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In the previous paper [8] we developed a theory of invariant semi-
derivations on group varieties defined over an algebraically closed field & of a
positive characteristic p. Let G be a group variety defined over k and Q(G)
the set of all left invariant semi-derivations of G. Then the direct sum φ(G)
= &Θ$(G) is a subalgebra of End*(A;(G)), where k(G) is the field of the ra-
toinal functions on G over k. This structure has a close connection with the
group multiplication of G. On the other hand φ(G) may be identified with
the set of point distributions of the local ring 0 of G at the neutral element
β, and then §(G) has a structure of a coalgebra induced dually from that of 0
as an algebra over k. These structures give to ξ>(G) a Hopf algebra structre
over k. Using this structure we obtained some results on purely inseparable
isogenies of group varieties in [8].

In this paper we shall show that our theory of the Hopf algebras φ(G)
has more applications not only to the theory of purely insparable isogenies
of group varieties, but also to the general theory of algebraic groups over a
field of a positive charabteristic p. In particular φ(G) may play a similar
role to that of the Lie algebra of invariant derivations on a group variety in
the case of characteristic zero.

In §1 we give some definitions and results on Hopf algebras over a field
which are necessary in the later sections. Let & be the category of commuta-
tive and cocommutative Hopf algebras over a field k which are a union of
finite dimensional Hopf subalgebras. Then it is shown that & is an abelian
category. In the next section we shall obtain a criterion, in the languages
of Hopf algebras, for a morphism of a group variety to another to be sepa-
rable. For this purpose we give a generalization of the theorem in the paper
[4] on the existence of convenient pair of local parameters at the neutral
elements for a given purely inseparable isogeny of group varieties. As an
application of this criterion we give a modification of Serre's results on the
group Έxt(A, B) in §3, where A and B are commutative group varieties. He
treated in [βΓ\ the case of purely inseparable isogenies of exponent 1 making
use of the Galois theory for such isogenies. However we obtain the same
result for any purely inseparble isogeny of a commutative group variety
using our Hopf algebras. Of course this result may be obtained in a different
way if we use the fact that the category of commutative algebraic group
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schemes over a field is abelian. In §4 we consider a rational representation
φ of a group variety to the group GLV of linear transformations of a vector
space V over k. Then we give an operation of the Hopf algebra φ(G) attached
to G on V determined by φ and show that a subspace W of V is a G-submodule
of V if and only if W is a §(G)-submodule of V. This is a modification, in a
positive characteristic case, of the similar result in the case of characteristic
zero, where the Lie algebra of invariant derivations works instead of the
Hopf algebra Φ(G). In the last section a condition for a Hopf subalgebra of
φ(G) to be an algebraic one is given. For this purpose some results on
formal groups over a field k are shown.

The terminologies are the same as in the paper [8], but as to those of
Hopf algebras we shall refer to the book [7] freely.

§ 1 Preliminary results on Hopf algebras

In this section we give some results on Hopf algebras over a field A,
which are necessary in the later. Let («£>, m, ΎJ, Δ, ε, c) be a Hopf algebra
over a field k with antipode c, where (φ, m, yj) (resp. (§, J, ε)) is the algebra
structure with multiplication m and unit -η (resp. the coalgebra structure
with diagonal Δ and augmentation ε). We may sometimes identify k with
its image τj(k) in §. We denote by § + the kernel ε"1^) of the augmentation
ε. Let ξ>' be another Hopf algebra over k and u a Hopf algebra homomorphism.
Then we understand by the h-kernel of u the set of the elements x in § such
such that (id$®u) Δ(x) = χ(g)l and denote it by Λ-ker u. It is known that h-
ker u is a Hopf subalgebra of § if ξ) is cocommutative (cf. Lemma 16.1.1 in
[7]). Similarly we denote by Λ-coker u the quotent space &/uφ+)&\ where
u(ξ>+)& is the right idal of ξ/ generated by u(ξ)+). Then it is also known
that h-coker u has a Hopf algebra structure such that the natural homomor-
phism of E' onto Λ-coker u is a Hopf algebra homomorphism, if uφ+)& is a
two-sided ideal of § ; (cf. Lemma 16.1.2. in [7]). In particuar if ξ/ is com-
mutative, Λ-coker u is a Hopf algebra.

A sequence

of Hopf algebras φ, with Hopf algebra homomorphisms u{ is called e#αctf if h-
ker zz/ is equal to the image of &•_]. under w/_i for each ί. Let (§, 7?ι3 97, J, ε,
c) and φ\ m\ τj\ Δ\ s\ c') be two Hopf algebras ovar k. Then it is easy to
see that the tensor product &&k& has a natural Hopf algebra structure

&, m, V, Λ, c) such that the canonical injections j and f of § and ξ/ into
>' given by ;"(Λ;) = Λ® 1 and /( j ) = l(g)y are Hopf algebra homomorphisms

respectively. Moreover we have the following

PROPOSITION 1. Let ξ> and ίg' be cocommutative Hopf algebras over k. Let
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j be the canonical injection o/ξ) into §®*ξ>' defined by j(x) = x<S>l and P ^ e

linear mapping o/φ(g)*φ' onto φ' defined by p(χ®y) = e(χ)y. Then the sequence

is exact.

PROOF. It is easy to see that j (resp. p) is a Hopf algebra homomorphism
(resp. an algebra homomorphism). Let x and y be elements of § and § ' re-
spectivey, and put Δ(x) = Σ χ(i)(S>x(2) and Δ'(y)= Σ Jd)® J(2) Then we have

(x) (y)

Δ(xζζ)y)= Σ #(i)&y(i)®#(2)(S>j(2), by definition of J, and

Since we have ε'p=έ and c'p = c? this means that p

is a Hopf algebra homomorphism. Next we show that h-ker j is -η(k). Let

{χi}i€i be a basis of ξ> over A: such that T/(1) = ^0, and let Λ; be an element of

h-ker j . If Δ(x)= Σ ίijXi&Xj, we have ξij = ξji by cocommutativity of φ and

Σ ii7^,-(8)^/®l = (^$®/)^(^) = ^(8)l®l. Therefore we have ?ί y = ?yt = O ίor

i^j\£u = 0 for /=V0 and χ = ζooχo=y(ioo) £ y(k). This means thant the se-

quence &-̂ —>ξ>-̂ —•φ&fcΦ' is exact. Now let Σ xi^yi be in /ι-ker p and put

Λ(*ί)= Σ Xit(i)<8>χi,(2) andJ /(y y)= Σ Jy,(i)®7>,(2). Then we have

Σ Λ;, ®y l (g)l = (idί<8)

= Σ

since we have (ε<g>id§)Δ = ίd§. We may assume that the set {xi} is linearly
independent over k, and hence that Δ'(yi) = yi<&l for each ί. This means
that y, is in k = τ/f(k) and that Σ x&yi is in the image of . Conversely it can

i

be seen that Λ-ker p contains the image of j . Therefore the sequence
fe-i->$<8)k&-L->fe' is exact. Lastly the h-kernel of ε' is §', since (idφ/(8)e/)^/ =
ϊ(i§/. This completes the proof. q. e. d.

Let & be the category of commutative and cocommutative Hopf algebras
over k such that any object of & is a union of finite dimensional Hopf subalge-
bras and that the morphisms of & are Hopf algebra homomorphisms. I t is
known that the full subcategory & of & whose objects are of finite dimen-
sions is an abelian category. Using this fact we show that © is also abelian.
Recall that the group composition of Homβ(ξ>, IF) is given by the convolution
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f*g=mr(f<ξξ)g)A for / and g in Homβ(ξ)? £>'), that the inverse of/ is c'f=fc
and that the neutral element of Homβ(ξ), ξ>') is ?/ε. First we give the follow-
ing lemmas.

LEMMA 1. Let φ' and ξ>" be Hopf subalgebras of a Hopf algebra *Q over a
field k. Then the intersection fQfΓΛφf/ is also a Hopf subalgebra of ξ>.

PROOF. Let {χχ}χeL be a basis of ξ>'nξ>" over k and let
(resp. {χχ}χeL^J{χ'l}VEN) be a basis of ξ>' (resp. of ξ>") over k. Then the set
{#xKezW{#£} €̂MW{#2}ve;v- is linearly independent over k. If x is an element of
fQ'Γ\!Q'\ Δ(x) is a linear combination of the elements xx^xv, χ\(&χ'μ', x'μ^xx'
and x'μf&x'μ' (λ, λr £ L, β, β' e M) with uniquely determined coefficients in k
since x is in §'. Similaly Δ(x) is a linear combination of the elements
xx<g)xv, χ\<8>χ'l', χ'l(&χχ' and x'l®x"u, (λ, λ' e L v, and v! e N), since x is in &'.
Therefore Δ(x) must be a linear combination of the elements χχ(&χχ'(λ, λ' e L\
since X\<S>X\Ί χ\®χ'μ', χχ^χ'1^ χf

μ®χ\'> χ'μ(&Xμ', x'lζ&xx' and xη

v(&xη

v, are linearly
independent over k. This means that φ ' n φ " is a subcoalgebra of § and
hence it is easy to see that &r\&' is a Hopf subalgedra of φ. q.e.d.

LEMMA 2. Lei ©' 6e a Hopf subalgebra of a Hopf algebra © over α field k
and I a coideal of ξ>. ΓΛe^ &Γ\I is a coideal of ξ)\

The proof of this lemma is exactly the same as that of Lemma 1 and
therefore we omit the detail.

LEMMA 3. Let u be a Hopf algebra homomorphism of § into § ' and $t a
subcoalgebra of § such that u(&+) = 0, where $t+ = !ftr\ξ)+. Then ffi is contained
in the h-kernel of u.

PROOF. By assumption we have u(x) = ε'u(x)=ε(x) for any element x in
$. Therefore if Δ(y)= Σ y(i)0j(2) for j in $ 5 we have

(y)

= Σ

This means that j is in the h-kernel of u. q.e.d.

PROPOSITION 2. T%e category & is abelian.

PROOF. It is easy to see that © is an additive category with O-object k
and that the product (resp. the coproduct) of φi and ξ>2 is § i ® ^ 2 with the
projections pi and p2 (resp. with the injections j \ and/ 2) defined as in Proposi-
tion 1. We shall show that © has kernels and cokernels of morphisms in © and
that © is normal and conormal in the sense of chapter I in \Ί5Γ\. Then © is an
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abelian category by Th.20.1 of Chap. I in [5]. Let u: ξ>i-*§2 be a morphism
in (8, and let $ and ίϊ' be the A-kernel and the /ι-cokernel of u respectively.
Then $ is a Hopf subalgebra of §1 and $ ' is a quotient Hopf algebra of ξ>2.
By assumptions on § there exist Hopf subalgebras yia of finite dimensions
such that §i = \J3la, and hence we have St=\J®Γ\yia. But Sn5Rfl is a finite

dimensional Hopf subalgebra of $ by Lemma 1. Therefore 5Ϊ is an object of

&. Simlarly there exist Hopf subalgebras of finite dimensions TO# such that

φ 2 = \j3Ji/s. Then Iβ=Wlβrλuφt)$2 is a Hopf ideal of TO# by Lemma 2,

since u(©ί")©2 is a Hopf ideal of ξ)2. If we identify Wlβ/Iβ with its canonical

image in $'=©2A($?i)&2, we have ^r=\jTlβ/Iβ9 where each Wlβ/Iβ is of

finite dimension over &. Therefore $ r is also an object in (8. It is easy to
check that ίΐ and Bf are the kernel and the cokernel of u in & from the def-
initions and Lemma 3. Next we see that & is normal and conormal. Let
u: ©i->©2 be an epimorphism in ©. Then u is a sur jection as a linear map-
ping over k. We must show that (ξ>2, u) is a cokernel of a monomorphism
in &. In fact let $ be the Λ-kernel of u and let x be an element of $ + . There
exists a finite dimensional Hopf subalgebra 5ft of ξ>i such that x e !J ίΠ$ + ^Sft*,
and hence that x is contained in (u\m)~1(0)Cu~1(0) by Lemma 16.0.2 in [Ύ].
Since & is an algebra homomorphism, this means that $ + §i is contained in
u~\0). Conversely let # be an element of u~λ(fi) and let 5ft be a finite di-
mensional Hopf subalgebra of ξ>i such that # 6 ϋft. Then # is contained in
StpJl by Lemma 16.0.2 in Q7]5 where ^ is the Λ-kernel of the morphism u | gι.
It is clear that Λ W = 5 R Λ S and in particular that ΛjJ is contained in ^ + .
Therefore Λ; is contained in $ + § l β This means that u " 1 ^ ) is equal to ^ + ©i
and hence (φ2, ^) is the cokernel of the canonical injection of £ into ©j. in β.
In other words & is conormal. Lastly let j : §i-»ξ>2 be a monomorphism in ©.
Then we may assume that ©i is a Hopf subalgebra of ©2 and Φί"φ2 is a Hopf
ideal of ξ>2. If 7Γ is the natural mapping of φ 2 onto the quotient space £ =
©2/©i"©2, 7Γ is a Hopf algebra homomorphism. We must show that φu j) is
the kernel of π m &. If £ is the Λ-kernel of /, we see that φ + § 2 = Φ 1

+ § 2 = τr~1(0)
from the result just obtained in the above. Let x be in § + and let Wl be a
finite dimensional Hopf subalgebra of ξ)2 such that x is in TO. By Lemma 1
there exists the smallest Hopf subalgebra Wl0 of ξ)2 containing #. If {χo =
x, xi,. 9 χs} is a basis of 9ΉJ over k, each Λ, is in §+C£>ϊ~Φ2 and hence we
have Xi^ΣyijZij for j ί 7 e ©J" and z,7 e ξ)2. Then we may assume that TO con-
tains these elements j ί y and z, y, replaceing it with larger one if necessary.
Therefore we have TOJCTOJTO, where TOi^&nTO, and the composition of
the canonical injection of TO0 into TO and the canonical projection of TO onto
TO/TOίTO is the zero-morphism in &. Since the full subcategory & of © is
abelian, TOi is the kernel of the morphism π: TO-^TO/TOί"TO in & and hence
TOo is contained in TOi by Lemma 3. This means that © is contained in ©lβ

Conversely © contains £>i by Lemma 3, since © is the h-kernel of π and 7r y is
0-morphism in ©. Therefore ξ) is equal to ©i and β is normal. q.e.d.
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§2 Separability of morphisms of group varieties

In the following let k be an algebraically closed field of a positive
characteristic p. Let G and G be group varieties defined over k and denote
by 0 and 0' the local rings 0e>G and G^c of G and G' at the neutral elements
e and ef respectively. If a is an algebraic homomorphism of G into G' defined
over k, there exists a local homomorphism α* of 0' into 0. First we give a
generalization of Theorem in

PROPOSITION 3. Let a be an algebraic homomorphism of a group variety
G of dimension n into a group variety G' of dimension m. Let G" be the kernel
of a and O'r the local ring of G" at e. Then if the image a(G) is of dimension
r, there exist regular systems {tu , tn} and {si, ••, sm} of parameters of 0 and
0' respectively satisfying the following conditions:

(i) a*(Si) = t*β* / o r i = l,2,...,r,
(ii) α*(sy) = 0 / o r ; = r + l, , m,

and (iii) {tr+i, , tn} is a regular system of parameters of O'\ where t3 is the
image of tj under the natural homomorphism of 0 onto 0".

PROOF. First we assume that a is a separable homomorphism of G onto
Gr. Then we see that there exist regular systems {ίi, , tn} and {si, , sm} of
parameters of 0 and 0' respectively such that α*(st ) = £x for i = l, 2,- 5 m (cf.
the proof of Proposition 14 in [8]). From this if {s[y,sr

m} is any regular
system of parameters of 0\ we can easily see that {α*(sί), , α*(s«), tm+i9 , tn}
is a regular system of parameters of 0. Next we assume that a is a sur jective
morphism. If we denote by d the quotient group variety G/G" and by π the
canonical homomorphism of G onto Gu there exists a purely inseparable
isogeny αi of G' onto Gi such that a—aιπ. If Oi is the local ring of Gι at
the neutral element eu there exist regular systems { î, , &m} of parame-
ters of 0λ and {si, , sw} of 0' respectively such that af(sι) = ufι for £ = 1, 2, . ,
77i by Theorem in Q4]. Since π is a separable morphism, there exists a subset
•Um+i, > tn} of 0 such t h a t {tι = π"{u1)y , tm = π*(um), tm+u.. , tn} is a regular

system of parameters of 0 as shown in the above. Therefore these {ίi, , £«}
and {si, , sm} are our solution in this case. In fact we see easily
{ίm+ij , h} is a regular system of parameters of Q". In general cases let G2

be the image a(G) and 02 the local ring of G2 at e\ If p is a prime ideal of 0r

corresponding to the subvariety G2 of G\ G'/p is isomorphic to G2. In partic-
ular O'/p is a regular local ring. Therefore p is generated by a subset
{sr+u , 5W} of a regular system of parameters of 0' by Theorem 26, Chap.
VIII in [βj. Moreover we see that {si, , 5r, 5r+i, , sm} is a regular system
of parameters of G' for any subset {si, . , 5r} of Gr such that the image of
{si, , 5r} in Oy^ is that of O'/p. Combining this with the results obtained
in the above for a special case, we see that our assertion is true. q.e.d.



Some Properties of Hopf Algebras Attached to Group Varieties 233

REMARK, (i) The notation being as in Proposition 3, let {t'r+u , t'n} be any
regular system of parameters of 0". Then we can find {tu ., tn} in Proposi-
tion 3 satisfying ti = t\ for j = r + l, , n. In fact we may replace {ίr+i, ? tn}
by any set of m — r elements in 0 whose image in 0" is a regular system of
parameters of 0f\ since the ideal (ίi, , tr)0 is the prime ideal corresponding
to the subvariety G such that 0" is isomorphic to 0/(tu , tr)0.

(ii) Similarly if a(G) is a normal subgroup of G\ {sr+i, , sw} may be
replaced with any regular system of parameters of the local ring of the
quotient group variety Gf/a(G) at the neutral element.

COROLLARY. In Proposition 3, a is a separable morphism if and only if
e, = 0 for ί = l32,.. , r.

PROOF. Let Gx be the quotient group variety G/G\ and π the canonical
homomorphism of G onto G\. Then there exists a purely inseparable isogeny
oi\ of Gι onto α(G) such that a=a±π. Then α: is a separable morphism if and
only if cc\ is an isomorphism. On the other hand we know that eH V er = s,
where pfc(Gi): A(α(G))] = \Ίc(G): A(α(Gi)l = p s by Theorm in [4]. This com-
pletes the proof. q. e. d.

Let G be a group variety defined over k. Then recall that the Hopf alge-
bra £>(G) attached to G is the subalgebra JC(&Q(G) of the algebra Ή.omk(k(G),
k(G)) over k, where g(G) consists of all the left invariant semi-derivations
of G. Moreover if {tχy , tn} is a regular system of parameters of 0, then
there exists a basis {Iei...en \ t '^O, Σ ^̂  > 0} of g(G), which is uniquely deter-
mined by the condition that J*1...βn(ίί1 ••*;") — 1 and /ei...^(ίfί •••«;") for (ei, , e»)
=τ̂  (eί, βή) a r ^ in the maximal ideal of 0 (cf. Theorem 1 in [βj). For con-
venience' sake we denote by /o...o the identity mapping of k(G). Then
{/ei...en|ef>0 for each ί} is called the canonical basis of ξ>(G) wΐtt respect to
{t i, , £„}. Now we have the following

THEOREM 1. Lei α be an algebraic homomorphism of a group variety G
into a group variety G' defined over k, and assume that {tu- • , tn} and {sι, • , sm}
are reguar systems of parameters of 0 and 0' satisfying the conditions (i), (ii)
and (iii) in Proposition 3. Let {Iai...an} be the canonical basis of the Hopf
algebra ξ)(G) attached to G with respect to {ίi, , tn}. Then the h-kernel of the
Hopf algebra homomorphism a* of ξ>(G) into §(G0 induced from a is the linear
subspace of&(G) generated by the elements Iai...an such that a{<peifor ί = l, 2, . , r.

PROOF. Let {Γbl...bm\bj > 0} be the canonical basis of §(G7) with respect
to {si,--, sm}. Since a*(D) (x) = D(a*(x)) for any element x in 0' and any
element D in ξ>(G), we see that

and α*(/6l... f tn) = 0 for (bu ..,bn) φ(aip

e\..., arp
e% 0,.. , 0)



234 Hiroshi YANAGIHARA

from the definition of the canonical basis and the condition in Proposition 3

satisfied by {ίi, , tn} and {si, , sm}. If we denote by A the diagonal of the

Hopf algebra ξ>(G), we know that Δ(Ia.a ) = Σ IaΊ..a'n<8>Ial..an (cf. §5 in [8]).

Therefore we have

Σ

where Σ ' runs over all pairs {{a), (b)) such that

(αί,.. , O + (δi/>V , όr/A, 0,..., 0) =

This means that

if a^pH for some ΐ < r, since {/^...^(g)/^...^} is a basis of Φ(G)®*Φ(G') over
A. On the other hand if a{ <pH for any ί < r , we have (id§(G)®α*)^(^i...O =

^a!...an®l and hence Iai...an is contained in the Λ-kernel of a*. In general if
D= Σ Ta^aja^a^ Wβ haVβ

(α)

= Σ rai...an Σ' U. .
(α) (α /) + (6/>e) = (α)(α)

Now it is easy to see that ((αθ, (bpβ)) φ ((a[\ (bιp

e)) if (αθ + (δ/?β) =^ («ί) +
(bιpe). Therefore we see

if rβl...αn =τ^0for such (au•• , αΛ) that α, >jσβi for some £<r. This means that
the Λ-kernel of α* is generated by the elements Iai...an such that a{<pei for
any i < r. q.e.d.

THEOREM 2. Lei d , G2 and G3 be group varieties defined over k and let
<Xi be an algebraic homomorphism of G{ into Gi+ι defined over k for ΐ = l, 2
such that the image of Gι into G2 is equal to the connected component of the
kernel of a2 containing the neutral element. Then <x2 is a separable morphism
if and only if the sequence ©(d) -̂ -»«ξ) (G2)-^2s-> §(G3) of Hopf algebras is
exact.

PROOF. We may assume that Gx is a group subvariety of G2 and that a±
is the canonical injection. In fact if a is a surjective algebraic homo-
morphism of G onto Gr in Proposition 3, we have a^{si) = tίfί for ί = l, 2,..., m.
Then we have a*(Iaipei...anp"»o...o) = rai...am for any (αi,. , αw), where {/Λl...αn} and
{/̂ ...δm} are the canonical basis of ξ>(G) and §(G') with respect to {ίi, , ίn}
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and {si, , sm} respectively (cf. the proof of Theorem 1). This means that a*
is also a sur jection and we may replace d with the image α i ( d ) .

Therfore we assume that d is the connected component of the kernel of
a2 containing the neutral element e2. Then, from Proposition 3 and Remark
(i) below it, there exists a regular system {tίy , tn} of parameters of Oβ2>G2

and that {51,. , sm} of 0ez>Gz satisfying the following conditions:
(i) a*2(sd = t?* for ί = 1, , r = dim α2(G2),
(ii) α#(sy) = 0 for j=r + l, . ,m

and (iii) {tr+i,...tn} is a regular system of parameters of 0eitGl, where ln is
the canonical image of tn in 0ei>Gl. By Corollary of Proposition 3, <x2 is
separable if and only if e{ = 0 for i = l, 2, , r. On the other hand if {ϊai...an}
is the canonical basis of ξ>(G2) with respect to {ίi, ••, tn}, we easily see that

) is the subspace of ξ>(G2) generated by the elements ϊo...oar+ί...an for
as seen in the proof of Theorem 1 and that the Λ-kernel of a2ή; is the

subspace of ξ>(G2) generated by the elements ϊai...an such that a{<pei for any
i<r . This means that βi = ••• =er = 0 if and only if α i ^ C d ) ) is the Λ-kernel
of α2l(I. Therefore our assertion is proved. q.e.d.

§3 Groups Ext(A,B) for purely inseparable isogenies

The aim of this section is to give a generalization of Serre's result on
groups Ext(^,JS) for purely inseparable isogenies of exponent 1 in §3, n°8
in Q6] for cases of higher exponents. Let A and B be two commutative
group varieties defined over k. Now recall that Έxt(A,B) is the set of
isomorphism classes of extensions C of A by B, i.e., the set of isomorphism
classes of strictly exact sequences 0-> Z?-* C-> ̂ 4->0 of commutative group
varieties defined over &, and that Έxt(A,B) is an additive functor in both A
and B into abelian groups (cf. §3, n°Ί in [6]). More generally let j4 be an
abelian category and let A and B be two objects in <fl% Then there exists an
abelian group Έxt(A,B) called "the group of Yoneda extensions of A by 5 "
(cf. Chap. VII in [5]). In particular the Hopf algebra !Q(A) attached to a
commutative group variety A defined over k is in the abelian category &
given in §1, and hence Ext(9ίί,ξ)(^4)) is defined for any object 5ft in (8.

Let p be a purely inseparable isogeny of a commutative group variety A
onto A defined over k and N=N(p) the Hopf subalgebra of fe(A) correspond-
ing to p in the sense of Theorem 4 in []8]. Then we have

LEMMA 4. The sequence

k—>JV(p)-U©(^)-^©(^')—>k

of Hopf algebras is exact in (8.

PROOF. By Theorem in Q4], there exists a regular system {ίi, , tn} of
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parameters of 0e>A such that {if1,-- , t£n} is that of 0β/,A/5 where we identify
Oertκ> with the subring p*(0e/,A/) of 0β>A. Then the h-kernel S of p* has a
basis {/fll...Λn|αf </Λ for ϊ = l, 2, , rc} by Theorem 1, where {Iai...an\a>i > 0} is
the canonical basis of !Q(A) with respect to {tu•• , £„}. By the definition of
N(p) and Proposition 15 in [8], we see D(k(A')) = 0 for any element D in N(ρ)+.
This means that ^ is contained in N(p) by Lemma 3. But we know that
dim* N(p) = [_k(A): k(A/)J=pιξieί=dimkSi, and hence we see ΛΓ(p) = S.

q.e.d.
If 5 is another commutative group variety defined over £;, we denote by

Hom(^,i?) (resp. Hom( '̂,jB)) the group of algebraic homomorphisms of
A (resp. A') into B defined over k. Then there exists a group homomorphism
p of Horn (A\ B) into Horn {A, B) defined dy p(ά)=aρ. Similary we define a
mapping ϊ of Rom(A,B) into Homβ(iV(p), £(!?)) by ί (a)=a*i for α in
Hom(^,i?), where α* is the tangential mapping of ίQ(A) to §(£) induced by
a. Then ? is a group homomorphism. In fact, let δA be the diagonal mapping
of A into Ax A given by δA(x) = xx x and /*# the multiplication of B x B onto
5 given by μB ( j x z) = y + 2r. If / and g are in Hom(^455)? we have / + g=
#B(fxg)SA and hence (f+g)* = vB*(fx g)*$A*= m%(B) C/*®^)^©^) = (/*)*
(#*). This means that i(f+g) = (f+g)*i = (f*i)*(g*i) = Xf)*i(g). Then we
have

LEMMA 5. The sequence

0—>Rom(A\B)^τiom(A,B)^ΐίorn&(N(p)MB))

of abelian groups is exact.

PROOF. It is clear that p is injective. Let g be an element of Hom(^',i?)
and put/=p(^ ) = ̂  p. If &'* is the natural homomorphism of 0e>A onto R =
N(p)D, we have &'*p*(m') = 0, where m' is the maximal ideal of 0e>A' (cf. §7 in
[8]). From this we easily see that ϊ(f)=f*ί = g*p*i is the zero morphism of
N(p) into €>C#) in β, since §(^) and N(p) may be considerd as subspaces of the
dual spaces of 0e>B and R = N(a)D over k respectively. This means that the
image of p is contained in the kernel of I. Conversely assume that I (/) — 0
and put f(A) = B\ If j is the canonical injection of B' into B, we have f=j f\
where f is a surjective homomorphism of A to Z?'. Now we identify the
fields k(A') and k(B') with the subfields ρ*(k(A')) and fr*(k(Br)) of A(^). Then
we have/£(/>) = !> I *(£/) for any Z) in ξ>(A) by Proposition 15 in [SΓ\. Since /^
is injective, we have f*ϊ = 0 by the hypothesis ϊ(f)=f^i = 0. Therefore we
have D\k(B') = 0 for any elements in N(p)+. On the other hand k(Ar) is the
set of the elements x in k(A) such that D(x) = 0 for any D in 7V(p)+ by (D) in
§6 of [8], and hence k(A') contains k(B'). From this we see that there exists
an algebraic homomorphism gf of A' onto Bf such that f = g' p and hence

q.e.d.
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Let g be an element of Home(iV(p), ©(5)). Then there exists the push-

out $Qg of &(A) and ξ>(2?) over N(p) with respect to (i,g), since 6 is an abelian

category (cf. TH. 20.1. of Chap. I in [5]). Let pλ and p2 be the canonical

morphisms of $Q(A) and ξ>(2?) into fQg such that pιί=p2g. Recall that $Qg is

constructed as follows: let ju be a morphism of JV(p) into §(̂ 4)(g)*Φ(-B) defined

by ju = (iA i)*(ciBg), where c is the antipode of the direct sum (ξ)(A)<S>k!Q(B),

ΪA, ΪB) of fe(Λ) and §(5) in <§. Then if (!Qg, v) is the cokernel of ju, (ΪQg, pi = viA,

P2 = VΪB) is the push-out of fe(A) and §(Z?) over iV(p). If we put JV' = /ί(iV(p)),

TV7 is a Hopf subalgebra of ΦC<4)(g)*Φ(2O=ΦG4(g)fi) of a finite dimension.

Therefore there exists a purely inseparable isogeny π oΐ AxB onto a com-

mutative group variety Cg such that Spec(7V/jD) is the kernel of π by Theorems

3 and 4 in [8]. It is clear by Lemma 4 that fgg and v may be identified with

Φ(Q) and 7Γ* respectively. Moreover π*(k(Cg)) is the set of j in k(A x 5)

such that D(γ) = 0 for any D in N/+. On the other hand if k(A) is identified

with the subfield p%(k(A)) of k(AxB), we have D(x) = juD(x) for * in A(̂ 4)

and D in iV by the definition of the morphism μ. Therefore π*(k(Cg)) con-

tains p*(k(A')) and hence there exist an algebraic homorphism φ of Cg onto

A' such that φπ = ppA. On the other hand it is easy to see that g gives a

morphism gι of Spec(7V(p)D) to 5 as A -group schemes such that (g1)^ = g.

Similarly ί gives a morphism ίλ of Spec(7V(p)D) to A such that (ι"i)* = ι\ Then

we have

LEMMA 6. The diagram

0

of k-schemes is commutative and the second row is strictly exact.

PROOF. Since (πiA)*=pi and (πίB)*=p2, we have (πίBgi)*=p2g=p2i =

(jtiAί\)* and hence πiBgi = πiAii. Therefore the first assertion is seen, and

from this we have a commutative diagram of Hopf algebras:

k

Then the second row is also exact in & by the dual of Corollary 20.3 of Chap.

I in [5], since fe(Cg) is the push-out of §(A) and ©(2?) over N(p). From this

we see that the sequence 0 >B^^>cg—^->A/ >0 is strictly exact by

Theorem 2. q.e.d.

LEMMA 7. Let C be a commutative group variety defined over k satisfy-

ing the commutative diagram
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where the second row is strictly exact. Then there exists an isomorphism λ of
Cg onto C satisfying the following commutative diagram

PROOF. By hypothesis we have a commutative diagram of Hopf
algebras with exact rows:

k

Then, by the dual of Corollary 1.2. of Chap. VII in [5J, there exists an iso-
morphism σ of !g(Cg) onto φ(C) such that <ίpi = (<7i)*, tΓjo2 = (?2)* and φ*σ=φ*,
since Ĉ  satisfies also the condition for C by Lemma 6. Let pA and pB be the
canonical projections of AxB onto A and Z? respectively and put a=qψA+
q2pB. Then we can easily see that a* = π*. Therefore there exists an iso-
morphism λ of Cg onto C such that a = λπ. Then it is clear that we may
replace G by λ* and it is seen that q± = λpι and q2 = λp2> since (gi)* = Wpi)5|e and
(q2)* = (λp2)*. The equality φλ=φ is also obtained easily. q.e.d.

From Lemmas 6 and 7, there exists a uniquely determined element
(C, ^2, 0) in Ext(^',Z?) satisfying the condition of Lemma 7 for any element
g in Homβ(iV(p),φ(20). Now we define a morphism rf of Home(JV(p),ΦCB))
to E x t C ^ ^ ) by d(g) = (C, q2, φ) = C. Then d is a group homomorphism. In
fact let gi and g2 be two elements in Homβ(iV(p),φ(J8)), and put Cg. = d(gi)
for i = l, 2. Then by the definition of the sum in the group Ext(^',Z?),
there exists the following commutative diagram of group varieties:

0

(1)

cgl+ctJ-

where C is the push-out of B and Cgl x Cg2 over Bx B and where Cgl + Cg2 is
the pull-back of C and J ' over A' x ^ r . On the other hand by the definition
of Cgι we have diagrams



Some Properties of Hopf Algebras Attached to Group Varieties 239

)/—>O

[ ri{ idΛΊ

0 • B

From this and (1) we have a diagram

0->Spec(iV(p)D)-<i-> A -^-> A • 0

j } I

2}
C

j } I (2)
0 • B >C-i-^A'xAr—>0

where (Jι = τnB((gι)ι'x(g2)ι)ΔND and σ2 = r(riXr2)iA. Since Cgι + Cg2 is the
pull-back of A' and C over A x A', there exists an algebraic homomorphism ω
of A to Cgχ + Cg2 satisfying the following diagram

0->Spec(N(p)D)-^ A — p—+ A —Λω I idA'\
0 • B >cgl + Cg2-^A' —>0 (3)

idB[ ξ[ ΔA'\

0 • B > C^->A x A—>0

such t h a t σ2 = $w. Hence we have a commutative diagram of Hopf a l g e b r a s :

k—*jV(p)—*—>©(Λ)—^->©(^) • &

> k (4)(

Since each row of this diagram is exact in ©, &(Cgl + Cg2) is the push-out of
§(A') and φ(C) over §(^4' x ^0 Then using the commutative diagrams of
Hopf algebras obtained from (1) and (2), we can easily see by Lemma 1.1. of
Chap. VII in [5] that we may add the morphism gι*gz = m§{B)(gι(&gz)ΛN of
N into ξ)(B) in (4) without breaking the commutativity, and hence we may
add in (3) the morphism (gi*g2)i = τnB((gι)i x {g2)ι)ΔND of Spec (N(p)D) into
B. This means that d(gι*g2) = Cgl + Cg2 = d(gi) + d(g2). Now we have

LEMMA 8. The sequence

is exact.

PROOF. Let / be an element of Kom(A,B) and put g=Kf)=f*i and
(T = 7r(ίA — ίBf), where ίA and ίB are the canonical injection of A and B into
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Ax B resspectively and where π is the isogeny of Ax B onto Cg defined in
the above. Recall that (fQ(Cg), π*) is the cokernel of the morphlsm ju =
((iA)*i)*(c(ίB)*g), and hence we see that σ*i = π*(iA — ΪBf)*i = π*ju is the zero-
morphism of Komβ(N(p)&(Cg)). This means that there exists a uniquely
determined algebraic homomorphism ύι of A' into Cg such that β—ΰ'p by
Lemma 5. If φ is the homomorpism of Cg onto A' defined in Lemma 6, we
see from the definition of β that φβλ is the identity of A'. This means that
the sequence 0—>B—>Cg-^±Ar—>0 is split, i.e., d(g) = 0. Conversely assume
that d(g) = 0ίor gin Homβ(JV(p),ξ>(JB)). Then the sequence 0 >B-^Cg

φ >Ar >0 is split and hence there exists an algebraic homomorphism h of
Cg onto B such that hπίB = ίdB. If we put f=hπίA, we see easily that
g=fj.i = ί(f). This completes the proof. q. e.d.

Now we denote by pi the group homomorphism of Έxt(A',B) into
Έxt(A,B) induced from p. Then we have

LEMMA 9. The sequence

is exact.

PROOF. If we put C=βi(Ce) for g in Hom/iVCp),§(£)), we have, by the
definition of pi, the commutative diagram

0 >B >C—^->A >0
idB\ β\ p\

0 —-> B-^>Cg — ^ A • 0 .

Moreover C is the pll-back of A and Cg over A' and hence there exists an
algebraic homomorhism h of A into C such that ah — ίdA and βh = πίA. This
means that the sequence 0 —> B —> C -^—*A' —>0 is split. Conversely let
(C, r? Pθ be an element of Ext (A', B) satisfying the commutative diagram

If we put h = βiA, we see p = p'h and hence have a commutative diagram with
exact rows:

k > N-i-± §(A)-*±+ ξ>U0 —>k
h*[ id®{A/)\

—>k.
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Therefore there exists a morphism g of N into Φ(2?) subh that r*g=h*i-
From this we see that C' = Cg q.e.d.

If (C, r, Φ) is an element of Ext(A,B), (fc(C), r*, 0*) is in Ext(ξ>U),£(£))
by Theorem 2. Denoting by ίι the homomorphism of Ext(ξ>(̂ 4)5ξ>(Z?)) into
Ext(iV(p),ξ>(J?)) induced from the morphism ί of iV(p) into ξ>(A), we define
?! of Έxt(A,B) into Ext(ΛΓ(p),$CB)) by ϊ1(C) = i1φ(C)). Then we have

LEMMA 10. The sequence

is exact.

PROOF. Since the sequence

is exact by Prop. 2.2. of Chap. VII in Q5], we can easily see that the image of
Pi is contained in the kernel of lχ. Conversely let (C, r, αθ be an element of
Ext(^,2?) such that iχ(C)=0. Then we have the following commutative
diagram

with split second row. Since λ=σίN is a monomorphism in ©, λ(N) may be
identified with TV. If φ is a purely inseparable isogeny of C onto a group
variety C corresponding to N=λ(N), there exists an algebraic homomorphism
φ of C into Af such that φφ = pa by Lemma 5, since p^α;|;̂ ;|<(iV

+) = p>i<ί(i\
Γ+) = 0.

Then the sequence 0—• B ^U C - ^ 4̂' —> 0 is strictly exact. For we can
easily see that the sequence 0 >^(B)^^->^(C)-1±->^(Ar) >0 is exact in
β. Moreover we see, from the definition of C and C", C=pι(C). q.e.d.

In conclusion we have the following

THEOREM 3. The notation being as above, we have the following exact
sequene:

0—>Uom(A\B)^Kom(A,B)^Uΐlom@(N(p)M B))-*UExt(^', B)

§4 Hopf algebras and rational representations

First we give some results on Hopf subalgebras of the Hopf algebra



242 Hiroshi YANAGIHARA

attached to a group variety G corresponding to group subvarieties of G. In
this section we identify the Hopf algebra &(H) attached to a group subvariety
H of G with Hopf subalgebra ί*φ(H)) of φ(G), where i* is the tangential
homomorphism of ΦCfiΓ) to ξ>(G) induced by the canonical injection i of ϋΠnto G.

PROPOSITION 4. Lei H and K be two group subvarieties of a group variety
G. Then K is a group subvariety of H if and only if ξ>(ϋΓ) contains

PROOF. Let α and b be the prime ideals of the local ring 0=0e>G corre-
sponding to H and K respectively. By Lemma 14 and Proposition 16 in Q8]
we know that §(G) may be identified with the set of continuous ^-linear
homomorphismm of 0 with the m-adic topology to k with the discrete topology
where m is the maximal ideal of (9. Then we easily see that $(H) (resp. £>(£"))
consists of the elements D of ξ>(G) such that J5(α) = 0 (resp. D(b) = 0). On the
other hand α (resp. b) consists of the elements x of 0 such that D(x) = 0 for
any D in §(H) (resp. §(K)\ since α = Λ 0 n Λ + α) a n d b=f\(mn + b). There-

ra = 0 «=0

fore α is contained in b if and only if fe(H) contains fe(K). This completes

the proof. q.e.d.

COROLLARY. Let G, H and K be as in Proposition 4. Let a be the prime
ideal of the local ring 0=0e>G corresponding to the group subvariety H of G
and {ίi, , tn} be a regular system of parameters of 0 such that a is generated
by a subset {ίi, , tr} of {tly , tn}. If {/Λl...ΛJα;>0} is the canonical basis of
ξ)(G) with respect to {ίi? , tn}> then the following three conditions are equiv-
alent :
(i) K is a group subvariety of H.

(ii) If D= Σ aai...anlai...an is in §(K) and if i<r ,
(a)

we have aai,,Mn = 0 for α, = l and aj = 0 (ί^j).
(iii) If D=Σ cta^aja^a, is in §(K) and if ί < r ,

(α)

we have ctfll...fln = 0 for ai
PROOF. First we assume the condition (i). Then, as shown in the proof

of Proposition 4, we see D(a) = 0 for any D in fe(K) if φ(G) is identified with
the set of continuous A -linear homomorphisms of 0 into k. Since if1-- ίgw is
contained in αif α,=V0for some z'<r, this means thatαα i...α n = Z>(ίί1-..ίJn) = O and
hence the condition (iii) is satisfied. It is trivial the condition (ii) is satisfied
if (iii) is so. Lastly assume that the condition (ii) is true. If K is not a
group subvariety of H, then there exists an element t{ contained in α such
that ti does not belong to the prime ideal b of 0 corresponding to K. As seen
in the proof of Proposition 4 there exists an element D in φ(G) such that

D(ti)^0 and D(b) = 0. If D= Σαβl...αn/αi...αn, this means that D(ti)=a0...0{0...0^0.
(α)

This is a contradiction. q.e.d.

Now we denote by Gn the general linear group GLW whose affine ring
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over k is k\jι
W
 ., t

nm
 Z)"

1
], where D= detfoy). Then we have XY=Σ

Λ = l

for X=(ξij) and F = ( ^ y) in Gw. If we put st y = £, y —#, y for ί, y" = l, 2,..., rc, where
δ/y = O for ι=̂ =y and ί/t = l, we see t h a t {slly snn} is a regular system of param-
eters of the local r ing 0e>Gn of Gn a t the point E=(δij). Let {Ian...ann\a>ij^>0}
be the canonical basis of §(£„) with respect to {sΪU•• , sww}. In part icular we
denote dy Ffj the elementIan...ann such t h a t aij—pr and αΛ/ = 0 for (A, Z)=V(i, y)
and call it α distinguished element of height r. Then we have

LEMMA 11. Let {sn,---, snn} and {/αil...αnJα/y>0} 6e as above. Then we
have

(i) / ^ ) ( ^ ) = i ( ^ + ί/. )ffymίr«,
and (ii) ίβ n . . . ί n B(^)=fl i / Ian...ann is not a distinguished element.

PROOF. Let X and Y be two independent generic points of Gn over k and
put Sij(X) = ξij and Sij{Y) — rjij for &', y = l, 2,. , rc. Since we have

5/y = Σ (5, A ( ^ ) + ffI A) (ί*y( Γ ) + δhy),
A = l

it is easily see that

h— 1

From this equality, we see that (i) and (ii) in our lemma are given from the

definition of {/βll...αnn} (cf. §4 in [8]). q.e.d.

Now let Mn(k) be the ring of all the square matrices of degree n with ele-
ments in the field k. Then we define a mapping p r of §(Gn) to Mn(k) by pr(D) =
(Deisfj)) for D in §(G»), where De is the local component of D at e defined in
§3 of [8]. If D= Σ <Xan...annIanmann, we see that pr(Z)) = (α(f}) by the defini-

(a)

tion of the canonical basis {/βll...βnn|θfy>0} of Φ(GW), where α ^ is the element
<Xalλ...ann, for each (ί, y) and r, such that aij=pr and αA/=^0 for (A, Z)=^=(ί, y).
Now we show the following

PROPOSITION 5. TΆe notation being as above, pr is a k-algebra homomor-
phism of ξ>(Gw) ίo Mn(k) for any non-negative integer r.

PROOF. It is clear that ρr is a A -linear mapping, and hence it is sufficient
to show that

Pr(Ian...annIbn...bnn) = Or(Ian...ann) Pr(Ibn...bnn)

If one of Ian...ann and Ibn...bnn is not a distinguished element of height r, we see
by Lemma 11
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Thus we may assume that Ian...ann = Ifl and Ibn^bnn = I\r^. Let Eϋ = (εxμ) be
the square matrix of degree n such that ε/y = l and eλμ = 0 for (Λ, μ)Φ{ί,j). By
Lemma 11, we have

(*)

and hence /# /^OQ = ° if =M.
This means that

since ρr{I\rJ)=Eij and ρr{I\r£)=Elm. If / = Z, we have

since (ΓfJ I(/Jι)e(sQ = dλiδmμ by the epuality (*). This completes the the
proof. q.e.d.

Let V be a vector space of dimension rc over k and GLF the group of
linear automorphisms of V which has a structure of a group variety defined
over k. Precisely if {vu- , vn} is a basis of Fover k, GLF may be identified
with the general linear group Gn naturally such that an element I in G L F

n

corresponds to (λa\ where Z(t;f ) = Σ hjVj.
y=i

Now let G be a group variety over k and assume that there exists a ra-
tional representation φ of G to GLF defined over k. Then we show that V has
a structure of ξ)(G)-module determined depending on 0. In fact let φ* be the
tangential mapping of φ(G) to ξ>(GLv) = #(©») induced by 0 and p0 the Jfc-
algebra homomorphism of φ(Gw) to Mn(k) defined in the above. Moreover we
consider any element A — {an) of Mn{k) as a linear endomorphism of F" such

n

that Λ{vi)= Σ aϋvJ f ° r e a c h ί = l, 2, . , Λ. Then if we denote by D{v) the

element pQ{φ*{D)) (?;) of V for i> in ξ)(G) and v in F, we see by Proposition 4

that
{aD+a'Dr){v)=aD{v

D{av+arvr)=aD{v

for D and 2>7 in Φ(G), υ and v' in F, and a and α' in k. It is easy to see that
this structure is determined independently of the choice of the basis
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{viy, vn} of Fover k.
A vector subspace W of V is called a G-submodule of F, if φ(g) W is equal

to W for any element g of G. Then a rational representation 0' of G to GW
is obtained naturally from φ. Similarly W is called a φ(G)-submobule if D{ W)
is contained in W for any element D of ξ>(G). If g0 is the Lie algebra of G
consising of left invaiant derivations of G, we can also give the definition of
go-submodules of F, and it is known, in characteristic 0, that W is a G-
submodule of V if and only if it is a g0-submodule of V (cf. e. g., Proposition
3.31 in [ΊΓ]). The following theorem is a modification of this fact in a positive
characteristic p.

THEOREM 4. Let V be a finite dimensional vector space over k, and let φ
be a rational representation of a group variety G to GLF. Then a subspace W
of V is a G-submodule of V if and only if it is a ίQ(G)-submodule of F.

PROOF. Let H be the group subvariety of GLF which consists of the
elements x of GLF such that % W is contained in W. Then we show that
poφ(H)) is the set of the elements A in Mn(k) such that A WC W. For let
{VI, J vn} be a basis of V such that {vi, , vr} is that of W, and we identify
GLF with Gn using this basis as seen in the above. Then H is the subgroup

of Gn consisting of the elements ( Ώr)oί Gn, where A and C are square matri-

ces of degree r and n — r respectively and {slV |£>r + l or j<r} is a regular
system of parameters of the local ring Ge,H> where % is the image of s, y under
the canonical mapping of 0e>G to 0e>H Therefore if we denote by {Γan...ann\aij
>0 and ahϊ = 0 if l < Λ < r and r + l<Z<rc} the canonical basis of ξ>(iΓ) with
respect to {s,7}, we see j*(Γan...ann) = Ian...ann, where /* is the tangential map-
ping of Φ(-ff) to φ(GLv) induced by the canonical injection j of H into GLF.
Then by the definition of p0 we see easily ρo(fe(H)) = {A e Mn(k)\AWC W}.

First we assume that W is a G-submodule. Then φ(G) is contained in H
and hence 0*(^(G)) is contained in §(#). Since po(ξ>(#)) JΓ is equal to W,
this means that ΪΓ is a ©(G)-submodule of Γ by the definition of the opera-
tion of the operation of Φ(G) on V. Conversely assume that W is a ξ>(G)-
submodule of F". If Gi is the image ^(G) of G, Gi is a group subvariety of
GLF and φ* maps §(G) onto §(Gi). This means that W is also a φ(d)-sub-
module of V. On the other hand W is a G-submodule of F if and only if it
is a Gi-submodule of V. Therefore we may assume that G is a group sub-
variety of GLF and that φ is the canonical injection. Let D = Σaan...annIa11...ann

(a)

be an element in §(G) and let (i, j) be such a pair that 1 <i i < r̂ and r + 1 < j
<τι. Since Po(Φ(G)) is contained in Po(jQ(H)) by assumption, we see that
αflll...αnn = 0 if αίy = l and ahϊ = 0 for (A, l)\(ί, j). It is clear that the prime
ideal of 0e>Gn corresponding to H is generated by the subset { s i 7 | 0 O " O ,

} of the regular system {s/y 11 < ί, y < ^} of parameters, and there-
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fore H contains G by Corollary of Proposition 4. This means that W is a G-
submodule of V. q.e.d.

COROLLARY. Let G, V and φ be as above. Then Vis a completely reducible
G-module if and only if it is a completely reducible ξ)(G)-module.

§5 Formal groups and algebraic Hopf algebras

Let G be a group variety defined over k. If we identify the Hopf algebra
φ(G) of G with the set of continuous ^-linear homomorphisms of 0e>G to k, the
Hopf algebra φ(ϋΓ) of a group subvariety H of G may be identified with the
Hopf subalgebra of £>(G) which consists of the elements D in φ(G) such that
D annihilates the prime ideal of 0e>G corresponding to H. Therefore the set
of group subvarieties of G defined over k corresponds injectively to a subset
of Hopf subalgebras of φ(G) by Proposition 4. Now we understand by an
algebraic Hopf subalgebra of €>(G) a Hopf subalgebra corresponding to a
group subvariety of G in this way. The aim of this section is to give a con-
dition for a Hopf subalgebra of ξ>(G) to be algebraic.

For this purpose we give some results on Hopf algebras attached to for-
mal groups which are already known (cf. §1 and §10 in [2], and [1]). Here
we understand by a formal group over a field k a noetherian complete local
ring R with maximal ideal m satisfying the following conditions:

(i) R contains k and R/m is canonically isomorphic to k.
(ii) There exists a continuous A -algebra homomorphism Δ of R with the

m-adic topology to the complete tensor product RlgjkR such that

(iii) If ε is the canonical homomorphism of R to k = R/m, (ε®idR)J and
(idR®ε)J are the natural isomorphism of R to k®R and Λ(g)A
respectively.

(iv) There exists a continuous A -algebra automorphism c of R such that
m(idR§§c)A = 7]e and m(c^ίdR)J = 'ηε!, where m is the completion of
the multiplication of R and η is the canonical injection of k into R.

Now we denote by §(/?) the set of continuous A -linear mappings of R
with the m-adic topology to k with the discrete topology. Then the vector
space ξ)(i?) over A; is a Hopf algebra over k. In fact the coalgeba structure
(J, έ) of Φ(Λ) is naturally defined by the algebra structure (m, η) of R by
J(D) (χ<8)y) = D(xy) and 8(D) = D(η) for D in φ(jf?) and x, y'm R by Proposi-
tion 6.0.2 in [7], if we identify Q(R)ξξ)k^(R) with a subspace of the dual space
of R(&kR> As to the algebra structure of φ(Λ) we define the multiplicaton
m(D®D') = D-D/by D-Dr(x) = (D(g)D')(J(x)). It is easy to see that D-Dr is
contained in ξ)(i?) and that this composition satisfies the associative law. More-
over we see that ε*D = D ε=D for any D in φ(Λ). If we define ^ of A;
by η(ά)=aε9 (m9 η) is an algebra structure of ©(-R). The antibode c of
is given by c(D)=Dc for any D in ΦCR). Then it is easy to check that
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m, % J, £, c) is a Hopf algebra over k.

PROPOSITION. 6. Let Rbe a formal group over k, and let ξ>, be the subspace
of fe(R) consisting of the elements D such that Z)(mz ) = 0, where tn, is the ideal
of R generated by all the pι-th exponents xpι of x in the maximal ideal m.
Then ξ>, is a Hopf subalgebra of ξ>(J?) and τn, is the set of all elements x in R
such that D(x) = 0 for any D in ξ>, .

PROOF. Let {Ds \ s e 5} be a basis of &• and let {Z>ί 11 e Γ} be a subset of
ξ>(Λ) such that the union {Z>s 15 e S}\J{D't\t e T} is a basis of φ(Λ). Then,
for any element Z) in φ, , we have

y = i
E8j<g)DSj+ Σ E'th®D'th,

where Es. and £{Λ are non-zero elements of ξ)(Λ). If Λ > 0, there exists an
element x of mz such that Df

tl(x)^0 and i>ίΛ(Λ;) = 0 for Λ ^ l . Therefore if 7
is an element of R such that E'tl(γ)\0, we have

J(£) (y®χ)=E'tl(y)D'tl<ix)\0.

But by the definition of i , we have i(Z>)(y(g)Λ;) = Z>(yΛ;) = 0, since D is in φ, .
m

This is a contradiction. Therefore we see that J(D)= Σ Es.<g)Ds.. Similarly
we see from this that i ( D ) = Σ ajhDj(^)Dh fof a{j in k. This means that φ,
is a subcoalgebra of φ(Λ). On the other hand we see eaaily that J(τrt ) is
contained in the ideal of R^R generated by (mz(g)i? + JR(g)m2 )5 since J(m) is
contained in (m0Λ + Λ(8)m)JR®Λ. Hence weheve Z> 2r(y):=(I)®I)0(Λ(j)) = ()
for j in xx\i and D, i)' in §, . This means that φ f is subalgebra of §(Λ). It is
clear that δr(φl )=§» Therefore φ f is a Hopf subalgebra of φ(Λ). Moreover
ξ), is the dual space of R/rtii and hence the last assertion is seen, since -R/m,
is of fiinite dimension. q.e.d.

By Proposition 6, R/nij is also a formal group over k and ©, may be
identified with the Hopf algebra φ(Λ/mf) of Λ/m, . Then §(JR) is the inductive
limit of ξ>(2?/irt;). Now we denote by Ri the formal group Λ/nt/ and call it
the formal subgroup of R of exponent ί. In general we call a residue class
ring 7?/α of R a formal subgroup of R if R/a has a structure (Λ/α, J o ? £α5 ca)
of a formal group over k such that (π^§π)J = Jaπ, ε = πεa and caπ = πc, where
7Γ is the canonical homomorphis of R onto R/a. Then if we define a mapping
7Γ* of fe(R/a) to φ(-R) by π*(D) = Dπ for D in ξ)(i?/α), we can easily see that
7r* is a Hopf algebra homomorphism. Moreover we see that π* is a monomor-
phism and that π*(jQ(R/a)) consists of the elements D in ξ)(J?) such that i)(α)
= 0. In the following we identify fQ(R/a) with π*(fQ(R/a)). Then we have

THEOREM 5. Let R be a formal group over k and let febea Hopf subalgebra
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of ξ>(Λ). Then there exists a unique formal subgroup R/a$ of R such that

PROOF. We denote by α§ the set of the elements x in R such that D(x) = 0
for any D in H. We shall see that R/a^ is a formal subgroup of R. Let <£)•
be the intersection of ξ> and ξ>, , and let α, be the set of elements x in R such
that D(x) = 0 for any Z> in ξ>{. Then ξ>{ is a Hopf subalgebra of ξ>(Λ) for any
ί by Lemma 1 and proposition 6, and we have § = V/Φί 0 n the other hand
R/xxii is a Hopf algebra over k and §, =ξ)(i?/mz) is the dual Hopf algebra of
R/rtii, since 7?/m* is a formal group with the discrete topology by Proposition
6. Then we easily see that the annihilator α//m/ of ξ>,' is a Hopf ideal of
R/xxii by Proposition 1. 4. 3. and Proposition 1. 4. 6 in Q7J. This means that
R/cii is a Hopf algebra over k. Denote by Δ{ and cz the diagonal and the
antipode of R/a{. Then if n^ is the natural homomorpism of Λ/α, to J?/αy
for z > / 5 we easily see that (πiJ<g)πij)Ji = Jjπij and 7r, ycί = cy7Γ/y. Now we easily

see that σ§ is contained in α' = f\ah since ξ) contains ξ> for any ι. Conversely
ί = l

let Λ; be any element of α'. Then # is contained in α, for any ί and hence we
oo

see that D(x) = 0 for any element D in ξ>£. Since ξ>= V7Φ/5 # must be con-
ί = l

OO

tained in α$. Therefore α§ is equal to α/=/°\α, . Moreover the family
{ct;/α<ρ I ί = l, 25 } is a fundamental basis of neighbourhoods of 0 in the τπ/α§-
adic topology of R = R/a<g by Theorem 13 of Chap. VIII in [9], since R is a
complete local ring with a descending chain of ideals {ai/a§} such that

oo

f\cii/a<Q = 0. Since R/a® = lim Λ/α, , there exists a unique mapping J § (resp.

c§) of Λ/αφ to R/a^R/a^ =lim R/at<g)R/ai (resp. Λ/αφ) induced by J,

(resp. c, ) (Ϊ = 1. 2,•••)• Then it is easy to see that (R/a%, Δ§, c,§) is a formal
subgroup of R and that § corresponds to Λ/α$. q.e.d.

Now we consider a group variety G defined over k with the local ring
0=0e>G at the neutral element e. Then if m is the maxinal ideal of 0, it is
well known that the completion R = Ό of 0 with respect to the tn-adic topology
is a formal group over k whose diagonal ΔR and the antipode cR is naturally
obtained from the group structure of G. We call this formal group R the
formalization of G. The Hopf algebra §(/?) of R is isomorphic to §(G) and
hence we may identify them. If 0' is the local ring 0exe>GxG of GxG at the
point e x β, it is the quotient ring (0§§k0)s of 0^k0 with respect to the
multiplicatively closed set S which is the complement of the maximal ideal
nt(g)0 + 0(g)m in O0ΛO. The comorphism J G of A(G) to k(G x G) defined by the
multiplication of G x G to G induces a homomorphism J of 0 to (7. Then Δ is
the restriction of the diagonal ΔR of i? to 0 by the definition of the formali-
zation i?? if we identify 0r with a subring of R^R. Moreover we denote by
c the restriction of cR to 0.
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PROPOSITION 7. Let G, 0, 0' and R be as above, and let § be a Hopf sub-
algebra of &(R). If a is the set of the elements x of 0 such that D(x) = 0 for
any D in §. Then α is an ideal of 0. Moreover if § is the set of the elements
D in ξ)(R) such that D(a)=0, Δ(a) is contained in the ideal of 0f generated by

)ct and c(a) is equal to α.

PROOF. By Theorem 5 it is clear that a=Or\a<Q is an ideal of 0. More-
over if ξ> is the set of the elements D in φ(Λ) such that Z>(α) = 0, the closure
a of α in R is α§. In fact if there exists an element x in α§ but not in d, x is
not contained in a + mps for a sufficiently large 5. Then there exists an ele-
ment D in §(jR) such that D(x)^0 and D(a + mp') = 0. By assumption D is
contained in ξ>. But this is a contradiction to the fact that x is in α©.

Now let x be in α. Using the notations of the proof of Theorem 5, x is
contained in α, for any ί. Since R/cn is a Hopf algeba over k, it is seen that
ΔR{x) is contained in bί = (α, (8)Λ + jR(8)α< )-RgjR. On the other hand the set
of the ideals b, (i = l. 2,. .) is a fundamental system of neighbourhoods of

in the completion O' = R^R of 0', we have

i = l

= a<S)O + O(S)cι in

since a is dense in α§ as seen in the above. It is clear that Δ(x) is in 0'.
Therefore Δ(x) belongs to (α(g)0 + 0(g)α)n0' = (α(g)0 + 0(g)α)0'. This means
that J(α) is contained in (a(S)G + 0(&a)G'. Similarly J(α) is contained in

)=a% and hence in a—aRΓ\0=a^Γ\0. q.e.d.

LEMMA 12. Lei G be a group variety over k and H a closed subset of G
saatisfying the following conditions:

(i) there exists a dense open subset U of H such that U> U is contained
in H.

and (ii) there exists a dense open subset V of H such that V~λ is contained in
H.

Then H is an algebraic subgroup of G.
The proof is easy and hence we omit it.

COROLLARY. Let G, 0 and 0' be as in proposition 7 and let a be an ideal

of 0 such that J(a)C(a(S)0 + 0(g)a)Qf and c(α)Cα. Then if a is equal to its

radical V α, α is a prime ideal of 0 corresponding to a group subvariety of G.

PROOF. If H is the algebraic subset of G defined by α, any component of
H contains the neutral element e of G. On the other hand if V— Spec(i?) is an
affine open set of G containing e, there exists an affine open set Z7=Spee(^4)
of G containing e such that U UC V and U~ιCV. Then the restriction ΔB
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(resp. cB) of the diagonal Δ of 0 to 0' (resp. the antipode c of 0 to 0) to B is
a homomorphism of B to A§§kA (resp. to J ) . Now recall that if p and £' are
two prime ideals of (9, p(g)0 + 0(g)p' is also a prime ideal of 0(g)/λ On the
other hand we can easily see in a similar way to the proof of Lemma 1 that
(αi(g)0 + 0(8)b)n(α2(8)σ + 0(8)b) = (αiΠα2)(8)0 + 0(8)b for any ideals au α2 and b
of 0. Therefore if α is an intersection of prime ideals ty (ί = l, 2,..., s), α<8)0
+ 0(g)α is the intersection of prime ideals &(g)0 + (9(gψ/(z, j = 1, 2,..., 5). In
particular we see that (αOO + OO^O'ΛCO^O) = α®O + O0α, since 5 and

pj have the empty intersection for any ΐ, /. By assumption we have

and c5(αn5)Cctn^4. This means that
(HrλU)(Hr\U)CHrλVCH and {Hr\U)~lCHΓΛVCH.

Therefore, by Lemma 12, H is an algebraic subgroup of G, since /fn U is a
dense open subset of H. Then α must be a prime ideal, because a connected
algebraic group is irreducible. q.e.d.

Now we have the last

THEOREM 6. Let G be α group variety defined over k and §(G) the Hopf
algebra attached to G. Then a Hopf subalgebra § of ξ>(G) is an algebraic one
if and only if ξ> satisfies the following conditions:

(i) the ideal a of 0e>G consisting of the elements x such that D(x) = 0 for

any D in § is equal to its radical V α,
and (ii) § is the set of the elements D in ξ)(G) such that D(a) = 0.

PROOF. It is sufficient to see the "if" part. We assume that φ satisfies
(i) and (ii) in our theorem. Then, by Proposition 7, σ satisfies the condition
in Corollary of Lemma 12 and hence, by the collorary, α is a prime ideal

corresponding to a group subvariety if of G, since a=\l a. This means that
§ is a Hopf algebra attached to Hby the condition (ii). q.e.d.

References

[1] P. Carrier, "Hyperalgebes et groupes de Lie formels", Seminaire "Sophus Lie", 2e annee:
1955/56.

[2] P. Cartier, "Arithmetique des groupes algebriques", Colloque. Theorie des Groupes algebriques
a Bruxelles (1962). (Centre beige de Rech. Math. 87-111.

[3] J. Fogarty, "Invariant Theory", W. A. Beniamin, Inc., (1969), New York and Amsterdam.
[4] K. Kosaki and H. Yanagihara, "On purely inseparable Extensions of Algebraic Function

Fields", J. Sci. Hiroshima Univ. Ser. A-I. 34 (1970), 69-72.



Some Properties of Hopf Algebras Attached to Group Varieties 251

[5] B. Mitchell, "Theory of Categories", Academic Press (1965), New York and London.
[6] J. -P. Serre, "Quelque proprietes des varietes abeliennes en caracteristique p", Amer. J. Math.

80 (1958), 715-739.
[7] M. E. Sweedler, "Hopf Algebras", W. A. Benjamin, Inc., (1969), New York.
[8] H. Yanagihara, "On the structure of bialgebras attached to group varieties", J. Sci. Hirohsima

Univ. Ser. A-I. 34 (1970), 29-58.
[9] O. Zariski and P. Samuel, "Commutative Algebra Vol. II", D. Van Nostrand Co. Inc. (1960),

Princeton.

Department of Mathematics,
Faculty of Science,

Hiroshima University.






