a_1p^{e_1},\dots,a_rp^{e_r},0,\dots,0)$$

and

from the definition of the canonical basis and the condition in Proposition 3 satisfied by $\{t_1, \dots, t_n\}$ and $\{s_1, \dots, s_m\}$. If we denote by \varDelta the diagonal of the Hopf algebra $\mathfrak{H}(G)$, we know that $\varDelta(I_{a_1\dots a_n}) = \sum_{\substack{(a') + (a'') = (a) \\ (a') + (a'') = (a)}} I_{a'_1\dots a'_n} \otimes I_{a'_1\dots a''_n}$ (cf. §5 in [8]). Therefore we have

$$(id_{\mathfrak{H}(G)} \otimes \alpha_{*}) \varDelta (I_{a_{1}...a_{n}}) = \sum_{(a') + (a'') = (a)} I_{a'_{1}...a'_{n}} \otimes \alpha_{*} (I_{a''_{1}...a'_{n}})$$
$$= \sum_{(a') + (bp'') = (a)} I_{a'_{1}...a'_{n}} \otimes I_{b_{1}...b_{r}^{0}...0},$$

where $\sum_{(a')+(bp^e)=(a)}'$ runs over all pairs ((a'), (b)) such that

$$(a'_1,...,a'_n)+(b_1p^{e_1},...,b_rp^{e_r},0,...,0)=(a_1,...,a_n).$$

This means that

$$(id_{\mathfrak{H}(G)}\otimes \alpha_*) \varDelta(I_{a_1\dots a_n}) \neq I_{a_1\dots a_n} \otimes \mathbf{1}$$

if $a_i \ge p^{e_i}$ for some i < r, since $\{I_{a_1 \dots a_n} \otimes I'_{b_1 \dots b_m}\}$ is a basis of $\mathfrak{H}(G) \otimes_k \mathfrak{H}(G')$ over k. On the other hand if $a_i < p^{e_i}$ for any $i \le r$, we have $(id_{\mathfrak{H}(G)} \otimes \alpha_*) \mathcal{A}(I_{a_1 \dots a_n}) = I_{a_1 \dots a_n} \otimes 1$ and hence $I_{a_1 \dots a_n}$ is contained in the *h*-kernel of α_* . In general if $D = \sum_{i \in I} \gamma_{a_1 \dots a_n} I_{a_1 \dots a_n}$, we have

$$(id_{\mathfrak{H}(G)} \otimes \alpha_*) \Delta(D) = \sum_{(a)} \gamma_{a_1 \dots a_{n_{(a')} + (bp'^e) = (a)}} I_{a'_1 \dots a'_n} \otimes I'_{b_1 \dots b_r 0 \dots 0}.$$

Now it is easy to see that $((a'), (bp^e)) \neq ((a'_1), (b_1p^e))$ if $(a')+(bp^e) \neq (a'_1)+(b_1p^e)$. Therefore we see

$$(id_{\mathfrak{g}(G)}\otimes \alpha_*) \Delta(D) \neq D \otimes 1,$$

if $\gamma_{a_1...a_n} \neq 0$ for such $(a_1,...,a_n)$ that $a_i \ge p^{e_i}$ for some $i \le r$. This means that the *h*-kernel of α_* is generated by the elements $I_{a_1...a_n}$ such that $a_i < p^{e_i}$ for any $i \le r$. q.e.d.

THEOREM 2. Let G_1 , G_2 and G_3 be group varieties defined over k and let α_i be an algebraic homomorphism of G_i into G_{i+1} defined over k for i=1, 2 such that the image of G_1 into G_2 is equal to the connected component of the kernel of α_2 containing the neutral element. Then α_2 is a separable morphism if and only if the sequence $\mathfrak{H}(G_1) \xrightarrow{\alpha_{1*}} \mathfrak{H}(G_2) \xrightarrow{\alpha_{2*}} \mathfrak{H}(G_3)$ of Hopf algebras is exact.

PROOF. We may assume that G_1 is a group subvariety of G_2 and that α_1 is the canonical injection. In fact if α is a surjective algebraic homomorphism of G onto G' in Proposition 3, we have $\alpha^*(s_i) = t_i^{p^e_i}$ for i=1, 2, ..., m. Then we have $\alpha_*(I_{a_1p^{e_1}...a_m}p^{e_m_0}...0) = I'_{a_1...a_m}$ for any $(a_1, ..., a_m)$, where $\{I_{a_1...a_n}\}$ and $\{I'_{b_1...b_m}\}$ are the canonical basis of $\mathfrak{H}(G)$ and $\mathfrak{H}(G')$ with respect to $\{t_1, ..., t_n\}$

and $\{s_1, \dots, s_m\}$ respectively (cf. the proof of Theorem 1). This means that α_* is also a surjection and we may replace G_1 with the image $\alpha_1(G_1)$.

Therefore we assume that G_1 is the connected component of the kernel of α_2 containing the neutral element e_2 . Then, from Proposition 3 and Remark (i) below it, there exists a regular system $\{t_1, \dots, t_n\}$ of parameters of \mathcal{O}_{e_2, G_2} and that $\{s_1, \dots, s_m\}$ of \mathcal{O}_{e_3, G_3} satisfying the following conditions:

- for $i=1,\cdots, r=\dim \alpha_2(G_2),$ $\alpha_2^*(s_i) = t_i^{p^{e_i}}$ $\alpha_2^*(s_i) = 0$ (i)
- for $j=r+1,\ldots,m$ (ii) $\alpha_2^*(s_i) = 0$

and (iii) $\{\bar{t}_{r+1,\dots,\bar{t}_n}\}$ is a regular system of parameters of \mathcal{O}_{e_1,G_1} , where \bar{t}_n is the canonical image of t_n in \mathcal{O}_{e_1,G_1} . By Corollary of Proposition 3, α_2 is separable if and only if $e_i=0$ for i=1, 2, ..., r. On the other hand if $\{\overline{I}_{a_1...a_n}\}$ is the canonical basis of $\mathfrak{H}(G_2)$ with respect to $\{t_1, \dots, t_n\}$, we easily see that $\alpha_{1_*}(\mathfrak{H}(G_1))$ is the subspace of $\mathfrak{H}(G_2)$ generated by the elements $\overline{I}_{0\dots 0a_{r+1}\dots a_n}$ for $a_i \ge 0$ as seen in the proof of Theorem l and that the h-kernel of α_{2_*} is the subspace of $\mathfrak{H}(G_2)$ generated by the elements $\overline{I}_{a_1...a_n}$ such that $a_i < p^{e_i}$ for any $i \leq r$. This means that $e_1 = \cdots = e_r = 0$ if and only if $\alpha_{1_*}(\mathfrak{H}(G_1))$ is the h-kernel of $\alpha_{2_{\star}}$. Therefore our assertion is proved. q.e.d.

§3 Groups Ext(A,B) for purely inseparable isogenies

The aim of this section is to give a generalization of Serre's result on groups Ext(A,B) for purely inseparable isogenies of exponent l in §3, $n^{\circ}8$ in $\lceil 6 \rceil$ for cases of higher exponents. Let A and B be two commutative group varieties defined over k. Now recall that Ext(A,B) is the set of isomorphism classes of extensions C of A by B, i.e., the set of isomorphism classes of strictly exact sequences $0 \rightarrow B \rightarrow C \rightarrow A \rightarrow 0$ of commutative group varieties defined over k, and that Ext(A,B) is an additive functor in both A and B into abelian groups (cf. §3, $n^{\circ}7$ in [6]). More generally let \mathcal{A} be an abelian category and let A and B be two objects in \mathcal{A} . Then there exists an abelian group Ext(A,B) called "the group of Yoneda extensions of A by B" (cf. Chap. VII in $\lceil 5 \rceil$). In particular the Hopf algebra $\mathfrak{H}(A)$ attached to a commutative group variety A defined over k is in the abelian category \mathcal{Q} given in §1, and hence $Ext(\mathfrak{N},\mathfrak{H}(A))$ is defined for any object \mathfrak{N} in \mathcal{Q} .

Let ρ be a purely inseparable isogeny of a commutative group variety A onto A' defined over k and $N = N(\rho)$ the Hopf subalgebra of $\mathfrak{D}(A)$ corresponding to ρ in the sense of Theorem 4 in [8]. Then we have

Lemma 4. The sequence

$$k \longrightarrow N(\rho) \xrightarrow{i} \mathfrak{H}(A) \xrightarrow{\rho_*} \mathfrak{H}(A') \longrightarrow k$$

of Hopf algebras is exact in \mathcal{Q} .

PROOF. By Theorem in [4], there exists a regular system $\{t_1, \dots, t_n\}$ of

parameters of $\mathcal{O}_{e,A}$ such that $\{t_1^{p^{e_1}}, \dots, t_n^{p^{e_n}}\}$ is that of $\mathcal{O}_{e',A'}$, where we identify $\mathcal{O}_{e',A'}$ with the subring $\rho^*(\mathcal{O}_{e',A'})$ of $\mathcal{O}_{e,A}$. Then the h-kernel \Re of ρ_* has a basis $\{I_{a_1\dots a_n} | a_i < p^{e_i} \text{ for } i=1, 2, \dots, n\}$ by Theorem I, where $\{I_{a_1\dots a_n} | a_i \ge 0\}$ is the canonical basis of $\mathfrak{H}(A)$ with respect to $\{t_1, \dots, t_n\}$. By the definition of $N(\rho)$ and Proposition 15 in [8], we see D(k(A'))=0 for any element D in $N(\rho)^+$. This means that \Re is contained in $N(\rho)$ by Lemma 3. But we know that $\dim_k N(\rho)=[k(A):k(A')]=p_{i=1}^{\frac{p}{p}}e^{i}=\dim_k \Re$, and hence we see $N(\rho)=\Re$.

q.e.d.

If B is another commutative group variety defined over k, we denote by Hom(A,B) (resp. Hom(A',B)) the group of algebraic homomorphisms of A (resp. A') into B defined over k. Then there exists a group homomorphism $\tilde{\rho}$ of Hom (A', B) into Hom (A, B) defined dy $\tilde{\rho}(\alpha) = \alpha \rho$. Similary we define a mapping i of Hom(A,B) into Hom_{θ}(N(ρ), $\mathfrak{H}(B)$) by $i(\alpha) = \alpha_*i$ for α in Hom(A,B), where α_* is the tangential mapping of $\mathfrak{H}(A)$ to $\mathfrak{H}(B)$ induced by α . Then i is a group homomorphism. In fact, let δ_A be the diagonal mapping of A into $A \times A$ given by $\delta_A(x) = x \times x$ and μ_B the multiplication of $B \times B$ onto B given by $\mu_B(y \times z) = y + z$. If f and g are in Hom(A,B), we have f + g = $\mu_B(f \times g)\delta_A$ and hence $(f+g)_* = \mu_{B*}(f \times g)_*\delta_{A*} = m_{\mathfrak{H}(B)}(f_* \otimes g_*) \mathfrak{L}_{\mathfrak{H}(A)} = (f_*)^*$ (g_*) . This means that $i(f+g) = (f+g)_*i = (f_*i)*(g_*i) = i(f)*i(g)$. Then we have

LEMMA 5. The sequence

$$0 \longrightarrow \operatorname{Hom}(A',B) \xrightarrow{\tilde{\rho}} \operatorname{Hom}(A,B) \xrightarrow{\tilde{i}} \operatorname{Hom}_{\ell}(N(\rho),\mathfrak{H}(B))$$

of abelian groups is exact.

PROOF. It is clear that $\tilde{\rho}$ is injective. Let g be an element of Hom(A',B)and put $f = \tilde{\rho}(g) = g \cdot \rho$. If i^* is the natural homomorphism of $\mathcal{O}_{e,A}$ onto R = $N(\rho)^{D}$, we have $i^{*}\rho^{*}(\mathfrak{m}')=0$, where \mathfrak{m}' is the maximal ideal of $\mathcal{O}_{e,A'}$ (cf. §7 in [8]). From this we easily see that $i(f) = f_*i = g_*\rho_*i$ is the zero morphism of $N(\rho)$ into $\mathfrak{H}(B)$ in \mathcal{Q} , since $\mathfrak{H}(B)$ and $N(\rho)$ may be considered as subspaces of the dual spaces of $\mathcal{O}_{e,B}$ and $R = N(\alpha)^D$ over k respectively. This means that the image of $\tilde{\rho}$ is contained in the kernel of \tilde{i} . Conversely assume that $\tilde{i}(f)=0$ and put f(A) = B'. If j is the canonical injection of B' into B, we have $f = j \cdot f'$, where f' is a surjective homomorphism of A to B'. Now we identify the fields k(A') and k(B') with the subfields $\rho^*(k(A'))$ and $f'^*(k(B'))$ of k(A). Then we have $f'_{*}(D) = D|_{k(B')}$ for any D in $\mathfrak{H}(A)$ by Proposition 15 in [8]. Since j_{*} is injective, we have $f'_*i=0$ by the hypothesis $i(f)=f_*i=0$. Therefore we have $D|_{k(B')}=0$ for any element D in $N(\rho)^+$. On the other hand k(A') is the set of the elements x in k(A) such that D(x)=0 for any D in $N(\rho)^+$ by (D) in §6 of $\lceil 8 \rceil$, and hence k(A') contains k(B'). From this we see that there exists an algebraic homomorphism g' of A' onto B' such that $f' = g' \cdot \rho$ and hence $f = jf' = (jg')\rho = \tilde{\rho}(jg').$ q.e.d.

Let g be an element of $\operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(B))$. Then there exists the pushout \mathfrak{H}_g of $\mathfrak{H}(A)$ and $\mathfrak{H}(B)$ over $N(\rho)$ with respect to (i,g), since \mathscr{Q} is an abelian category (cf. TH. 20.1. of Chap. I in [5]). Let p_1 and p_2 be the canonical morphisms of $\mathfrak{H}(A)$ and $\mathfrak{H}(B)$ into \mathfrak{H}_g such that $p_1 i = p_2 g$. Recall that \mathfrak{H}_g is constructed as follows: let μ be a morphism of $N(\rho)$ into $\mathfrak{H}(A) \otimes_k \mathfrak{H}(B)$ defined by $\mu = (i_A \cdot i) * (ci_B g)$, where c is the antipode of the direct sum $(\mathfrak{H}(A) \otimes_k \mathfrak{H}(B))$, i_A, i_B of $\mathfrak{H}(A)$ and $\mathfrak{H}(B)$ in \mathcal{Q} . Then if (\mathfrak{H}_g, ν) is the cokernel of $\mu, (\mathfrak{H}_g, p_1 = \nu i_A, \nu)$ $p_2 = \nu i_B$ is the push-out of $\mathfrak{H}(A)$ and $\mathfrak{H}(B)$ over $N(\rho)$. If we put $N' = \mu(N(\rho))$, N' is a Hopf subalgebra of $\mathfrak{H}(A) \otimes_k \mathfrak{H}(B) = \mathfrak{H}(A \otimes B)$ of a finite dimension. Therefore there exists a purely inseparable isogeny π of $A \times B$ onto a commutative group variety C_g such that $\operatorname{Spec}(N^{\prime D})$ is the kernel of π by Theorems 3 and 4 in [8]. It is clear by Lemma 4 that \mathfrak{D}_{g} and ν may be identified with $\mathfrak{H}(C_g)$ and π_* respectively. Moreover $\pi^*(k(C_g))$ is the set of y in $k(A \times B)$ such that D(y)=0 for any D in N'⁺. On the other hand if k(A) is identified with the subfield $p_A^*(k(A))$ of $k(A \times B)$, we have $D(x) = \mu D(x)$ for x in k(A)and D in N by the definition of the morphism μ . Therefore $\pi^*(k(C_g))$ contains $\rho^*(k(A'))$ and hence there exist an algebraic homorphism ϕ of C_{β} onto A' such that $\phi \pi = \rho p_A$. On the other hand it is easy to see that g gives a morphism g_1 of $\operatorname{Spec}(N(\rho)^D)$ to B as k-group schemes such that $(g_1)_* = g$. Similarly *i* gives a morphism i_1 of $\operatorname{Spec}(N(\rho)^D)$ to *A* such that $(i_1)_* = i$. Then we have

LEMMA 6. The diagram

$$0 \longrightarrow \operatorname{Spec}(N(\rho)^{D}) \xrightarrow{i_{1}} A \xrightarrow{\rho} A' \longrightarrow 0$$

$$\begin{array}{c} g_{1} \\ g_{1} \\ 0 \end{array} \xrightarrow{\pi_{i_{B}}} C_{g} \xrightarrow{\pi_{i_{B}}} A' \longrightarrow 0 \end{array}$$

of k-schemes is commutative and the second row is strictly exact.

PROOF. Since $(\pi i_A)_* = p_1$ and $(\pi i_B)_* = p_2$, we have $(\pi i_B g_1)_* = p_2 g = p_2 i = (\pi i_A i_1)_*$ and hence $\pi i_B g_1 = \pi i_A i_1$. Therefore the first assertion is seen, and from this we have a commutative diagram of Hopf algebras:

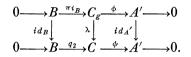
$$\begin{array}{c} k \longrightarrow N(\rho) \xrightarrow{i} \mathfrak{H}(A) \xrightarrow{\rho_{*}} \mathfrak{H}(A') \longrightarrow k \\ g & \downarrow \qquad p_{1} \downarrow \qquad id_{\mathfrak{H}(A')} \downarrow \\ k \longrightarrow \mathfrak{H}(B) \xrightarrow{p_{2}} \mathfrak{H}_{g} = \mathfrak{H}(C_{g}) \xrightarrow{\phi_{*}} \mathfrak{H}(A') \longrightarrow k \end{array}$$

Then the second row is also exact in \mathcal{O} by the dual of Corollary 20.3 of Chap. I in [5], since $\mathfrak{H}(C_g)$ is the push-out of $\mathfrak{H}(A)$ and $\mathfrak{H}(B)$ over $N(\rho)$. From this we see that the sequence $0 \longrightarrow B^{-\pi i_B} c_g^{-\phi} A' \longrightarrow 0$ is strictly exact by Theorem 2. q.e.d.

LEMMA 7. Let C be a commutative group variety defined over k satisfying the commutative diagram

$$\begin{array}{ccc} 0 & \longrightarrow & \operatorname{Spec}(N(\rho)^{D}) \xrightarrow{i} & A & \longrightarrow & A' & \longrightarrow & 0 \\ & g_{1} & & & & & \\ 0 & \longrightarrow & B & \xrightarrow{q_{2}} & C & \xrightarrow{\phi} & A' & \longrightarrow & 0, \end{array}$$

where the second row is strictly exact. Then there exists an isomorphism λ of C_g onto C satisfying the following commutative diagram



PROOF. By hypothesis we have a commutative diagram of Hopf algebras with exact rows:

$$k \longrightarrow N(\rho) \xrightarrow{i} \mathfrak{H}(A) \xrightarrow{\rho^*} \mathfrak{H}(A') \longrightarrow k$$

$$g \downarrow \qquad (q_1)_* \downarrow \qquad \mathfrak{H}_{(A')} \downarrow$$

$$k \longrightarrow \mathfrak{H}(B) \xrightarrow{(q_2)_*} \mathfrak{H}(C) \xrightarrow{d_*} \mathfrak{H}(A') \longrightarrow k.$$

Then, by the dual of Corollary 1.2. of Chap. VII in [5], there exists an isomorphism σ of $\mathfrak{H}(C_g)$ onto $\mathfrak{H}(C)$ such that $\sigma p_1 = (q_1)_*, \sigma p_2 = (q_2)_*$ and $\psi_* \sigma = \phi_*$, since C_g satisfies also the condition for C by Lemma 6. Let p_A and p_B be the canonical projections of $A \times B$ onto A and B respectively and put $\alpha = q_1 p_A + q_2 p_B$. Then we can easily see that $\alpha_* = \pi_*$. Therefore there exists an isomorphism λ of C_g onto C such that $\alpha = \lambda \pi$. Then it is clear that we may replace σ by λ_* and it is seen that $q_1 = \lambda p_1$ and $q_2 = \lambda p_2$, since $(q_1)_* = (\lambda p_1)_*$ and $(q_2)_* = (\lambda p_2)_*$. The equality $\psi \lambda = \phi$ is also obtained easily. q.e.d.

From Lemmas 6 and 7, there exists a uniquely determined element (C, q_2, ψ) in $\operatorname{Ext}(A', B)$ satisfying the condition of Lemma 7 for any element g in $\operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(B))$. Now we define a morphism d of $\operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(B))$ to $\operatorname{Ext}(A', B)$ by $d(g) = (C, q_2, \psi) = C$. Then d is a group homomorphism. In fact let g_1 and g_2 be two elements in $\operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(B))$, and put $C_{g_i} = d(g_i)$ for i = 1, 2. Then by the definition of the sum in the group $\operatorname{Ext}(A', B)$, there exists the following commutative diagram of group varieties:

where \bar{C} is the push-out of B and $C_{g_1} \times C_{g_2}$ over $B \times B$ and where $C_{g_1} + C_{g_2}$ is the pull-back of \bar{C} and A' over $A' \times A'$. On the other hand by the definition of C_{g_1} we have diagrams

Some Properties of Hopf Algebras Attached to Group Varieties

$$\begin{array}{ccc} 0 \longrightarrow \operatorname{Spec}(N(\rho)^D) \xrightarrow{i_1} A \xrightarrow{\rho} A' \longrightarrow 0 \\ & & & \\ (g_i)_1 & & r_i & id_{A'} \\ 0 & \longrightarrow & B \xrightarrow{\qquad} C_{g_i} \xrightarrow{\phi_i} A' \longrightarrow 0 \end{array}$$

From this and (1) we have a diagram

$$\begin{array}{ccc} 0 \longrightarrow \operatorname{Spec}(N(\rho)^{D}) \xrightarrow{i_{1}} A \xrightarrow{\rho} A' \longrightarrow 0 \\ & & \sigma_{1} \downarrow & \sigma_{2} \downarrow & {}_{A'} \downarrow \\ 0 \longrightarrow & B \longrightarrow & \overline{C} \xrightarrow{\eta} A' \times A' \longrightarrow 0 \end{array}$$

$$(2)$$

where $\sigma_1 = m_B((g_1)_1 \times (g_2)_1) \Delta_N D$ and $\sigma_2 = \tau(r_1 \times r_2) \Delta_A$. Since $C_{g_1} + C_{g_2}$ is the pull-back of A' and \bar{C} over $A' \times A'$, there exists an algebraic homomorphism ω of A to $C_{g_1} + C_{g_2}$ satisfying the following diagram

such that $\sigma_2 = \xi w$. Hence we have a commutative diagram of Hopf algebras:

$$k \longrightarrow N(\rho) \xrightarrow{i} \mathfrak{H}(A) \xrightarrow{\rho_{*}} \mathfrak{H}(A') \longrightarrow k$$

$$g_{1*}g_{2} \downarrow \qquad \omega^{*} \downarrow \qquad id \downarrow$$

$$k \longrightarrow \mathfrak{H}(B) \longrightarrow \mathfrak{H}(C_{g_{1}} + C_{g_{2}}) \xrightarrow{\xi_{*}} \mathfrak{H}(A') \longrightarrow k$$

$$id \downarrow \qquad \xi^{*} \downarrow \qquad \downarrow$$

$$k \longrightarrow \mathfrak{H}(B) \longrightarrow \mathfrak{H}(C) \xrightarrow{\eta_{*}} \mathfrak{H}(A') \otimes_{k} \mathfrak{H}(A') \longrightarrow k.$$

$$(4)$$

Since each row of this diagram is exact in \mathcal{O} , $\mathfrak{H}(C_{g_1}+C_{g_2})$ is the push-out of $\mathfrak{H}(A')$ and $\mathfrak{H}(\bar{C})$ over $\mathfrak{H}(A' \times A')$. Then using the commutative diagrams of Hopf algebras obtained from (1) and (2), we can easily see by Lemma l. l. of Chap. VII in [5] that we may add the morphism $g_1 * g_2 = m_{\mathfrak{H}(B)}(g_1 \otimes g_2) \mathcal{A}_N$ of N into $\mathfrak{H}(B)$ in (4) without breaking the commutativity, and hence we may add in (3) the morphism $(g_1 * g_2)_1 = m_B((g_1)_1 \times (g_2)_1) \mathcal{A}_{NP}$ of Spec $(N(\rho)^D)$ into B. This means that $d(g_1 * g_2) = C_{g_1} + C_{g_2} = d(g_1) + d(g_2)$. Now we have

LEMMA 8. The sequence

$$\operatorname{Hom}(A,B) \xrightarrow{\tilde{i}} \operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(B)) \xrightarrow{d} \operatorname{Ext}(A',B)$$

is exact.

PROOF. Let f be an element of Hom(A,B) and put $g=i(f)=f_*i$ and $\sigma=\pi(i_A-i_Bf)$, where i_A and i_B are the canonical injection of A and B into

 $A \times B$ respectively and where π is the isogeny of $A \times B$ onto C_g defined in the above. Recall that $(\mathfrak{H}(C_g), \pi_*)$ is the cokernel of the morphism $\mu = ((i_A)_*i)*(c(i_B)_*g)$, and hence we see that $\sigma_*i = \pi_*(i_A - i_Bf)_*i = \pi_*\mu$ is the zeromorphism of $\operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(C_g))$. This means that there exists a uniquely determined algebraic homomorphism σ_1 of A' into C_g such that $\sigma = \sigma'\rho$ by Lemma 5. If ϕ is the homomorphism of C_g onto A' defined in Lemma 6, we see from the definition of σ that $\phi\sigma_1$ is the identity of A'. This means that the sequence $0 \longrightarrow B \longrightarrow C_g \xrightarrow{\phi} A' \longrightarrow 0$ is split, i.e., d(g) = 0. Conversely assume that d(g) = 0 for g in $\operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(B))$. Then the sequence $0 \longrightarrow B \xrightarrow{\pi_{i_B}} C_g$ $\xrightarrow{\phi} A' \longrightarrow 0$ is split and hence there exists an algebraic homomorphism h of C_g onto B such that $h\pi i_B = id_B$. If we put $f = h\pi i_A$, we see easily that $g = f_*i = i(f)$. This completes the proof. q.e.d. Now we denote by $\tilde{\rho}_1$ the group homomorphism of $\operatorname{Ext}(A', B)$ into

LEMMA 9. The sequence

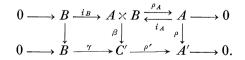
Ext(A,B) induced from ρ . Then we have

$$\operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(B)) \xrightarrow{d} \operatorname{Ext}(A', B) \xrightarrow{\tilde{\rho}} \operatorname{Ext}(A, B)$$

is exact.

PROOF. If we put $C = \tilde{\rho}_1(C_g)$ for g in $\operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(B))$, we have, by the definition of $\tilde{\rho}_1$, the commutative diagram

Moreover C is the pll-back of A and C_g over A' and hence there exists an algebraic homomorhism h of A into C such that $\alpha h = i d_A$ and $\beta h = \pi i_A$. This means that the sequence $0 \longrightarrow B \longrightarrow C \xrightarrow{\alpha} A' \longrightarrow 0$ is split. Conversely let (C', γ, ρ') be an element of Ext (A', B) satisfying the commutative diagram



If we put $h = \beta i_A$, we see $\rho = \rho' h$ and hence have a commutative diagram with exact rows:

$$\begin{array}{ccc} k & \longrightarrow & N \xrightarrow{i} & \mathfrak{H}(A) \xrightarrow{\rho_*} & \mathfrak{H}(A') \longrightarrow k \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ &$$

Therefore there exists a morphism g of N into $\mathfrak{H}(B)$ such that $\gamma_*g=h_*i$. From this we see that $C'=C_g$ q.e.d.

If (C, γ, ϕ) is an element of Ext(A,B), $(\mathfrak{H}(C), \gamma_*, \phi_*)$ is in $\text{Ext}(\mathfrak{H}(A), \mathfrak{H}(B))$ by Theorem 2. Denoting by i_1 the homomorphism of $\text{Ext}(\mathfrak{H}(A), \mathfrak{H}(B))$ into $\text{Ext}(N(\rho), \mathfrak{H}(B))$ induced from the morphism i of $N(\rho)$ into $\mathfrak{H}(A)$, we define i_1 of Ext(A,B) into $\text{Ext}(N(\rho), \mathfrak{H}(B))$ by $i_1(C) = i_1(\mathfrak{H}(C))$. Then we have

LEMMA 10. The sequence

$$\operatorname{Ext}(A',B) \xrightarrow{\tilde{\rho}_1} \operatorname{Ext}(A,B) \xrightarrow{\tilde{i}_1} \operatorname{Ext}(N(\rho), \mathfrak{H}))$$

is exact.

PROOF. Since the sequence

$$\operatorname{Ext}(\mathfrak{H}(A'),\mathfrak{H}(B)) \xrightarrow{(\mathfrak{h}_{*})_{1}} \operatorname{Ext}(\mathfrak{H}(A),\mathfrak{H}(B)) \xrightarrow{i_{1}} \operatorname{Ext}(N(\rho),\mathfrak{H}(B))$$

is exact by Prop. 2.2. of Chap. VII in [5], we can easily see that the image of $\tilde{\rho}_1$ is contained in the kernel of \tilde{i}_1 . Conversely let (C, γ, α) be an element of Ext(A,B) such that $\tilde{i}_1(C)=0$. Then we have the following commutative diagram

$$k \longrightarrow \mathfrak{H}(B) \xrightarrow{\gamma_{*}} \mathfrak{H}(C) \xrightarrow{\alpha_{*}} \mathfrak{H}(A) \longrightarrow k$$
$$id \mathfrak{H}(B) \qquad \sigma \qquad i \qquad i \qquad i \qquad i \qquad k$$
$$k \longrightarrow \mathfrak{H}(B) \longrightarrow \mathfrak{H}(B) \otimes_{k} N(\rho) \underset{i_{N}}{\longleftrightarrow} N(\rho) \longrightarrow k$$

with split second row. Since $\lambda = \sigma i_N$ is a monomorphism in \mathcal{O} , $\lambda(N)$ may be identified with N. If ψ is a purely inseparable isogeny of C onto a group variety C' corresponding to $N = \lambda(N)$, there exists an algebraic homomorphism ϕ of C' into A' such that $\phi \psi = \rho \alpha$ by Lemma 5, since $\rho_* \alpha_* \lambda_* (N^+) = \rho_* i(N^+) = 0$. Then the sequence $0 \longrightarrow B \xrightarrow{\psi \gamma} C' \xrightarrow{\phi} A' \longrightarrow 0$ is strictly exact. For we can easily see that the sequence $0 \longrightarrow \mathfrak{H}(B) \xrightarrow{(\psi \gamma)_*} \mathfrak{H}(C') \xrightarrow{\phi_*} \mathfrak{H}(A') \longrightarrow 0$ is exact in \mathcal{O} . Moreover we see, from the definition of C and C', $C = \tilde{\rho}_1(C')$. q.e.d. In conclusion we have the following

In constantion we have she tonowing

THEOREM 3. The notation being as above, we have the following exact sequene:

$$0 \longrightarrow \operatorname{Hom}(A', B) \xrightarrow{\tilde{\rho}} \operatorname{Hom}(A, B) \xrightarrow{\tilde{i}} \operatorname{Hom}_{\ell}(N(\rho), \mathfrak{H}(B)) \xrightarrow{d} \operatorname{Ext}(A', B)$$

 $\xrightarrow{\rho_1} \operatorname{Ext}(A,B) \xrightarrow{\tilde{i}_1} \operatorname{Ext}(N(\rho), \mathfrak{H}(B)).$

§4 Hopf algebras and rational representations

First we give some results on Hopf subalgebras of the Hopf algebra $\mathfrak{H}(G)$

attached to a group variety G corresponding to group subvarieties of G. In this section we identify the Hopf algebra $\mathfrak{H}(H)$ attached to a group subvariety H of G with Hopf subalgebra $i_*(\mathfrak{H})$ of $\mathfrak{G}(G)$, where i_* is the tangential homomorphism of $\mathfrak{H}(H)$ to $\mathfrak{H}(G)$ induced by the canonical injection *i* of *H* into *G*.

PROPOSITION 4. Let H and K be two group subvarieties of a group variety Then K is a group subvariety of H if and only if $\mathfrak{H}(H)$ contains $\mathfrak{H}(K)$. *G*.

PROOF. Let a and b be the prime ideals of the local ring $\mathcal{O} = \mathcal{O}_{e,G}$ corresponding to H and K respectively. By Lemma 14 and Proposition 16 in $\lceil 8 \rceil$ we know that $\mathfrak{H}(G)$ may be identified with the set of continuous k-linear homomorphismm of O with the m-adic topology to k with the discrete topology where m is the maximal ideal of \mathcal{O} . Then we easily see that $\mathfrak{H}(H)(\operatorname{resp.}\mathfrak{H}(K))$ consists of the elements D of $\mathfrak{H}(G)$ such that $D(\mathfrak{a}) = 0$ (resp. $D(\mathfrak{b}) = 0$). On the other hand a (resp. b) consists of the elements x of O such that D(x)=0 for any *D* in $\mathfrak{H}(H)$ (resp. $\mathfrak{H}(K)$), since $\mathfrak{a} = \bigwedge_{n=0}^{\infty} (\mathfrak{m}^n + \mathfrak{a})$ and $\mathfrak{b} = \bigwedge_{n=0}^{\infty} (\mathfrak{m}^n + \mathfrak{b})$. fore \mathfrak{a} is contained in \mathfrak{b} if and only if $\mathfrak{H}(H)$ contains $\mathfrak{H}(K)$. This There-This completes the proof. q.e.d.

COROLLARY. Let G, H and K be as in Proposition 4. Let a be the prime ideal of the local ring $\mathcal{O} = \mathcal{O}_{e,G}$ corresponding to the group subvariety H of G and $\{t_1, \dots, t_n\}$ be a regular system of parameters of O such that a is generated by a subset $\{t_1, \dots, t_r\}$ of $\{t_1, \dots, t_n\}$. If $\{I_{a_1 \dots a_n} | a_i \ge 0\}$ is the canonical basis of $\mathfrak{H}(G)$ with respect to $\{t_1, \dots, t_n\}$, then the following three conditions are equivalent:

- K is a group subvariety of H. (i)
- (ii) If $D = \sum_{(a)} \alpha_{a_1...a_n} I_{a_1...a_n}$ is in $\mathfrak{H}(K)$ and if $i \leq r$,
- we have $\alpha_{a_1...a_n}^{(a)} = 0$ for $a_i = 1$ and $a_j = 0$ $(i \neq j)$. (iii) If $D = \sum_{(a)} \alpha_{a_1...a_n} I_{a_1...a_n}$ is in $\mathfrak{H}(K)$ and if $i \leq r$, we have $\alpha_{a_1\dots a_n} = 0$ for $a_i \neq 0$.

 P_{ROOF} . First we assume the condition (i). Then, as shown in the proof of Proposition 4, we see $D(\alpha) = 0$ for any D in $\mathfrak{H}(K)$ if $\mathfrak{H}(G)$ is identified with the set of continuous k-linear homomorphisms of O into k. Since $t_1^{a_1} \cdots t_n^{a_n}$ is contained in a if $a_i \neq 0$ for some $i \leq r$, this means that $\alpha_{a_1...a_n} = D(t_1^{a_1}...t_n^{a_n}) = 0$ and hence the condition (iii) is satisfied. It is trivial the condition (ii) is satisfied Lastly assume that the condition (ii) is true. If K is not a if (iii) is so. group subvariety of H, then there exists an element t_i contained in a such that t_i does not belong to the prime ideal b of \mathcal{O} corresponding to K. As seen in the proof of Proposition 4 there exists an element D in $\mathfrak{H}(G)$ such that $D(t_i) \neq 0$ and $D(\mathfrak{b}) = 0$. If $D = \sum_{(a)} \alpha_{a_1 \dots a_n} I_{a_1 \dots a_n}$, this means that $D(t_i) = \alpha_{0 \dots 0} \underbrace{i}_{10 \dots 0} \neq 0$. This is a contradiction. q.e.d.

Now we denote by G_n the general linear group GL_n whose affine ring

over k is $k[t_{11},...,t_{nn},D^{-1}]$, where $D = \det(t_{ij})$. Then we have $XY = (\sum_{h=1}^{n} \hat{\xi}_{ih} \eta_{hj})$ for $X = (\xi_{ij})$ and $Y = (\eta_{ij})$ in G_n . If we put $s_{ij} = t_{ij} - \delta_{ij}$ for i, j = 1, 2, ..., n, where $\delta_{ij} = 0$ for $i \neq j$ and $\delta_{ii} = 1$, we see that $\{s_{11},...,s_{nn}\}$ is a regular system of parameters of the local ring \mathcal{O}_{e,G_n} of G_n at the point $E = (\delta_{ij})$. Let $\{I_{a_{11}...a_{nn}} | a_{ij} \geq 0\}$ be the canonical basis of $\mathfrak{H}(G_n)$ with respect to $\{s_{11},...,s_{nn}\}$. In particular we denote dy $I_{ij}^{(r)}$ the element $I_{a_{11}...a_{nn}}$ such that $a_{ij} = p^r$ and $a_{hl} = 0$ for $(h, l) \neq (i, j)$ and call it a distinguished element of height r. Then we have

LEMMA 11. Let $\{s_{11}, \dots, s_{nn}\}$ and $\{I_{a_{11}\dots a_{nn}} | a_{ij} \ge 0\}$ be as above. Then we have

(i) $I_{ij}^{(r)}(s_{lm}^{p^u}) = (s_{li}^{p^u} + \delta_{li})\delta_{jm}\delta_{ru},$

and (ii) $I_{a_{11}...a_{nn}}(s_{lm}^{p^n})=0$ if $I_{a_{11}...a_{nn}}$ is not a distinguished element.

PROOF. Let X and Y be two independent generic points of G_n over k and put $s_{ij}(X) = \xi_{ij}$ and $s_{ij}(Y) = \eta_{ij}$ for i, j = 1, 2, ..., n. Since we have

$$s_{ij}(XY) + \delta_{ij} = \sum_{h=1}^{n} (s_{ih}(X) + \delta_{ih}) (s_{hj}(Y) + \delta_{hj}),$$

it is easily see that

$$s_{ij}(XY)^{p^u} - s_{ij}(X)^{p^u} = \sum_{h=1}^n (\xi_{ih}^{p^u} + \delta_{ih}) \eta_{hj}^{p^u}.$$

From this equality, we see that (i) and (ii) in our lemma are given from the definition of $\{I_{a_{11}...a_{nn}}\}$ (cf. §4 in [8]). q.e.d.

Now let $M_n(k)$ be the ring of all the square matrices of degree n with elements in the field k. Then we define a mapping ρ_r of $\mathfrak{H}(G_n)$ to $M_n(k)$ by $\rho_r(D) = (D_e(s_{ij}^{p_r}))$ for D in $\mathfrak{H}(G_n)$, where D_e is the local component of D at e defined in §3 of [8]. If $D = \sum_{(a)} \alpha_{a_{11}\dots a_{nn}} I_{a_{11}\dots a_{nn}}$, we see that $\rho_r(D) = (\alpha_{ij}^{(r)})$ by the definition of the canonical basis $\{I_{a_{11}\dots a_{nn}} | a_{ij} \ge 0\}$ of $\mathfrak{H}(G_n)$, where $\alpha_{ij}^{(r)}$ is the element $\alpha_{a_{11}\dots a_{nn}}$, for each (i, j) and r, such that $a_{ij} = p^r$ and $a_{hl} \rightleftharpoons 0$ for $(h, l) \rightleftharpoons (i, j)$. Now we show the following

PROPOSITION 5. The notation being as above, ρ_r is a k-algebra homomorphism of $\mathfrak{H}(G_n)$ to $M_n(k)$ for any non-negative integer r.

PROOF. It is clear that ρ_r is a k-linear mapping, and hence it is sufficient to show that

$$\rho_r(I_{a_{11}\dots a_{nn}}I_{b_{11}\dots b_{nn}}) = \rho_r(I_{a_{11}\dots a_{nn}}) \rho_r(I_{b_{11}\dots b_{nn}}).$$

If one of $I_{a_{11}...a_{nn}}$ and $I_{b_{11}...b_{nn}}$ is not a distinguished element of height r, we see by Lemma 11

$$\rho_r(I_{a_{11}\dots a_{nn}}I_{b_{11}\dots b_{nn}}) = \rho_r(I_{a_{11}\dots a_{nn}}) \rho_r(I_{b_{11}\dots b_{nn}}) = 0.$$

Thus we may assume that $I_{a_{11}...a_{nn}} = I_{ij}^{(r)}$ and $I_{b_{11}...b_{nn}} = I_{lm}^{(r)}$. Let $E_{ij} = (\varepsilon_{\lambda\mu})$ be the square matrix of degree *n* such that $\varepsilon_{ij} = 1$ and $\varepsilon_{\lambda\mu} = 0$ for $(\lambda, \mu) \neq (i, j)$. By Lemma 11, we have

$$I_{ij}^{(r)}I_{lm}^{(r)}(s_{\lambda\mu}^{br}) = I_{ij}^{(r)}((s_{\lambda l}^{br} + \delta_{\lambda l})\delta_{m\mu})$$

$$= \delta_{m\mu}\delta_{lj}(s_{\lambda i}^{br} + \delta_{\lambda i}),$$
(*)

and hence This means that

$$I_{ij}^{(r)}I_{lm}^{(r)}(s_{\lambda\mu}^{p})=0$$
 if $j \neq l$.

$$\rho_r(I_{ij}^{(r)}I_{lm}^{(r)}) = 0 = \rho_r(I_{ij}^{(r)})\rho_r(I_{lm}^{(r)}) \quad \text{for } j \neq l,$$

since $\rho_r(I_{ij}^{(r)}) = E_{ij}$ and $\rho_r(I_{lm}^{(r)}) = E_{lm}$. If j = l, we have

$$\rho_r(I_{ij}^{(r)}I_{jm}^{(r)}) = E_{im} = E_{ij}E_{jm} = \rho_r(I_{ij}^{(r)})\rho_r(I_{jm}^{(r)}),$$

since $(I_{ij}^{(r)}I_{jm}^{(r)})_e(s_{\lambda\mu}^{\delta r}) = \delta_{\lambda i}\delta_{m\mu}$ by the equality (*). This completes the the proof. q.e.d.

Let V be a vector space of dimension n over k and GL_V the group of linear automorphisms of V which has a structure of a group variety defined over k. Precisely if $\{v_1, \dots, v_n\}$ is a basis of V over k, GL_V may be identified with the general linear group G_n naturally such that an element l in GL_V corresponds to (λ_{ij}) , where $l(v_i) = \sum_{i=1}^n \lambda_{ij} v_j$.

Now let G be a group variety over k and assume that there exists a rational representation ϕ of G to GL_V defined over k. Then we show that V has a structure of $\mathfrak{H}(G)$ -module determined depending on ϕ . In fact let ϕ_* be the tangential mapping of $\mathfrak{H}(G)$ to $\mathfrak{H}(\operatorname{GL}_V) = H(\mathfrak{G}_n)$ induced by ϕ and ρ_0 the kalgebra homomorphism of $\mathfrak{H}(G_n)$ to $M_n(k)$ defined in the above. Moreover we consider any element $A = (\alpha_{ij})$ of $M_n(k)$ as a linear endomorphism of V such that $A(v_i) = \sum_{j=1}^n \alpha_{ij} v_j$ for each i=1, 2, ..., n. Then if we denote by D(v) the element $\rho_0(\phi_*(D))(v)$ of V for D in $\mathfrak{H}(G)$ and v in V, we see by Proposition 4 that

$$(\alpha D + \alpha' D')(v) = \alpha D(v) + \alpha' D'(v)$$
$$(DD')(v) = D(D'(v))$$
$$D(\alpha v + \alpha' v') = \alpha D(v) + \alpha' D(v')$$
$$1(v) = v$$

for D and D' in $\mathfrak{H}(G)$, v and v' in V, and α and α' in k. It is easy to see that this structure is determined independently of the choice of the basis

 $\{v_1, \dots, v_n\}$ of V over k.

A vector subspace W of V is called a G-submodule of V, if $\phi(g)W$ is equal to W for any element g of G. Then a rational representation ϕ' of G to GL_W is obtained naturally from ϕ . Similarly W is called a $\mathfrak{H}(G)$ -submobule if D(W)is contained in W for any element D of $\mathfrak{H}(G)$. If \mathfrak{g}_0 is the Lie algebra of Gconsising of left invalue derivations of G, we can also give the definition of \mathfrak{g}_0 -submodules of V, and it is known, in characteristic 0, that W is a Gsubmodule of V if and only if it is a \mathfrak{g}_0 -submodule of V (cf. e. g., Proposition 3.31 in [3]). The following theorem is a modification of this fact in a positive characteristic p.

THEOREM 4. Let V be a finite dimensional vector space over k, and let ϕ be a rational representation of a group variety G to GL_V . Then a subspace W of V is a G-submodule of V if and only if it is a $\mathfrak{H}(G)$ -submodule of V.

PROOF. Let H be the group subvariety of GL_V which consists of the elements x of GL_V such that xW is contained in W. Then we show that $\rho_0(\mathfrak{F}(H))$ is the set of the elements A in $M_n(k)$ such that $AW \subset W$. For let $\{v_1, \dots, v_n\}$ be a basis of V such that $\{v_1, \dots, v_r\}$ is that of W, and we identify GL_V with G_n using this basis as seen in the above. Then H is the subgroup of G_n consisting of the elements $\binom{A \ 0}{B \ C}$ of G_n , where A and C are square matrices of degree r and n-r respectively and $\{\overline{s}_{ij}|i>r+1 \text{ or } j< r\}$ is a regular system of parameters of the local ring $\mathcal{O}_{e,H}$, where \overline{s}_{ij} is the image of s_{ij} under the canonical mapping of $\mathcal{O}_{e,G}$ to $\mathcal{O}_{e,H}$. Therefore if we denote by $\{I'_{a_{11}\dots a_{nn}}|a_{ij}| \ge 0$ and $a_{hl}=0$ if $1 \le h \le r$ and $r+1 \le l \le n\}$ the canonical basis of $\mathfrak{G}(H)$ with respect to $\{\overline{s}_{ij}\}$, we see $j_*(I'_{a_{11}\dots a_{nn}}) = I_{a_{11}\dots a_{nn}}$, where j_* is the tangential mapping of $\mathfrak{S}(H)$ to $\mathfrak{S}(\operatorname{GL}_V)$ induced by the canonical injection j of H into GL_V . Then by the definition of ρ_0 we see easily $\rho_0(\mathfrak{F}(H)) = \{A \in M_n(k) \mid AW \subset W\}$.

First we assume that W is a G-submodule. Then $\phi(G)$ is contained in Hand hence $\phi_*(\mathfrak{H}(G))$ is contained in $\mathfrak{H}(H)$. Since $\rho_0(\mathfrak{H}(H))W$ is equal to W, this means that W is a $\mathfrak{H}(G)$ -submodule of V by the definition of the operation of the operation of $\mathfrak{H}(G)$ on V. Conversely assume that W is a $\mathfrak{H}(G)$ submodule of V. If G_1 is the image $\phi(G)$ of G, G_1 is a group subvariety of GL_V and ϕ_* maps $\mathfrak{H}(G)$ onto $\mathfrak{H}(G_1)$. This means that W is also a $\mathfrak{H}(G_1)$ -submodule of V. On the other hand W is a G-submodule of V if and only if it is a G_1 -submodule of V. Therefore we may assume that G is a group subvariety of GL_V and that ϕ is the canonical injection. Let $D = \sum_{(a)} \alpha_{a_1 \dots a_{nn}} I_{a_1 \dots a_{nn}}$ be an element in $\mathfrak{H}(G)$ and let (i, j) be such a pair that $1 \leqslant i \leqslant r$ and $r+1 \leqslant j$ $\leqslant n$. Since $\rho_0(\mathfrak{H}(G))$ is contained in $\rho_0(\mathfrak{H})$ by assumption, we see that $\alpha_{a_{11}\dots a_{nn}} = 0$ if $a_{ij} = 1$ and $a_{hl} = 0$ for $(h, l) \rightleftharpoons (i, j)$. It is clear that the prime ideal of \mathcal{O}_{e,G_n} corresponding to H is generated by the subset $\{s_{ij}|0\leqslant i\leqslant r,$ $r+1\leqslant j\leqslant n\}$ of the regular system $\{s_{ij}|1\leqslant i, j\leqslant n\}$ of parameters, and therefore H contains G by Corollary of Proposition 4. This means that W is a G-submodule of V. q.e.d.

COROLLARY. Let G, V and ϕ be as above. Then V is a completely reducible G-module if and only if it is a completely reducible $\mathfrak{H}(G)$ -module.

§5 Formal groups and algebraic Hopf algebras

Let G be a group variety defined over k. If we identify the Hopf algebra $\mathfrak{D}(G)$ of G with the set of continuous k-linear homomorphisms of $\mathcal{O}_{e,G}$ to k, the Hopf algebra $\mathfrak{D}(H)$ of a group subvariety H of G may be identified with the Hopf subalgebra of $\mathfrak{D}(G)$ which consists of the elements D in $\mathfrak{D}(G)$ such that D annihilates the prime ideal of $\mathcal{O}_{e,G}$ corresponding to H. Therefore the set of group subvarieties of G defined over k corresponds injectively to a subset of Hopf subalgebras of $\mathfrak{D}(G)$ by Proposition 4. Now we understand by an algebraic Hopf subalgebra of $\mathfrak{D}(G)$ a Hopf subalgebra corresponding to a group subvariety of G in this way. The aim of this section is to give a condition for a Hopf subalgebra of $\mathfrak{D}(G)$ to be algebraic.

For this purpose we give some results on Hopf algebras attached to formal groups which are already known (cf. §1 and §10 in [2], and [1]). Here we understand by a *formal group over a field* k a noetherian complete local ring R with maximal ideal m satisfying the following conditions:

- (i) R contains k and R/m is canonically isomorphic to k.
- (ii) There exists a continuous k-algebra homomorphism Δ of R with the m-adic topology to the complete tensor product $R \bigotimes_k R$ such that $(\Delta \bigotimes i d_R) \Delta = (i d_R \bigotimes \Delta) \Delta$.
- (iii) If ε is the canonical homomorphism of R to k = R/m, $(\varepsilon \otimes id_R) \varDelta$ and $(id_R \otimes \varepsilon) \varDelta$ are the natural isomorphism of R to $k \otimes R$ and $R \otimes k$ respectively.
- (iv) There exists a continuous k-algebra automorphism c of R such that $\widehat{m}(id_R \otimes c) \varDelta = \eta \varepsilon$ and $\widehat{m}(c \otimes id_R) \varDelta = \eta \varepsilon$, where \widehat{m} is the completion of the multiplication of R and η is the canonical injection of k into R.

Now we denote by $\mathfrak{H}(R)$ the set of continuous k-linear mappings of Rwith the m-adic topology to k with the discrete topology. Then the vector space $\mathfrak{H}(R)$ over k is a Hopf algebra over k. In fact the coalgeba structure $(\tilde{A}, \tilde{\mathcal{E}})$ of $\mathfrak{H}(R)$ is naturally defined by the algebra structure (m, η) of R by $\tilde{A}(D) (x \otimes y) = D(xy)$ and $\tilde{\mathcal{E}}(D) = D(\eta)$ for D in $\mathfrak{H}(R)$ and x, y in R by Proposition 6.0.2 in [7], if we identify $\mathfrak{H}(R) \otimes_k \mathfrak{H}(R)$ with a subspace of the dual space of $R \otimes_k R$. As to the algebra structure of $\mathfrak{H}(R)$ we define the multiplicaton $\tilde{m}(D \otimes D') = D \cdot D'$ by $D \cdot D'(x) = (D \otimes D')(\mathcal{A}(x))$. It is easy to see that $D \cdot D'$ is contained in $\mathfrak{H}(R)$ and that this composition satisfies the associative law. Moreover we see that $\varepsilon \cdot D = D \cdot \varepsilon = D$ for any D in $\mathfrak{H}(R)$. If we define $\tilde{\eta}$ of k to $\mathfrak{H}(R)$ by $\tilde{\eta}(\alpha) = \alpha \varepsilon$, $(\tilde{m}, \tilde{\eta})$ is an algebra structure of $\mathfrak{H}(R)$. The antibode ε of $\mathfrak{H}(R)$ is given by $\tilde{c}(D) = Dc$ for any D in $\mathfrak{H}(R)$. Then it is easy to check that $(\mathfrak{H}(R), \mathfrak{m}, \mathfrak{\tilde{\eta}}, \mathfrak{\tilde{\Delta}}, \mathfrak{\tilde{E}}, \mathfrak{\tilde{c}})$ is a Hopf algebra over k.

PROPOSITION. 6. Let R be a formal group over k, and let \mathfrak{D}_i be the subspace of $\mathfrak{D}(R)$ consisting of the elements D such that $D(\mathfrak{m}_i)=0$, where \mathfrak{m}_i is the ideal of R generated by all the p^i -th exponents x^{p^i} of x in the maximal ideal \mathfrak{m} . Then \mathfrak{D}_i is a Hopf subalgebra of $\mathfrak{D}(R)$ and \mathfrak{m}_i is the set of all elements x in R such that D(x)=0 for any D in \mathfrak{D}_i .

PROOF. Let $\{D_s | s \in S\}$ be a basis of \mathfrak{F}_i and let $\{D'_t | t \in T\}$ be a subset of $\mathfrak{F}(R)$ such that the union $\{D_s | s \in S\} \cup \{D'_t | t \in T\}$ is a basis of $\mathfrak{F}(R)$. Then, for any element D in \mathfrak{F}_i , we have

$$\tilde{\mathcal{A}}(D) = \sum_{j=1}^{m} E_{s_j} \otimes D_{s_j} + \sum_{h=1}^{n} E'_{t_h} \otimes D'_{t_h},$$

where E_{s_j} and E'_{t_h} are non-zero elements of $\mathfrak{H}(R)$. If n > 0, there exists an element x of \mathfrak{m}_i such that $D'_{t_1}(x) \neq 0$ and $D'_{t_h}(x) = 0$ for $h \neq 1$. Therefore if y is an element of R such that $E'_{t_1}(y) \neq 0$, we have

$$\tilde{\Delta}(D)(y\otimes x) = E'_{t_1}(y)D'_{t_1}(x) \neq 0.$$

But by the definition of $\tilde{\Delta}$, we have $\tilde{\Delta}(D)(y \otimes x) = D(yx) = 0$, since D is in \mathfrak{H}_i . This is a contradiction. Therefore we see that $\tilde{\Delta}(D) = \sum_{j=1}^{m} E_{s_j} \otimes D_{s_j}$. Similarly we see from this that $\tilde{\Delta}(D) = \sum_{j,h} \alpha_{jh} D_j \otimes D_h$ fof α_{ij} in k. This means that \mathfrak{H}_i is a subcoalgebra of $\mathfrak{H}(R)$. On the other hand we see eaaily that $\Delta(m_i)$ is contained in the ideal of $R \otimes R$ generated by $(m_i \otimes R + R \otimes m_i)$, since $\Delta(m)$ is contained in $(m \otimes R + R \otimes m) R \otimes R$. Hence we heve $D \cdot D'(y) = (D \otimes D')(\Delta(y)) = 0$ for y in m_i and D, D' in \mathfrak{H}_i . This means that \mathfrak{H}_i is subalgebra of $\mathfrak{H}(R)$. It is clear that $\tilde{c}(\mathfrak{H}_i) = \mathfrak{H}_i$. Therefore \mathfrak{H}_i is a Hopf subalgebra of $\mathfrak{H}(R)$. Moreover \mathfrak{H}_i is the dual space of R/m_i and hence the last assertion is seen, since R/m_i is of finite dimension. q.e.d.

By Proposition 6, R/m_i is also a formal group over k and \mathfrak{H}_i may be identified with the Hopf algebra $\mathfrak{H}(R/m_i)$ of R/m_i . Then $\mathfrak{H}(R)$ is the inductive limit of $\mathfrak{H}(R/m_i)$. Now we denote by R_i the formal group R/m_i and call it the formal subgroup of R of exponent i. In general we call a residue class ring R/\mathfrak{a} of R a formal subgroup of R if R/\mathfrak{a} has a structure $(R/\mathfrak{a}, \mathcal{A}_\mathfrak{a}, \varepsilon_\mathfrak{a}, c_\mathfrak{a})$ of a formal group over k such that $(\pi \otimes \pi) \mathcal{A} = \mathcal{A}_\mathfrak{a} \pi, \varepsilon = \pi \varepsilon_\mathfrak{a}$ and $c_\mathfrak{a} \pi = \pi c$, where π is the canonical homomorphis of R onto R/\mathfrak{a} . Then if we define a mapping π_* of $\mathfrak{H}(R/\mathfrak{a})$ to $\mathfrak{H}(R)$ by $\pi_*(D) = D\pi$ for D in $\mathfrak{H}(R/\mathfrak{a})$, we can easily see that π_* is a Hopf algebra homomorphism. Moreover we see that π_* is a monomorphism and that $\pi_*(\mathfrak{H}(R/\mathfrak{a}))$ consists of the elements D in $\mathfrak{H}(R)$ such that $D(\mathfrak{a})$ =0. In the following we identify $\mathfrak{H}(R/\mathfrak{a})$ with $\pi_*(\mathfrak{H}(R/\mathfrak{a}))$. Then we have

THEOREM 5. Let R be a formal group over k and let \mathfrak{F} be a Hopf subalgebra

of $\mathfrak{H}(R)$. Then there exists a unique formal subgroup $R/\mathfrak{a}_{\mathfrak{H}}$ of R such that $\mathfrak{H}=\mathfrak{H}(R/\mathfrak{a}_{\mathfrak{H}})$.

PROOF. We denote by a_{δ} the set of the elements x in R such that D(x)=0for any D in H. We shall see that $R/\mathfrak{a}_{\mathfrak{H}}$ is a formal subgroup of R. Let \mathfrak{H}_{i} be the intersection of \mathfrak{H} and \mathfrak{H}_i , and let \mathfrak{a}_i be the set of elements x in R such that D(x)=0 for any D in \mathfrak{H}'_i . Then \mathfrak{H}'_i is a Hopf subalgebra of $\mathfrak{H}(R)$ for any *i* by Lemma l and proposition 6, and we have $\mathfrak{H} = \bigcup \mathfrak{H}'_i$. On the other hand R/\mathfrak{m}_i is a Hopf algebra over k and $\mathfrak{H}_i = \mathfrak{H}(R/\mathfrak{m}_i)$ is the dual Hopf algebra of R/m_i , since R/m_i is a formal group with the discrete topology by Proposition 6. Then we easily see that the annihilator a_i/m_i of \mathfrak{H}'_i is a Hopf ideal of R/m_i by Proposition 1.4.3. and Proposition 1.4.6 in [7]. This means that R/α_i is a Hopf algebra over k. Denote by Δ_i and c_i the diagonal and the antipode of R/a_i . Then if π_{ij} is the natural homomorphism of R/a_i to R/a_j for $i \ge j$, we easily see that $(\pi_{ij} \otimes \pi_{ij}) \varDelta_i = \varDelta_j \pi_{ij}$ and $\pi_{ij} c_i = c_j \pi_{ij}$. Now we easily see that $a_{\mathfrak{F}}$ is contained in $\mathfrak{a}' = \bigwedge_{i=1}^{\infty} a_i$, since \mathfrak{F} contains \mathfrak{F}'_i for any *i*. Conversely let x be any element of α' . Then x is contained in α_i for any i and hence we Since $\mathfrak{H} = \bigcup_{i=1}^{\infty} \mathfrak{H}'_i$, x must be consee that D(x)=0 for any element D in \mathfrak{H}'_i . tained in $a_{\mathfrak{H}}$. Therefore $a_{\mathfrak{H}}$ is equal to $\mathfrak{a}' = \bigwedge_{i=1}^{\infty} \mathfrak{a}_i$. Moreover the family $\{\alpha_i/\alpha_{\mathfrak{D}} | i=1, 2, ...\}$ is a fundamental basis of neighbourhoods of 0 in the $\mathfrak{m}/\mathfrak{a}_{\mathfrak{D}}$ adic topology of $\overline{R} = R/a_{\mathfrak{H}}$ by Theorem 13 of Chap. VIII in [9], since \overline{R} is a complete local ring with a descending chain of ideals $\{\alpha_i / \alpha_{\delta}\}$ such that $\bigcap_{i=1}^{\infty} \alpha_i / \alpha_{\mathfrak{H}} = 0. \quad \text{Since} \quad R / \alpha_{\mathfrak{H}} = \varprojlim_i R / \alpha_i, \text{ there exists a unique mapping } \mathcal{A}_{\mathfrak{H}} \text{ (resp.)}$ $c_{\mathfrak{H}}$ of $R/\mathfrak{a}_{\mathfrak{H}}$ to $R/\mathfrak{a}_{\mathfrak{H}} \widehat{\otimes} R/\mathfrak{a}_{\mathfrak{H}} = \lim_{i} R/\mathfrak{a}_{i} \widehat{\otimes} R/\mathfrak{a}_{i}$ (resp. $R/\mathfrak{a}_{\mathfrak{H}}$) induced by Δ_{i} (resp. c_i) (i=1, 2, ...). Then it is easy to see that $(R/\mathfrak{a}_{\mathfrak{H}}, \mathcal{A}_{\mathfrak{H}}, c_{\mathfrak{H}})$ is a formal subgroup of *R* and that \mathfrak{H} corresponds to $R/\mathfrak{a}_{\mathfrak{H}}$. q.e.d.

Now we consider a group variety G defined over k with the local ring $\mathcal{O} = \mathcal{O}_{e,G}$ at the neutral element e. Then if m is the maxinal ideal of \mathcal{O} , it is well known that the completion $R = \overline{\mathcal{O}}$ of \mathcal{O} with respect to the m-adic topology is a formal group over k whose diagonal \mathcal{A}_R and the antipode c_R is naturally obtained from the group structure of G. We call this formal group R the formalization of G. The Hopf algebra $\mathfrak{H}(R)$ of R is isomorphic to $\mathfrak{H}(G)$ and hence we may identify them. If \mathcal{O}' is the local ring $\mathcal{O}_{e \times e, G \times G}$ of $G \times G$ at the point $e \times e$, it is the quotient ring $(\mathcal{O} \otimes_k \mathcal{O})_S$ of $\mathcal{O} \otimes_k \mathcal{O}$ with respect to the multiplicatively closed set S which is the complement of the maximal ideal $\mathfrak{m} \otimes \mathcal{O} + \mathcal{O} \otimes \mathfrak{m}$ in $\mathcal{O} \otimes_k \mathcal{O}$. The comorphism \mathcal{A}_G of k(G) to $k(G \times G)$ defined by the multiplication of the diagonal \mathcal{A}_R of R to \mathcal{O} by the definition of the formalization R, if we identify \mathcal{O}' with a subring of $R \otimes R$. Moreover we denote by c the restriction of c_R to \mathcal{O} .

PROPOSITION 7. Let G, O, O' and R be as above, and let \mathfrak{H} be a Hopf subalgebra of $\mathfrak{H}(R)$. If a is the set of the elements x of O such that D(x)=0 for any D in \mathfrak{H} . Then a is an ideal of O. Moreover if \mathfrak{H} is the set of the elements D in $\mathfrak{H}(R)$ such that $D(\mathfrak{a})=0$, $\mathcal{A}(\mathfrak{a})$ is contained in the ideal of O' generated by $\mathfrak{a} \otimes \mathcal{O} + \mathcal{O} \otimes \mathfrak{a}$ and $c(\mathfrak{a})$ is equal to a.

PROOF. By Theorem 5 it is clear that $a=O \cap a_{\emptyset}$ is an ideal of O. Moreover if \mathfrak{H} is the set of the elements D in $\mathfrak{H}(R)$ such that D(a)=0, the closure \overline{a} of a in R is a_{\emptyset} . In fact if there exists an element x in a_{\emptyset} but not in \overline{a} , x is not contained in $a+m^{p^s}$ for a sufficiently large s. Then there exists an element D in $\mathfrak{H}(R)$ such that $D(x) \neq 0$ and $D(a+m^{p^s})=0$. By assumption D is contained in \mathfrak{H} . But this is a contradiction to the fact that x is in a_{\emptyset} .

Now let x be in a. Using the notations of the proof of Theorem 5, x is contained in a_i for any i. Since R/a_i is a Hopf algeba over k, it is seen that $\mathcal{A}_R(x)$ is contained in $b_i = (a_i \otimes R + R \otimes a_i)R \otimes R$. On the other hand the set of the ideals $b_i(i=1, 2, ...)$ is a fundamental system of neighbourhoods of $a_{\mathfrak{D}} \otimes R + R \otimes a_{\mathfrak{D}}$ in the completion $\overline{\mathcal{O}}' = R \otimes R$ of \mathcal{O}' , we have

$$\bigcap_{i=1}^{\infty} ((\mathfrak{a}_i \otimes R + R \otimes \mathfrak{a}_i) R \otimes R) = \overline{\mathfrak{a}_{\mathfrak{F}} \otimes R + R \otimes \mathfrak{a}_{\mathfrak{F}}}$$
$$= \overline{\mathfrak{a} \otimes \mathcal{O} + \mathcal{O} \otimes \mathfrak{a}} \quad \text{in } R \otimes R,$$

since a is dense in a_{δ} as seen in the above. It is clear that $\Delta(x)$ is in O'. Therefore $\Delta(x)$ belongs to $(a \otimes O + O \otimes a) \cap O' = (a \otimes O + O \otimes a)O'$. This means that $\Delta(a)$ is contained in $(a \otimes O + O \otimes a)O'$. Similarly $\Delta(a)$ is contained in $\Delta_R(aR) = a_{\delta}$ and hence in $a = a\overline{R} \cap O = a_{\delta} \cap O$. q.e.d.

LEMMA 12. Let G be a group variety over k and H a closed subset of G saatisfying the following conditions:

- (i) there exists a dense open subset U of H such that $U \cdot U$ is contained in H.
- and (ii) there exists a dense open subset V of H such that V^{-1} is contained in H.

Then H is an algebraic subgroup of G.

The proof is easy and hence we omit it.

COROLLARY. Let G, O and O' be as in proposition 7 and let a be an ideal of O such that $\Delta(a) \subset (a \otimes O + O \otimes a)O'$ and $c(a) \subset a$. Then if a is equal to its radical \sqrt{a} , a is a prime ideal of O corresponding to a group subvariety of G.

PROOF. If H is the algebraic subset of G defined by a, any component of H contains the neutral element e of G. On the other hand if $V = \operatorname{Spec}(B)$ is an affine open set of G containing e, there exists an affine open set $U = \operatorname{Spec}(A)$ of G containing e such that $U \cdot U \subset V$ and $U^{-1} \subset V$. Then the restriction Δ_B

(resp. c_B) of the diagonal Δ of O to O' (resp. the antipode c of O to O) to B is a homomorphism of B to $A \otimes_k A$ (resp. to A). Now recall that if \mathfrak{p} and \mathfrak{p}' are two prime ideals of O, $\mathfrak{p} \otimes O + O \otimes \mathfrak{p}'$ is also a prime ideal of $O \otimes_k O$. On the other hand we can easily see in a similar way to the proof of Lemma l that $(\mathfrak{a}_1 \otimes O + O \otimes \mathfrak{b}) \cap (\mathfrak{a}_2 \otimes O + O \otimes \mathfrak{b}) = (\mathfrak{a}_1 \cap \mathfrak{a}_2) \otimes O + O \otimes \mathfrak{b}$ for any ideals $\mathfrak{a}_1, \mathfrak{a}_2$ and \mathfrak{b} of O. Therefore if \mathfrak{a} is an intersection of prime ideals $\mathfrak{p}_i (i=1, 2, \dots, s), \mathfrak{a} \otimes O$ $+O \otimes \mathfrak{a}$ is the intersection of prime ideals $\mathfrak{p}_i \otimes O + O \otimes \mathfrak{p}_j (i, j = 1, 2, \dots, s)$. In particular we see that $(\mathfrak{a} \otimes O + O \otimes \mathfrak{a})O' \cap (O \otimes O) = \mathfrak{a} \otimes O + O \otimes \mathfrak{a}$, since S and $\mathfrak{p}_i \otimes O + O \otimes \mathfrak{p}_j$ have the empty intersection for any i, j. By assumption we have

$$\begin{aligned} \mathcal{A}_B(\mathfrak{a} \cap B) &\subset (\mathfrak{a} \otimes \mathcal{O} + \mathcal{O} \otimes \mathfrak{a}) \mathcal{O}' \cap (A \otimes_k A) \\ &= (\mathfrak{a} \otimes \mathcal{O} + \mathcal{O} \otimes \mathfrak{a}) \cap (A \otimes_k A) \\ &= (\mathfrak{a} \cap A) \otimes_k A + A \otimes_k (\mathfrak{a} \cap A) \end{aligned}$$

and $c_B(\mathfrak{a} \cap B) \subset \mathfrak{a} \cap A$. This means that

 $(H \cap U) (H \cap U) \subset H \cap V \subset H$ and $(H \cap U)^{-1} \subset H \cap V \subset H$. Therefore, by Lemma 12, H is an algebraic subgroup of G, since $H \cap U$ is a

dense open subset of H. Then a must be a prime ideal, because a connected algebraic group is irreducible. q.e.d.

Now we have the last

THEOREM 6. Let G be a group variety defined over k and $\mathfrak{H}(G)$ the Hopf algebra attached to G. Then a Hopf subalgebra \mathfrak{H} of $\mathfrak{H}(G)$ is an algebraic one if and only if \mathfrak{H} satisfies the following conditions:

(i) the ideal a of $\mathcal{O}_{e,G}$ consisting of the elements x such that D(x)=0 for any D in \mathfrak{H} is equal to its radical \sqrt{a} ,

and (ii) § is the set of the elements D in $\mathfrak{H}(G)$ such that $D(\mathfrak{a})=0$.

PROOF. It is sufficient to see the "if" part. We assume that \mathfrak{H} satisfies (i) and (ii) in our theorem. Then, by Proposition 7, a satisfies the condition in Corollary of Lemma 12 and hence, by the collorary, a is a prime ideal corresponding to a group subvariety H of G, since $\mathfrak{a}=\sqrt{\mathfrak{a}}$. This means that \mathfrak{H} is a Hopf algebra attached to H by the condition (ii). q.e.d.

References

- [1] P. Cartier, "Hyperalgèbes et groupes de Lie formels", Séminaire "Sophus Lie", 2e année: 1955/56.
- [2] P. Cartier, "Arithmétique des groupes algébriques", Colloque. Thèorie des Groupes algébriques à Bruxelles (1962). (Centre bélge de Rech. Math. 87-111.
- [3] J. Fogarty, "Invariant Theory", W. A. Beniamin, Inc., (1969), New York and Amsterdam.
- [4] K. Kosaki and H. Yanagihara, "On purely inseparable Extensions of Algebraic Function Fields", J. Sci. Hiroshima Univ. Ser. A-I. 34 (1970), 69-72.

- [5] B. Mitchell, "Theory of Categories", Academic Press (1965), New York and London.
- [6] J.-P. Serre, "Quélque propriétés des variétés abéliennes en caractéristique p", Amer. J. Math. 80 (1958), 715-739.
- [7] M. E. Sweedler, "Hopf Algebras", W. A. Benjamin, Inc., (1969), New York.
 [8] H. Yanagihara, "On the structure of bialgebras attached to group varieties", J. Sci. Hirohsima Univ. Ser. A-I. 34 (1970), 29-58.
- [9] O. Zariski and P. Samuel, "Commutative Algebra Vol. II", D. Van Nostrand Co. Inc. (1960), Princeton.

Department of Mathematics, Faculty of Science, Hiroshima University.