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In the previous paper [8] we developed a theory of invariant semi-
derivations on group varieties defined over an algebraically closed field & of a
positive characteristic p. Let G be a group variety defined over %k and g(G)
the set of all left invariant semi-derivations of G. Then the direct sum $(G)
=k@g(G) is a subalgebra of End,(k(G)), where k(G) is the field of the ra-
toinal functions on G over k. This structure has a close connection with the
group multiplication of G. On the other hand $(G) may be identified with
the set of point distributions of the local ring O of G at the neutral element
e, and then $(G) has a structure of a coalgebra induced dually from that of O
as an algebra over k. These structures give to $(G) a Hopf algebra structre
over k. Using this structure we obtained some results on purely inseparable
isogenies of group varieties in [87].

In this paper we shall show that our theory of the Hopf algebras $(G)
has more applications not only to the theory of purely insparable isogenies
of group varieties, but also to the general theory of algebraic groups over a
field of a positive charabteristic p. In particular $(G) may play a similar
role to that of the Lie algebra of invariant derivations on a group variety in
the case of characteristic zero.

In 8§l we give some definitions and results on Hopf algebras over a field
which are necessary in the later sections. Let € be the category of commuta-
tive and cocommutative Hopf algebras over a field & which are a union of
finite dimensional Hopf subalgebras. Then it is shown that € is an abelian
category. In the next section we shall obtain a criterion, in the languages
of Hopf algebras, for a morphism of a group variety to another to be sepa-
rable. For this purpose we give a generalization of the theorem in the paper
[4] on the existence of convenient pair of local parameters at the neutral
elements for a given purely inseparable isogeny of group varieties. As an
application of this criterion we give a modification of Serre’s results on the
group Ext(4, B) in §3, where 4 and B are commutative group varieties. He
treated in [ 6] the case of purely inseparable isogenies of exponent 1 making
use of the Galois theory for such isogenies. However we obtain the same
result for any purely inseparble isogeny of a commutative group variety
using our Hopf algebras. Of course this result may be obtained in a different
way if we use the fact that the category of commutative algebraic group
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schemes over a field is abelian. In §4 we consider a rational representation
¢ of a group variety to the group GLy of linear transformations of a vector
space V over k. Then we give an operation of the Hopf algebra (G) attached
to G on V determined by ¢ and show that a subspace W of V is a G-submodule
of V if and only if W is a £(G)-submodule of 7. This is a modification, in a
positive characteristic case, of the similar result in the case of characteristic
zero, where the Lie algebra of invariant derivations works instead of the
Hopf algebra £(G). In the last section a condition for a Hopf subalgebra of
H(G) to be an algebraic one is given. For this purpose some results on
formal groups over a field & are shown.

The terminologies are the same as in the paper [8], but as to those of
Hopf algebras we shall refer to the book [77] freely.

§1 Preliminary results on Hopf algebras

In this section we give some results on Hopf algebras over a field %,
which are necessary in the later. Let (D, m, 4, 4, ¢, ¢) be a Hopf algebra
over a field & with antipode ¢, where (9, m, ) (resp. (D, 4, ¢)) is the algebra
structure with multiplication m and unit 7 (resp. the coalgebra structure
with diagonal 4 and augmentation ¢). We may sometimes identify £ with
its image 7(k) in . We denote by $* the kernel ¢ *(0) of the augmentation
e. Let © be another Hopf algebra over £ and u a Hopf algebra homomorphism.
Then we understand by the h-kernel of u the set of the elements x in O such
such that (id;Qu) 4(x)=x1 and denote it by A-ker u. It is known that A-
ker v is a Hopf subalgebra of  if  is cocommutative (¢f. Lemma 16.1.1 in
[7]). Similarly we denote by A-coker v the quotent space ©/u(H)9’, where
w7 is the right idal of & generated by u(9*). Then it is also known
that A-coker v has a Hopf algebra structure such that the natural homomor-
phism of H' onto h-coker u is a Hopf algebra homomorphism, if u($*)9 is a
two-sided ideal of &’ (cf. Lemma 16.1.2. in [7]). In particuar if © is com-
mutative, h-coker u is a Hopf algebra.

A sequence

SO TIPLLE I PN PR LAZS I

of Hopf algebras ; with Hopf algebra homomorphisms u; is called exact if A-
ker u; is equal to the image of ©; ; under u;_; for each i. Let (D, m, 7, 4, &,
c)and (9, m/, v, 4, ¢, ¢’) be two Hopf algebras ovar k. Then it is easy to
see that the tensor product 9,9’ has a natural Hopf algebra structure
(DR, m, 7, 4, €) such that the canonical injections j and ;' of  and £’ into
R given by j(x)=x&1 and ;' (y)=1& y are Hopf algebra homomorphisms
respectively. Moreover we have the following

Prorosition 1. Let © and £ be cocommutative Hopf algebras over k. Let
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J be the canonical injection of O into DR, defined by j(x)=xQ1 and o the
linear mapping of OXD’ onto L' defined by p(xQ y)=e(x)y. Then the sequence

RN N
18 exact.

Proor. It is easy to see that j (resp. p) is a Hopf algebra homomorphism
(resp. an algebra homomorphism). Let x and y be elements of © and 9’ re-
spectivey, and put 4(x)= Z 21X xzy and 4'(y)= Z ¥1,® ¥ Then we have

(%))
AxQy)= P )Z(y x<1)®y(1)®x(z)®y(z), by definition of 4, and (0®p)A(xRy)=

(0®0)( Z x(1)®y(1)®x(z)® V) = Z €(x<1>)y<1)®8(x<z))y<z) =e(x)d’ (y) =
4 (e(x)y) A (o(x&®y)). Since we have e ‘'o=¢ and c¢’p=c¢, this means that o
is a Hopf algebra homomorphism. Next we show that A-ker j is 7(k). Let
{x:}iez be a basis of O over k such that »(1)=ux,, and let x be an element of
h-ker j. If 4(x)= Z‘ E,, R x;, we have &;,=¢;; by cocommutativity of © and

Z EixiRa, Q1= (zd®®])d(x)-x®l®l Therefore we have &;,=¢;;,=0 for

zﬁF], £;=0 for i2:0 and x=¢&oxo=7(0o) € 7(k). This means thant the se-
quence k1-H.HDR,D is exact. Now let 2 %iQy; be in h-ker o and put

A(x;)= (yz) %)@ x4,z andd’(y;) = (;) yj’(l)@)yj,(‘z). Then we have
Zi: %i® ¥ Q1= (1dpgp &0)4( Z % yi)

= 2. 2,0)®yi,1)&e(wi,2)) ¥i2)

1, (2),(Y3)

= Z) e(ws,02)%5,1y&4 ()

i, (x5

= 2 x:Q4'(yy),
since we have (¢RQidy)d=id;. We may assume that the set {x;} is linearly
independent over k, and hence that 4'(y;)=7y;&1 for each i. This means
that y; is in £=7%'(k) and that 2. %i&y; is in the image of j. Conversely it can
be seen that h-ker o contains the image of j. Therefore the sequence
HLDRD LD is exact. Lastly the h-kernel of ¢’ is £, since (idy Re)d'=
idy. This completes the proof. q.e. d.

Let © be the category of commutative and cocommutative Hopf algebras
over k such that any object of € is a union of finite dimensional Hopf subalge-
bras and that the morphisms of €@ are Hopf algebra homomorphisms. It is
known that the full subcategory €@ of € whose objects are of finite dimen-
sions is an abelian category. Using this fact we show that @ is also abelian.
Recall that the group composition of Hom,(9, A’) is given by the convolution
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frg=m'(fQg)4 for f and gin Homy (D, ©), that the inverse of f is ¢'f=fc
and that the neutral element of Hom,(9, ') is y’e. First we give the follow-
ing lemmas.

LemMma 1. Let © and " be Hopf subalgebras of a Hopf algebra 9 over a
field k. Then the intersection ' ND" is also a Hopf subalgebra of 9.

Proor. Let {x,}rc. be a basis of 9’9" over £ and let {x,\}rer\J{ %L} uem
(resp. {xr}rez\J{x"},en) be a basis of ' (resp. of ©”) over k. Then the set
{xher \I{x.}uem\I{x"} ,en is linearly independent over k. If x is an element of
O'NY’, 4(x) is a linear combination of the elements x,&xy, 2, Rxs, % Q%
and x.Qx, (A4, A € L, u, ¢ € M) with uniquely determined coefficients in %
since x isin . Similaly 4(x) is a linear combination of the elements
Q%0 62 RxY, %1 R %y and x1Qx7, (A, A’ € L v, and v’ € N), since x is in 9".
Therefore 4(x) must be a linear combination of the elements x,&Qx,.(, 2’ € L),
since 2, & xxs, 2, Q% 1y 22 x0r, %2R %1y %2R % 1y %1 R - and )X x”, are linearly
independent over k. This means that 9 N\9” is a subcoalgebra of © and
hence it is easy to see that ' 9" is a Hopf subalgedra of . q.e.d.

Lemma 2. Let 9 be a Hopf subalgebra of a Hopf algebra O over a field k
and I a coideal of ©. Then 9 N1 is a coideal of 9.

The proof of this lemma is exactly the same as that of Lemma 1 and
therefore we omit the detail.

LemMma 3. Let u be a Hopf algebra homomorphism of © into £ and K a
subcoalgebra of O such that u(K)=0, where R*=8NO*. Then K is contained
in the h-kernel of u.

Proor. By assumption we have u(x)=¢'u(x)=¢e(x) for any element x in
. Therefore if 4(y)= (Z Y1) ¥y for y in &, we have
)

(1dsQu)d(y)= (% (ds®u) (y1)@y)
=& {@ra®l
=yQ1.
This means that y is in the h-kernel of u. q.e.d.
Prorosition 2.  The category € is abelian.

Proor. It is easy to see that € is an additive category with 0-object %
and that the product (resp. the coproduct) of 9; and 9; is 9:X:9. with the
projections p; and p; (resp. with the injections j; and j,) defined as in Proposi-
tion 1. We shall show that @ has kernels and cokernels of morphisms in € and
that € is normal and conormal in the sense of chapter I in [5]. Then € is an
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abelian category by Th.20.1 of Chap. I in [5]. Let u: $;—9, be a morphism
in €, and let & and & be the h-kernel and the A-cokernel of u respectively.
Then R is a Hopf subalgebra of ©; and & is a quotient Hopf algebra of ..
By assumptions on € there exist Hopf subalgebras R, of finite dimensions
such that &)Iz\o/ﬁéa, and hence we have Rz\ajﬁf\‘ﬁa. But &N\N,, is a finite

dimensional Hopf subalgebra of & by Lemma 1. Therefore & is an object of
@. Simlarly there exist Hopf subalgebras of finite dimensions Mz such that
-i)z:l\ajimﬂ. Then I;,=MsNu(©)9: is a Hopf ideal of M by Lemma 2,

since u(97)9: is a Hopf ideal of D,. If we identify 9/, with its canonical
image in & =9,/u(97)9.;, we have R’:\Bjﬂﬁﬂ/ I;, where each Mg/I is of

finite dimension over k. Therefore R is also an object in €. It is easy to
check that & and & are the kernel and the cokernel of ©z in @ from the def-
initions and Lemma 3. Next we see that € is normal and conormal. Let
u: 919, be an epimorphism in €. Then u is a surjection as a linear map-
ping over k. We must show that (9,, u) is a cokernel of a monomorphism
in @. In fact let ® be the A-kernel of v and let x be an element of &*. There
exists a finite dimensional Hopf subalgebra N of 9, such that x € "N K" =N7,
and hence that x is contained in (z|5)~'(0) Cz~*(0) by Lemma 16.0.2 in [7].
Since u is an algebra homomorphism, this means that 79, is contained in
u©~*(0). Conversely let x be an element of »~'(0) and let N be a finite di-
mensional Hopf subalgebra of ©; such that x e R. Then x is contained in
K3N by Lemma 16.0.2 in [ 7], where R is the h-kernel of the morphism u|g.
It is clear that ;=N and in particular that K is contained in £*.
Therefore x is contained in £+9,. This means that »~(0) is equal to &9,
and hence (9,, ©) is the cokernel of the canonical injection of & into ©; in C.
In other words € is conormal. Lastly let j: ©:—9, be a monomorphism in €.
Then we may assume that ©; is a Hopf subalgebra of 9, and 979, is a Hopf
ideal of ©,. If 7 is the natural mapping of , onto the quotient space &=
D2/979,, 7 is a Hopf algebra homomorphism. We must show that (9, j) is
the kernel of 7 in €. If O is the h-kernel of j, we see that 79, =9{0,=7""(0)
from the result just obtained in the above. Let x be in $* and let It be a
finite dimensional Hopf subalgebra of ©; such that x is in 9. By Lemma l
there exists the smallest Hopf subalgebra 9%, of $, containing x. If {x,=
X, X1, X} 18 @ basis of M, over k, each x; is in " CH{H, and hence we
have x;=72] y;;zi; for y;; € Of and z;; € D;. Then we may assume that 9t con-
tains these elements yi; and z;;, replaceing it with larger one if necessary.
Therefore we have IMMF CIMTIM, where M, =H:N\IM, and the composition of
the canonical injection of 9, into IR and the canonical projection of M onto
M/MFM is the zero-morphism in €. Since the full subecategory €@ of @ is
abelian, M, is the kernel of the morphism z: M—->IM/M;M in €’ and hence
M, is contained in I, by Lemma 3. This means that O is contained in 9;.
Conversely © contains 9; by Lemma 3, since O is the h-kernel of 7 and 7+j is
O-morphism in @. Therefore © is equal to 9, and € is normal. q.e.d.
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§2 Separability of morphisms of group varieties

In the following let £ be an algebraically closed field of a positive
characteristic p. Let G and G’ be group varieties defined over £ and denote
by O and O’ the local rings O, ¢ and 0,. . of G and G’ at the neutral elements
e and e’ respectively. If « is an algebraic homomorphism of G into G’ defined
over k, there exists a local homomorphism «* of ¢ into 0. First we give a
generalization of Theorem in [4].

Prorosition 8. Let a be an algebraic homomorphism of a group variety
G of dimension n into a group variety G’ of dimension m. Let G’ be the kernel
of a and 0" the local ring of G’ at e. Then if the image a(G) s of dimension
r, there exist regular systems {t1,---, t,} and {s, .-, s} of parameters of O and
O’ respectively satisfying the following conditions:

1 a*(si):tlz?ei Jori=1,2,..r,

(i) a*(s;))=0 for j=r+1,..., m,
and (iii) {Z,.1,---, I} is a regular system of parameters of O, where , is the

image of t; under the natural homomorphism of O onto 0.

Proor. First we assume that « is a separable homomorphism of G onto
G’'. Then we see that there exist regular systems {¢,,---, ¢,} and {s1,---, sn} of
parameters of 0 and O’ respectively such that a*(s;))=¢; for i=1, 2,..., m (cf.
the proof of Proposition 14 in [8]). From this if {s{,..., s,} is any regular
system of parameters of ', we can easily see that {a*(s{),- -, @*(s}), tms1s-- s tn}
is a regular system of parameters of (). Next we assume that « is a surjective
morphism. If we denote by G, the quotient group variety G/G” and by 7 the
canonical homomorphism of G onto G,, there exists a purely inseparable
isogeny «; of G’ onto G; such that a=ay7. If O, is the local ring of G, at
the neutral element e;, there exist regular systems {ui, .-, un} of parame-
ters of 0, and {si,---, sn} of 0" respectively such that af(s;)=u?" for i=1,2,...,
m by Theorem in [4]. Since 7 is a separable morphism, there exists a subset
{tme1, -y ta} Of O such that {t;=7%(u)), -, tw=7*(Um), tmr1, -, tn} is a regular
system of parameters of 0 as shown in the above. Therefore these {¢y, -, t,}
and {s;,---, sn; are our solution in this case. In fact we see easily
{Zmi1,---, In} 18 & regular system of parameters of O”. In general cases let G,
be the image a(G) and O, the local ring of G, at e¢’. If p is a prime ideal of O’
corresponding to the subvariety G, of G/, 0’/ is isomorphic to 0,. In partic-
ular O’/p is a regular local ring. Therefore p is generated by a subset
{$,+1,---, smy of a regular system of parameters of O’ by Theorem 26, Chap.
VIII in [9]. Moreover we see that {si,---, s,, s,,1,---, sm} 1S a regular system
of parameters of O’ for any subset {si,--., s,} of O such that the image of
{s1,---, s, in O'/p is that of O’/p. Combining this with the results obtained
in the above for a special case, we see that our assertion is true. q.e.d.
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RemaArk. (i) The notation being as in Proposition 3, let {¢/,1,---, ¢,} be any
regular system of parameters of 0. Then we can find {¢y, -, t,} in Proposi-
tion 3 satisfying 7;=¢; for i=r+1,..., n. In fact we may replace {t, 1, -, t»}
by any set of m—r elements in O whose image in (” is a regular system of
parameters of 0", since the ideal {¢,, .., ¢,)O is the prime ideal corresponding
to the subvariety G” such that 0" is isomorphic to O/(¢4,---, t,) 0.

(i) Similarly if a{(G) is a normal subgroup of G’, {s,.1, -, s»y Mmay be
replaced with any regular system of parameters of the local ring of the
quotient group variety G'/a(G) at the neutral element.

CoroLLARY. In Proposition 3, a is a separable morphism i f and only if
e,-:() fO?" i:1,2,-~-, r.

Proor. Let G, be the quotient group variety G/G’, and = the canonical
homomorphism of G onto G;. Then there exists a purely inseparable isogeny
a; of G, onto a(G) such that a=a;7. Then « is a separable morphism if and
only if «; is an isomorphism. On the other hand we know thate, + - +e,=s,
where [£k(G,): k(a(G))]=[k(G): k(a(G,)]; =p° by Theorm in [4]. This com-
pletes the proof. q.e.d.

Let G be a group variety defined over k. Then recall that the Hopf alge-
bra ©(G) attached to G is the subalgebra i@Eg(G) of the algebra Hom,(%(G),
k(G)) over k, where g(G) consists of all the left invariant semi-derivations
of G. Moreover if {tq,-.-, t,} is a regular system of parameters of O, then
there exists a basis {I., .,|¢;=0, 25 e; > 0} of g(G), which is uniquely deter-
mined by the condition that Iel,__en(ztfl. ~egmy—land I, (¢55-.22)) for (e, -, €,)
= (ei,---e,) are in the maximal ideal of O (ef. Theorem 1in [8]). For con-
venience’ sake we denote by I, , the identity mapping of %£(G). Then
{I.,..,1e;=>0 for each i} is called the canonical basis of ©(G) with respect to
{t 1,---, tny. Now we have the following

TueoreM 1. Let « be an algebraic homomorphism of a group variety G
into a group variety G’ defined over k, and assume that {ti,---, t,} and {si, -, sm}
are reguar systems of parameters of O and O satisfying the conditions (i), (ii)
and (iii) in Proposition 3. Let {Il,..} be the canonical basis of the Hopf
algebra H(G) attached to G with respect to {t,---, t,y. Then the h-kernel of the
Hopf algebra homomorphism oy of O(G) into H(G') induced from « is the linear
subspace o f O(G) generated by the elements I, .. such that a;<p°fori=1,2,...,r.

Proor. Let {I; ., |b; >0} be the canonical basis of H(G") with respect
to {s1,---, smy. Since ay(D) (x)=D(a*(x)) for any element x in O’ and any
element D in (G), we see that

a*(Ialw...a,pero...o) = Iél...a,o...o

and CK*(I[,IN.],"):O for (bly"', bn) =+ (alpel,..., a,,PeT, 0,..., O)
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from the definition of the canonical basis and the condition in Proposition 3
satisfied by {t,---, t,} and {sy,---, sn}. If we denote by 4 the diagonal of the
Hopf algebra £(G), we know that 4(1,,..)= X 1.1 4, (cf. §5 in [8]).

(a’)+(a")=(a)
Therefore we have

(id©(6)®a*)4(lal...a") :( Z Ia;...a;®a*(1a’1’...a;)

a’)+@")=(a)

= Z/ Ia;...a;®lél,..b,o...0,

(a”)+ (b p®) =(a)

where >’ runs over all pairs ((a’), (5)) such that
(@) +(bp®)=(a)

(@ly-ey ap)+(B1p®,yey byp®ry 0,y 0)=(as, -+, @y).
This means that
(id&)(G)®a*)A(1a1...an) 7+ Ial...an®1

if a;>p* for some i <r, since {I,,..,®1; ., } is a basis of D(G)RD(G’) over
k. On the other hand if a; < p* for any : <(r, we have (idy)Qax)4(Lq,..a,) =
I,,..,1 and hence I, _, iscontained in the h-kernel of ay. In general if
D= (Z): Tal...anIal...a,,a we have

(ido)\@ax)AdD)= 2 Taya, 22 TLabae®I5, 5,00
(a) (@”)+ (bp®) =(a)
Now it is easy to see that ((a"), (bp°)) # ((a1), (b1p?)) if (a’)+(bp®) = (a1)+
(b1p°). Therefore we see

(id@(c)®a*)A(D) +#+ DX1,

if 74,..q, 7 Ofor such (ay,--, a,) that a;>p° for some i<(r. This means that
the h-kernel of « is generated by the elements I, ., such that a;<p* for
any i <r. q.e.d.

TueorREM 2. Let G, G, and G; be group varieties defined over k and let
«a; be an algebraic homomorphism of G; into G;,, defined over k for i=1, 2
such that the image of G, into G, is equal to the connected component of the
kernel of a, containing the neutral element. Then «; is a separable morphism
©f and only if the sequence (G,) 229 (Gy)-22 O(G3) of Hopf algebras is
exact.

Proor. We may assume that G, is a group subvariety of G, and that «;
is the canonical injection. In fact if a is a surjective algebraic homo-
morphism of G onto G’ in Proposition 8, we have a*(s;) =t for i=1, 2,..., m.
Then we have ay (I4,01...4, ptm0..0) =1I},..q, for any (ai,---, an), where {1, . } and
{I},.s,) are the canonical basis of $(G) and 9(G’) with respect to {ti, -, t,}
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and {s;, -, s,} respectively (cf. the proof of Theorem 1). This means that «a,
is also a surjection and we may replace G, with the image «;(G,).

Therfore we assume that G, is the connected component of the kernel of
a, containing the neutral element e;. Then, from Proposition 3 and Remark
(i) below it, there exists a regular system {¢i,..-, ,} of parameters of O,,g,
and that {s,. -, s} of 0, ¢, satisfying the following conditions:

1)  ak(s)=tr" for i=1,..., r= dim ay(G;),

(1)) af()=0 for j=r+1,..,m
and (iii) {Z,.1,..7.} s a regular system of parameters of O, ¢, where 7, is
the camonical image of t, in O, . By Corollary of Proposition 3, a is
separable if and only if e;=0 for i=1, 2,..., r. On the other hand if {I, .}
is the canonical basis of 9(G;) with respect to {4, .-, ¢,}, we easily see that
a1,(9(G1)) is the subspace of 9(G) generated by the elements I_O...Oa,u...an for
a;>0 as seen in the proof of Theorem | and that the h-kernel of a, is the
subspace of ©(G.) generated by the elements I, . such that a;<p°: for any
i<r. This means that e;=---=e,=0 if and only if «, (9(G,)) is the h-kernel
of a;,. Therefore our assertion is proved. q.e.d.

§8 Groups Ext(4,B) for purely inseparable isogenies

The aim of this section is to give a generalization of Serre’s result on
groups Ext(4,B) for purely inseparable isogenies of exponent 1 in §3, n°8
in [67] for cases of higher exponents. Let 4 and B be two commutative
group varieties defined over k.. Now recall that Ext(4,B) is the set of
isomorphism classes of extensions C of 4 by B, i.e., the set of isomorphism
classes of strictly exact sequences 0— B— C— 4—0 of commutative group
varieties defined over k, and that Ext(4,B) is an additive functor in both 4
and B into abelian groups (cf. §3, n°7 in [67]). More generally let & be an
abelian category and let 4 and B be two objects in ©. Then there exists an
abelian group Ext(4,B) called “the group of Yoneda extensions of 4 by B”
(¢f. Chap. VII in [5]). In particular the Hopf algebra $(A) attached to a
commutative group variety A defined over % is in the abelian category €
given in §l, and hence Ext(9,9(A)) is defined for any object N in €.

Let p be a purely inseparable isogeny of a commutative group variety 4
onto 4’ defined over & and N=N(p) the Hopf subalgebra of $(4) correspond-
ing to p in the sense of Theorem 4 in [8]. Then we have

Lemma 4. The sequence
k— N(0)“-9(A) L H(AN—k
of Hopf algebras is exact in O.

Proor. By Theorem in [4], there exists a regular system {¢,,--., £,} of
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parameters of O, s such that {:2%,..., ¢} is that of 0,, a,, where we identify
0., o- with the subring 0*(0,.a-) of O, a. Then the h-kernel & of p, has a
basis {1, a4, la; < p* for i=1,2,..., n} by Theorem 1, where {I,, ., |a; >0} is
the canonical basis of ©(A) with respect to {¢:,---, t,}. By the definition of
N(p) and Proposition 15 in [ 8], we see D(k(A"))=0 for any element D in N(p)*.
This means that & is contained in N(p) by Lemma 8. But we know that
dim, N(p)=[k(4): k(4)]=pZ*i=dim,R, and hence we see N(p)=8.
q.e.d.
If B is another commutative group variety defined over %k, we denote by
Hom(4,B) (resp. Hom(A4’,B)) the group of algebraic homomorphisms of
A (resp. A’) into B defined over k. Then there exists a group homomorphism
¢ of Hom (4’, B) into Hom (4, B) defined dy §(a)=ap. Similary we define a
mapping i of Hom(4,B) into Hom/, (N (p), &(B)) by i (a)=asi for a in
Hom(4,B), where « is the tangential mapping of D(4) to H(B) induced by
a. Then i is a group homomorphism. In fact, let ¢, be the diagonal mapping
of 4 into Ax A4 given by 0,(x)=x X x and xp the multiplication of B x B onto
B given by yp (yxz)=y+z If fand gare in Hom(4,B), we have f+ g=
up (fx g0a and hence (f+ g)s=ups(fX @x0ax= myom (fxR gx)dowy=(fs)*
(gx). This means that i(f+ g)=(f+ @«i =(fxi)*(gxi) =i(f)*i(g). Then we
have

Lemma 5. The sequence
0—Hom(A4’,B)—2-Hom(4,B)—Hom,(N(0),9(B))

of abelian groups is exact.

Proor. It isclear that 4 is injective. Let g be an element of Hom(A4',B)
and put f=p§(g)=g0. If i* is the natural homomorphism of 0, 4 onto R=
N(p)?, we have i*p*(in')=0, where m’ is the maximal ideal of 0, 4. (cf. §7 in
[8]). From this we easily see that i(f)=fyi= gx0xi is the zero morphism of
N(p) into H(B) in €, since H(B) and N(p) may be considerd as subspaces of the
dual spaces of 0, 3 and R=N(a)” over k respectively. This means that the
image of ¢ is contained in the kernel of i. Conversely assume that i (f)=0
and put f(4)=PR'". If j is the canonical injection of B’ into B, we have f=j-f/,
where f’ is a surjective homomorphism of 4 to B’. Now we identify the
fields £(4") and k£(B’) with the subfields p*(k(4')) and f"*(k(B’)) of k(A4). Then
we have f4(D)=D|us~ for any D in £(A4) by Proposition 15 in [8]. Since j,
is injective, we have f(i=0 by the hypothesis i(f)=f4xi=0. Therefore we
have D|,5,=0 for any element D in N(p)*. On the other hand £(A4’) is the
set of the elements x in k(4) such that D(x)=0 for any D in N(p)* by (D) in
§6 of [ 87, and hence £(4’) contains £(B’). From this we see that there exists
an algebraic homomorphism g’ of 4’ onto B’ such that f'=g’-p and hence

Sf=if=ghe=0o(jg"). g.e.d.
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Let g be an element of Hom,(N(p), O(B)). Then there exists the push-
out 9, of H(4) and D(B) over N(p) with respect to (i,g), since € is an abelian
category (cf. TH. 20.1. of Chap.Iin [5]). Let p; and p, be the canonical
morphisms of H(A) and 9(B) into H, such that p;i=p,g. Recall that O, is
constructed as follows: let # be a morphism of N(p) into H(A)R,D(B) defined
by #=(ai)*(cipg), where c is the antipode of the direct sum (H(4)&XD(B),
ia, i) of £(4) and H(B) in €. Then if (D, v) is the cokernel of x, (D,, pr="Vi,
p2=vip) is the push-out of H(4) and H(B) over N(p). If we put N'=u(N(p)),
N’ is a Hopf subalgebra of 9(4)RD(B)=D(ARB) of a finite dimension.
Therefore there exists a purely inseparable isogeny 7 of 4x B onto a com-
mutative group variety C, such that Spec(N'”) is the kernel of 7 by Theorems
3 and 4 in [8]. It is clear by Lemma 4 that $, and v may be identified with
9(C,) and 7y respectively. Moreover 7*(k(C,)) is the set of y in k(4 x B)
such that D(y)=0 for any D in N'". On the other hand if £(4) is identified
with the subfield p%(£(4)) of k(4 x B), we have D(x)=uD(x) for x in k(A)
and D in N by the definition of the morphism x. Therefore z*(k(C,)) con-
tains p*(k(4")) and hence there exist an algebraic homorphism ¢ of C, onto
A’ such that ¢gr=pps. On the other hand it is easy to see that g gives a
morphism g; of Spec(N(p)®) to B as k-group schemes such that (gi)«=g
Similarly i gives a morphism i, of Spec(N(p)?) to 4 such that (i;)y=i. Then
we have

Lemma 6. The diagram

0—Spec(N (0)?)—ib A —f s A'— 50

o] ]

0 B-_Tin, Co A’

of k-schemes is commutative and the second row s strictly exact.

Proor. Since (wis)sx=p1 and (7ig)x=ps:, We have (Tipg)x=p:8=p2i=
(miai1)x and hence 7wipgi=miai;. Therefore the first assertion is seen, and
from this we have a commutative diagram of Hopf algebras:

k—N(0)--D(4) —*— D(4)—k
g J' ﬁll id@(A')l

k —-D(B)L59, =9(Cp)—2-D(4)—k

Then the second row is also exact in € by the dual of Corollary 20.3 of Chap.
Iin [5], since $(C,) is the push-out of H(4) and H(B) over N(p). From this
we see that the sequence 0——B-"2:c,—%>4'— 0 is strictly exact by
Theorem 2. q.e.d.

Lemma 7. Let C be a commutative group variety defined over k satisfy-
wng the commutative diagram
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0——Spec(V(0)?)—its A A'— 0
£ 44 ida’

0 B % C—2-4 0,

where the second row s strictly exact. Then there exists an isomorphism A of
C, onto C satisfying the following commutative diagram

0——B2,C, 4 d'— 0

w| o e

0 B &,C 2,4 0.

Proor. By hypothesis we have a commutative diagram of Hopf
algebras with exact rows:

k——N (0)—-9(A)—->D(A)—k
gl (@)« 94

D (B) -2, 5(C) =22y D( A )—> k.

Then, by the dual of Corollary 1.2. of Chap. VII in [ 5], there exists an iso-
morphism ¢ of D(C,) onto D(C) such that gp1=(q1)x, Tp2=(g2)x and ¢,0=ds,
since C, satisfies also the condition for C by Lemma 6. Let p4 and pp be the
canonical projections of 4x B onto 4 and B respectively and put a=¢ps+
g2ps. Then we can easily see that ay=m,. Therefore there exists an iso-
morphism 2 of C, onto C such that a=1z. Then it is clear that we may
replace o by 14 and it is seen that ¢, =2p; and g2 = 1p;, since (¢1)x=(Ap1)x and
(g2)x=(Ap2)x. The equality ¢2=¢ is also obtained easily. q.e.d.

From Lemmas 6 and 7, there exists a uniquely determined element
(C, g2, ¢) in Ext(4',B) satisfying the condition of Lemma 7 for any element
g in Hom (N (0),9(B)). Now we define a morphism d of Hom,(IN(p),9(B))
to Ext(4',B) by d(g)=(C, q2, ¢)=C. Then d is a group homomorphism. In
fact let g, and g; be two elements in Hom,(N(0),9(B)), and put C, =d(g:)
for i=1,2. Then by the definition of the sum in the group Ext(4’,B),
there exists the following commutative diagram of group varieties:

0——B x B——C, x Cy, A xA 0

mBl T idl

0 B C—2 > A" xA—0 (1)
idBT EI AA/I

0 B——s CutCyp—ts A—0,

where C is the push-out of B and C, x C,, over Bx B and where C, +C,, is
the pull-back of C and A" over A’x A’. On the other hand by the definition
of C,, we have diagrams
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0—Spec(N(p)P)—1sd—L 540
(&)1 74 ida’

0 B C,, -t A'—0

From this and (1) we have a diagram

0—>Spec(N(p)D)—“—+ AL A —50
a'll ﬂ'zl AA'l (2)
0 B C2154"xA—0

where 01=mp((g1)1 %X (g2)1)4dnD and o,=t(rixry)d4. Since C,+C,, is the
pull-back of 4" and C over A’ x A', there exists an algebraic homomorphism o
of 4 to C, + C,, satisfying the following diagram

0—Spec(N(0)P)—s 4 —2—5 4" — 0

@ ida’
0 — > B—sCy 1 Cpy Ss A —0 3)
idBl £ 44’
0 B C21A4"x A—0

such that 0,=¢&w. Hence we have a commutative diagram of Hopf algebras:

b V() ——> ()L §(A) — k
£1483 * id
ks D(B)—D(Cy, + Cp)£29(A") k @)

W e

k—9(B) D(O)-1D(A)@eD(4))—k.

Since each row of this diagram is exact in €, $(C,,+C,,) is the push-out of
H(A4") and (C) over H(A’x A"). Then using the commutative diagrams of
Hopf algebras obtained from (1) and (2), we can easily see by Lemma 1. 1. of
Chap. VII in [5] that we may add the morphism gi*g:=mgn5y(g1& g2) dn of
N into $(B) in (4) without breaking the commutativity, and hence we may
add in (3) the morphism (gi*gz)1=mp((g1)1 % (g2)1)dn» of Spec (N(p)?) into
B. This means that d(gi*g82)=Cg +C,,=d(g1)+d(g:). Now we have

Lemma 8. The sequence
Hom(4,B)—i»Homy(N (0),D(B))-4-Ext(4’,B)
18 exact.

Proor. Let f be an element of Hom(4,B) and put g=i(f)=fxi and
oc=n(ia—ipf), where i, and ip are the canonical injection of 4 and B into



240 Hiroshi YANAGIHARA

Ax B resspectively and where 7 is the isogeny of A4 x B onto C, defined in
the above. Recall that (9(C,), 74) is the cokernel of the morphlsm x=
((Ga)xi)*(c(ip)xg), and hence we see that 0yi=m,(i4—ipf)si=mu is the zero-
morphism of Hom (N (0),9(C,)). This means that there exists a uniquely
determined algebraic homomorphism ¢; of 4’ into C, such that o0=d'p by
Lemma 5. If ¢ is the homomorpism of C, onto A4’ defined in Lemma 6, we
see from the definition of ¢ that ¢o, is the identity of 4’. This means that
the sequence 0—B—C,-2>4"—0 is split, i.e., d(g)=0. Conversely assume
that d(g)=0 for gin Hom(N(p),9(B)). Then the sequence 0——B-"2,C,
% ,4— 50 1is split and hence there exists an algebraic homomorphism 4 of
C, onto B such that hmiz=idps. If we put f=hmis,, we see easily that
g=f«i=1i(f). This completes the proof. q.e.d.

Now we denote by §; the group homomorphism of Ext(4/,B) into
Ext(A4,B) induced from p. Then we have

Lemma 9. The sequence
Hom, (N (0),9(B))“4-Ext(4’,B)—-Ext(4,B)

18 exact.

Proor. If we put C=4.(Cy) for gin Hom,(N(p),9(B)), we have, by the
definition of §;, the commutative diagram

0 B C—2% 4 0
idp ﬂl pl
0— BTin,Cy—* s A'— 0.

—

Moreover C is the pll-back of 4 and C, over 4’ and hence there exists an
algebraic homomorhism % of 4 into C such that ah=id4 and Sh=ni,. This
means that the sequence 0 — B — C 44" —0 is split. Conversely let
(C', v, 0) be an element of Ext (4’, B) satisfying the commutative diagram

0— B8, AXB=2 A, 0

Lol ol

0 B (0> 4 0.

If we put h=p3i,, we see p=0’h and hence have a commutative diagram with
exact rows:

k N— D(A)—22 D(A") —k
e idg o)

k—s O(B)-"-9(C)£D(4) —k.
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Therefore there exists a morphism g of N into H(B) subh that 7y, g=hyi.
From this we see that C'=C, q.e.d.

If (C, 7, 9) is an element of Ext(4,B), (H(C), 14, ¢x) is in Ext(H(A),D(B))
by Theorem 2. Denoting by i; the homomorphism of Ext(9(4),9(B)) into
Ext(N(0),9(B)) induced from the morphism i of N(p) into H(A4), we define
i, of Ext(4,B) into Ext(N(0),9(B)) by 7,(C)=i(9(C)). Then we have

Lemma 10.  The sequence

Ext(A4',B)-21, Ext(4, B)-5Ext(N (0),9(B))
s exact.
Proor. Since the sequence
Ext(9(4),9(B))2L Ext(D(4),9(B) - Ext(N(0),D(B))

is exact by Prop. 2.2. of Chap. VII in [57], we can easily see that the image of
§1 is contained in the kernel of /;. Conversely let (C, v, @) be an element of
Ext(A4,B) such that i,(C)=0. Then we have the following commutative
diagram

k——0(B)L5D(C)  ——  D(A)—k

id9 ) L \\\ i
. by S~

k—-»@(B)~@<B>®kN<p>i£N<o>——»k

with split second row. Since A=0iy is 2 monomorphism in €, A(N) may be
identified with N. If ¢ is a purely inseparable isogeny of C onto a group
variety C’ corresponding to N=21(XV), there exists an algebraic homomorphism
¢ of C’' into A’ such that ¢¢ =pa by Lemma 5, since 0,4 2+(N')=p,i(N')=0.
Then the sequence 0—s B 4%, ' 2 4" — 0 is strictly exact. For we can
easily see that the sequence 0—— D(B) 2%, H(C) -2, H(A) ——0 is exact in
©. Moreover we see, from the definition of C and C’, C=4,(C"). q.e.d.
In conclusion we have the following

TuroreMm 3. The notation being as above, we have the following exact
sequene:

0—Hom(4',B)~-~Hom(4,B)—~Hom,(N(p),9(B))-“4-Ext(4’, B)
21, Ext(4, B)-IExt(N (0),9(B)).

§4 Hopf algebras and rational representations

First we give some results on Hopf subalgebras of the Hopf algebra (G)
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attached to a group variety G corresponding to group subvarieties of G. In
this section we identify the Hopf algebra $(H) attached to a group subvariety
H of G with Hopf subalgebra i (9(H)) of ©(G), where i, is the tangential
homomorphism of 9(H) to H(G) induced by the canonical injection i of H into G.

ProrosiTion 4. Let H and K be two group subvarieties of a group variety
G. Then K is a group subvariety of H i f and only 1f O(H) contains H(K).

Proor. Let a and b be the prime ideals of the local ring 0=0, ¢ corre-
sponding to H and K respectively. By Lemma 14 and Proposition 16 in [8]
we know that 9(G) may be identified with the set of continuous #-linear
homomorphismm of O with the m-adic topology to & with the discrete topology
where m is the maximal ideal of 0. Then we easily see that H(H) (resp. H(K))
consists of the elements D of $(G) such that D(a)=0 (resp. D(6)=0). On the
other hand a (resp. b) consists of the elements x of O such that D(x)=0 for

any D in 9(H) (resp. H(K)), since a= f\o(nl”+a) and b= ﬂ(m”+b). There-
n= n=0

fore a is contained in b if and only if O(H) contains H(K). This completes

the proof. q.e.d.

CoroLLARY. Let G, H and K be as in Proposition 4. Let a be the prime
ideal of the local ring 0=0, ¢ corresponding to the group subvariety H of G
and {t1,---, t.} be a regular system of parameters of O such that a is generated
by a subset {t1,---, t,} Of {t1,--, ta}. If {1la,.a,|a;=>0} is the canonical basis of
9(G) with respect to {t1,---, t,}, then the following three conditions are equiv-
alent :

(i) K is a group subvariety of H.

(ii) If D= )(j)aa,...anfal...a" 18 im D(K) and i f i<r,
we have &al,,,a" =0 for a;=1 and a;=0 (i=%)).

(ii) If D= X tay.a 1oy.a, 1 i D(K) and if i<r,
we have(aéral._,a" =0 for a;50.

Proor. First we assume the condition (i). Then, as shown in the proof
of Proposition 4, we see D(a)=0 for any D in H(K) if (G) is identified with
the set of continuous k-linear homomorphisms of O into .. Since ¢§...t2» is
contained in a if ;20 for some i<r, this means that a, ., =D({...t¢")=0and
hence the condition (iii) is satisfied. It is trivial the condition (ii) is satisfied
if (iii) is so. Lastly assume that the condition (ii) is true. If K is not a
group subvariety of H, then there exists an element ¢; contained in a such
that ¢; does not belong to the prime ideal b of O corresponding to K. As seen
in the proof of Proposition 4 there exists an element D in $(G) such that

D(t)>:0 and D(6)=0. If D=Ya,, o I.,.4,, this means that D(z;) =c,..o0..02%0.
(a)
This is a contradiction. q.e.d.

Now we denote by G, the general linear group GL, whose affine ring
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over k is k[ t11,---5 tuny D7'], where D= det(z;;). Then we have XYz(f:S,-,,m,j)
for X=(&;) and Y=(z;;) in G,. If we put s;=t,,— 0y for i, j=1, 2,..., n, where
0:;=0 for i=rj and 0;;=1, we see that {s;1,---s..} is a regular system of param-
eters of the local ring O, ¢, of G, at the point E=(0y;). Let {I, ., |a;;=>0}
be the canonical basis of £(G,) with respect to {si1,---, s.»}. In particular we
denote dy I} the elementl, .,  such that a;;=p” and a;,=0 for (&, I)>=(i, ;)
and call it a distinguished element of height r. Then we have

Lemma 11, Let {s11,---, Suny and {1, .4, 12;;2>0} be as above. Then we
have

1) I(irj)(sil,run):(5117?+61i)6jm6rm
and (ii) 1,4, (s5,)=01f I, 4, 1s not a distinguished element.

Proor. Let X and Y be two independent generic points of G, over £ and
put S,‘j(X):fij and S,‘j( Y)Z')?,'j for i, ]:1, 2,-'-, n. Since we have

s (X Y)+05 =2 Gin(X)+0:) G (Y +04),

it is easily see that
Sij(XY)pu - Sij(X)pu = hgl(f‘?z + 51‘};)77%-

From this equality, we see that (i) and (ii) in our lemma are given from the
definition of {1, ., } (cf. §4 in [8]). q.e.d.

Now let M,(k) be the ring of all the square matrices of degree n with ele-
ments in the field . Then we define a mapping o, of 9(G,) to M,(k) by 0,(D)=
(D.(st7)) for D in $(G,), where D, is the local component of D at e defined in
§3of [8]. If D=} au,.a,,1a,.a,,, We see that o,(D)=(a}) by the defini-
tion of the canonica{f)basis . a,, |aij=>0} of O(G,), where ) is the element
Qa,,.a,,, for each (i, j) and r, such that a;;=p” and a,=x0 for (h, 1), j).
Now we show the following

Prorosition 5. The notation being as above, o, 1s a k-algebra homomor-
phism of (G,) to M,(k) for any non-negative integer r.

Proor. It is clear that o, is a k-linear mapping, and hence it is sufficient
to show that

pr(Ia“...annIb“...b,m) :pr(la“...a,m) pr(Ibu...b,m)-

If one of I, ., and I, ;,, is not a distinguished element of height r, we see
by Lemma 11

pr(Iau,..a"nIbu...b"") :pr(Ia“...aM) pr(Ibu...b,m):O-
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Thus we may assume that I, . =17 and I, ., =1y, LetE;=(s,)be
the square matrix of degree n such that ¢;=1 and ¢,,=0 for (1, #)=~(, j). By

Lemma 11, we have

I‘“I(”( Iﬁ’}((sf; ‘I‘O\u)@m#)
r (*)
:6'”#60'(5{;' + 0%,
and hence 19 15(s2) =0 if jacl.
This means that

0,17 17,)=0= 0,(1‘”)5»(1‘” for j=¢1,
since o,(I{7?)=E; and o,(I{)=E;;. If j =1, we have
0-(I7} 13) = Eim=E;;Ej = 0,(177}) )0,(1),

since (I¢}19).(s2.)=0,0,, by the epuality (x). This completes the the
proof. q.e.d.

Let V be a vector space of dimension n over %k and GLy the group of
linear automorphisms of 7 which has a structure of a group variety defined
over k. Precisely if {v,, ., v,} is a basis of 7 over k£, GLy may be identified
with the general linear group G, naturally such that an element / in GLy
corresponds to (4;;), where [(v;)= Z Ai0;.

=1

Now let G be a group Varlety over k and assume that there exists a ra-
tional representation ¢ of G to GLy defined over k. Then we show that 7 has
a structure of $(G)-module determined depending on ¢. In fact let ¢, be the
tangential mapping of $(G) to H(GLy)=H(®,) induced by ¢ and p, the &-
algebra homomorphism of £(G,) to M,(k) defined in the above. Moreover we
consider any element A=(a;;) of M,(k) as a linear endomorphism of ¥ such

that A(v;)= Z a;v; for each i=1,2,..., n. Then if we denote by D(v) the

element po(¢*(D)) (v) of V for D in @(G) and v in 7, we see by Proposition 4
that

(aD+a'D)(v)=aD(v)+a'D'(v)
(DD’) (v)=D(D'(v))
D(av+a'v)=aD(v)+a'D(v")
1(v)=v

for D and D’ in §(G), v and v’ in V, and «w and «’ in k. It is easy to see that
this structure is determined independently of the choice of the basis
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{v1,---, vy} of ¥V over k.

A vector subspace W of V is called a G-submodule of 7, if ¢(g) W is equal
to W for any element g of G. Then a rational representation ¢’ of G to GLw
is obtained naturally from ¢. Similarly W is called a ©(G)-submobule if D(#")
is contained in W for any element D of 9(G). If g, is the Lie algebra of G
consising of left invaiant derivations of G, we can also give the definition of
go-submodules of 7, and it is known, in characteristic 0, that W is a G-
submodule of 7 if and only if it is a go-submodule of ¥V (cf.e. g., Proposition
3.31in[37]). The following theorem is a modification of this fact in a positive
characteristic p.

THEOREM 4. Let V be a finite dimensional vector space over k, and let ¢
be a rational representation of a group variety G to GLy. Then a subspace W
of V is a G-submodule of V if and only if it is a D(G)-submodule of V.

Proor. Let H be the group subvariety of GLy which consists of the
elements x of GLy such that x/ is contained in W. Then we show that
0o(D(H)) is the set of the elements 4 in M,(k) such that AW W. For let
{v1,---, v,} be a basis of V such that {v,,..., v,} is that of W, and we identify
GLy with G, using this basis as seen in the above. Then H is the subgroup

of G, consisting of the elements <§ g) of G,, where 4 and C are square matri-

ces of degreer and n—r respectively and {s;;|i>r+1or j<r} is a regular
system of parameters of the local ring 0, y, where s;; is the image of s;; under
the canonical mapping of 0, ¢ to O, . Therefore if we denote by {1, 4,.|ai
>0 and a,;=0if 1<<h<rand r+1<I<n} the canonical basis of O(H) with
respect to {s;;}, we see jy(I; ., )=1I,, a,,, Where j, is the tangential map-
ping of O(H) to H(GLy) induced by the canonical injection j of H into GLy.
Then by the definition of p, we see easily po(O(H))={4 € M, (k)| AW CW}.
First we assume that W is a G-submodule. Then ¢(G) is contained in H
and hence ¢.(9(G)) is contained in D(H). Since o (D(H))W is equal to W,
this means that W is a $(G)-submodule of 7 by the definition of the opera-
tion of the operation of ©(G) on V. Conversely assume that W is a 9(G)-
submodule of V. If G, is the image ¢(G) of G, G, is a group subvariety of
GLy and ¢, maps O(G) onto 9(G;). This means that W is also a ©(G,)-sub-
module of 7. On the other hand W is a G-submodule of ¥ if and only if it
is a G;-submodule of 7. Therefore we may assume that G is a group sub-
variety of GLy and that ¢ is the canonical injection. Let D:(Z)}aau___aml

be an element in (G) and let (7, j) be such a pair that 1<{:i<rand r+1<j
<n. Since p(H(G)) is contained in p(H(H)) by assumption, we see that
Qayya,,=01if a;=1and an=0 for (h, 1)=c(i, j). It is clear that the prime
ideal of O, ¢, corresponding to H is generated by the subset {s;;|0<l:i<r,
r+1<j<n} of the regular system {s;|1<{i, j<n} of parameters, and there-
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fore H contains G by Corollary of Proposition 4. This means that W is a G-
submodule of 7. qg.e.d.

CoroLLARY. Let G, V and ¢ be as above. Then V is a completely reducible
G-module if and only if it is a completely reducible H(G)-module.

§5 Formal groups and algebraic Hopf algebras

Let G be a group variety defined over k. If we identify the Hopf algebra
9(G) of G with the set of continuous k-linear homomorphisms of 0, ¢ to %, the
Hopf algebra (H) of a group subvariety H of G may be identified with the
Hopf subalgebra of ©(G) which consists of the elements D in $(G) such that
D annihilates the prime ideal of O, ¢ corresponding to H. Therefore the set
of group subvarieties of G defined over % corresponds injectively to a subset
of Hopf subalgebras of ©(G) by Proposition 4. Now we understand by an
algebraic Hopf subalgebra of ©(G) a Hopf subalgebra corresponding to a
group subvariety of G in this way. The aim of this section is to give a con-
dition for a Hopf subalgebra of $(G) to be algebraic.

For this purpose we give some results on Hopf algebras attached to for-
mal groups which are already known (cf. §1 and §10 in [27], and [1]). Here
we understand by a formal group over a field k a noetherian complete local
ring R with maximal ideal m satisfying the following conditions:

(i) R contains k£ and R/m is canonically isomorphic to £.

(ii) There exists a continuous %-algebra homomorphism 4 of R with the

m-adic topology to the complete tensor product RE,R such that
(AR idr)d=(idrR4)4.

(iii) If e is the canonical homomorphism of R to k=R/m, (¢RQidr)4 and
(idg&Re)4 are the natural isomorphism of R to AQR and RKRk
respectively.

(iv) There exists a continuous k-algebra automorphism ¢ of R such that
m(idr&Rc)d=7e and m(cRidr)d=7e, where m is the completion of
the multiplication of R and 7 is the canonical injection of % into R.

Now we denote by H(R) the set of continuous k-linear mappings of R
with the m-adic topology to 4 with the discrete topology. Then the vector
space O(R) over k is a Hopf algebra over k. In fact the coalgeba structure
(4, & of H(R) is naturally defined by the algebra structure (m, 3) of R by
4(D) (xR y)=D(xy) and &(D)=D(y) for D in H(R) and «x, y in R by Proposi-
tion 6.0.2 in [7], if we identify $(R)X,.HD(R) with a subspace of the dual space
of R®K,R. As to the algebra structure of O(R) we define the multiplicaton
m(DRXD)=D-D' by D-D'(x)=(DRXD')(4(x)). It is easy to see that D-D’ is
contained in ©(R) and that this composition satisfies the associative law. More-
over we see that eeD=D-e=D for any D in $(R). If we define % of &k to D(R)
by #(@)=ae, (#, %) is an algebra structure of 9(R). The antibode ¢ of $(R)
is given by é(D)=Dc for any D in $(R). Then it is easy to check that
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(D(R), m, %, 4, &, ¢) is a Hopf algebra over k.

ProrosiTiON. 6. Let R be a formal group over k, and let ; be the subspace
of O(R) consisting of the elements D such that D(m;)=0, where m; is the ideal
of R generated by all the p'-th exponents x*" of x in the mazimal ideal m.
Then 9; is a Hopf subalgebra of ©(R) and m; is the set of all elements x in R
such that D(x)=0 for any D in 9;.

Proor. Let {D;|s € S} be a basis of 9; and let {D;|z € T} be a subset of
O(R) such that the union {D,|se S} U{D;|t € T} is a basis of H(R). Then,
for any element D in ©;, we have

J(D): ZlEsj®Dsj+ thlE;h®D;h,
i= =

where E;, and Ej, are non-zero elements of ©(R). If n >0, there exists an
element x of m; such that D; ()0 and D;,(x)=0 for h=x1. Therefore if y
is an element of R such that E; (y)=20, we have

A(D) (y @»)=E;,(y)D}(x)=0.

But by the definition of 4, we have 4(D)(y®x)=D(yx)=0, since D is in 9.
This is a contradiction. Therefore we see that 4(D)= Z E, @D, Similarly
we see from this that 4(D)= Z a;iyD;,QD, fof a;; in k) Th1s means that 9;

is a subcoalgebra of H(R). On the other hand we see eaaily that 4(m;) is
contained in the ideal of RRQR generated by (m;QR+ RXm;), since 4(m) is
contained in (m&QR+ RRm)RRR. Hence we heve D-D'(y)=(DRD')(4(y))=0
for y in m; and D, D" in ;. This means that O; is subalgebra of D(R). Itis
clear that ¢(9;)=9;. Therefore 9; is a Hopf subalgebra of $(R). Moreover
9; is the dual space of R/m; and hence the last assertion is seen, since R/m;
is of fiinite dimension. q.e.d.

By Proposition 6, R/m; is also a formal group over £ and ©; may be
identified with the Hopf algebra $(R/n1;) of R/m;. Then $(R) is the inductive
limit of ©(R/m;). Now we denote by R; the formal group R/ni; and call it
the formal subgroup of R of exponent ;. In general we call a residue class
ring R/a of R a formal subgroup of R if R/a has a structure (R/a, 4., &4, ca)
of a formal group over k such that (r&n)d=4d.7, e=re, and c.,wx =7mc, Where
7 is the canonical homomorphis of R onto R/a. Then if we define a mapping
7x of O(R/a) to D(R) by 7n«(D)=Dz for D in D(R/a), we can easily see that
7 is a Hopf algebra homomorphism. Moreover we see that 7, is a monomor-
phism and that 7.(9(R/a)) consists of the elements D in $(R) such that D(a)
=0. In the following we identify $(R/a) with 7(D(R/a)). Then we have

TureoreMm 5. Let R be a formal group over k and let © be a Hopf subalgebra,
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of O(R). Then there exists a unique formal subgroup R/az of R such that
H=9(R/ag).

Proor. We denote by ag the set of the elements » in R such that D(x)=0
for any D in H. We shall see that R/ay is a formal subgroup of R. Let 9]
be the intersection of © and ©;, and let a; be the set of elements x in R such
that D(x)=0 for any D in ;. Then 9 is a Hopf subalgebra of 9(R) for any
¢ by Lemma | and proposition 6, and we have 9=\/9;. On the other hand

i=1
R/m; is a Hopf algebra over k and ©;=9(R/m;) is the dual Hopf algebra of
R/m;, since R/m; is a formal group with the discrete topology by Proposition
6. Then we easily see that the annihilator a;/m; of ©; is a Hopf ideal of
R/m; by Proposition 1.4.3. and Proposition 1. 4.6 in [7]. This means that
R/a; is a Hopf algebra over k. Denote by 4; and c; the diagonal and the
antipode of R/a;. Then if 7;; is the natural homomorpism of R/a; to R/q;
for i >, we easily see that (7,;Qw;;)4;=4,7;; and 7;;c;=c;m;;. Now we easily
see that ag is contained in a’=/"\a;, since O contains ; for any i. Conversely
i=1

let x be any element of a’. Then « is contained in a; for any i and hence we

see that D(x)=0 for any element D in ;. Since $= O-ﬁ);, x must be con-
i=1

tained in ag. Therefore ay; is equal to a’=F\a,~. Moreover the family

{a;/ap|i=1, 2,...} is a fundamental basis of neigﬁ)lourhoods of 0 in the m/ag-
adic topology of R=R/as by Theorem 13 of Chap. VIII in [9], since R is a
complete local ring with a descending chain of ideals {a;/ap} such that

Na;/ag=0. Since R/apz=lim R/q;, there exists a unique mapping 4g (resp.
i=1 T
cp) of R/ag to R/ag;,é@R/a@:(li_rg R/a,QR/a; (resp. R/ay) induced by 4;

(resp. ¢;) (i=1.2,...). Then it is easy to see that (R/ag, 45, cp) is a formal
subgroup of R and that  corresponds to R/ay. q.e.d.

Now we consider a group variety G defined over k£ with the local ring
0=0, ¢ at the neutral element e. Then if m is the maxinal ideal of O, it is
well known that the completion R=() of () with respect to the m-adic topology
is a formal group over k£ whose diagonal 4; and the antipode cy is naturally
obtained from the group structure of G. We call this formal group R the
formalization of G. The Hopf algebra $(R) of R is isomorphic to $(G) and
hence we may identify them. If O’ is the local ring 0,.. ¢.c of GxG at the
point e xe, it is the quotient ring (0®,0)s of 0&),0 with respect to the
multiplicatively closed set S which is the complement of the maximal ideal
mRO0+0Rm in 0K;0. The comorphism 4; of k(G) to k(G < G) defined by the
multiplication of Gx G to G induces a homomorphism 4 of Oto0’. Then 4 is
the restriction of the diagonal 4z of R to O by the definition of the formali-
zation R, if we identify O’ with a subring of RQR. Moreover we denote by
¢ the restriction of cx to O.
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Proposition 7. Let G, 0, O’ and R be as above, and let O be a Hopf sub-
algebra of S(R). If a is the set of the elements x of O such that D(x)=0 for
any D in . Then ais an ideal of 0. Moreover if O is the set of the elements
D in S(R) such that D{(a)=0, 4{a) s contained in the ideal of O’ generated by
a0+ 0&a and c(a) is equal to a.

Proor. By Theorem 5 it is clear that a=0Nay is an ideal of 0. More-
over if © is the set of the elements D in ©(R) such that D(a)=0, the closure
“aof ain Risag. In fact if there exists an element « in ag but not in a, x is
not contained in a+m?’ for a sufficiently large s. Then there exists an ele-
ment D in (R) such that D(x)2=0 and D(a+m?’)=0. By assumption D is
contained in ©. But this is a contradiction to the fact that x is in ag.

Now let x be in a. Using the notations of the proof.of Theorem 5, x is
contained in o; for any i. Since R/a; is a Hopf algeba over £k, it is seen that
4g(x) is contained in b;=(a; QR+ R®a,)RIZR. On the other hand the set
of the ideals b;(i=1.2,...) is a fundamental system of neighbourhoods of

as QR+ RRay in the completion 0'=R&R of ', we have
N\(@BR+ RRa)RDR) =a5BR + RS0y

=aR0+0Ra in RXR,

since a is dense in ay as seen in the above. It is clear that 4(x) is in 0.
Therefore 4(x) belongs to (aRQ0+0IR)N0' =(@R0+0Ra))’. This means
that 4(a) is contained in (a®0+0Ra)0’. Similarly 4(a) is contained in
dg(aR)=agz and hence in a=aRN0O=apyN0. q.e.d.

Lemma 12, Let G be a group variety over k and H a closed subset of G
saatisfying the following conditions:
(i) there exists a dense open subset U of H such that U-U 1is contained
wn H.
and (ii) there exists a dense open subset V of H such that V' is contained in
H.
Then H is an algebraic subgroup of G.
The proof is easy and hence we omit it.

CororLrarY. Let G, O and O be as in proposition T and let a be an ideal
of O such that 4(a) C(aQRQR0+0&a)0" and cl(a)Ca. Then if a is equal to its

radical \ a, a is a prime ideal of O corresponding to a group subvariety of G.

Proor. If H is the algebraic subset of G defined by a, any component of
H contains the neutral element e of G. On the other hand if V= Spec(B) is an
affine open set of G containing e, there exists an affine open set U=Spec(A4)
of G containing e such that U-UCV and U 'CV. Then the restriction 45
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(resp. cp) of the diagonal 4 of O to O’ (resp. the antipode c of O to 0) to B is
a homomorphism of B to 4R, A4 (resp. to 4). Now recall that if p and p’ are
two prime ideals of 0, pQO+0Ryp’ is also a prime ideal of 0K,0. On the
other hand we can easily see in a similar way to the proof of Lemma 1 that
(1RO +0RD)N(a: R0+ 0RH) =(a:Naz)YRO +0Xb for any ideals a;, az and b
of 0. Therefore if a is an intersection of prime ideals p; (i=1, 2,---, 5), a&0
+0Qa is the intersection of prime ideals p;QR0+O0Rp;(i, j=1,2,---,5). In
particular we see that (a®R0+0Ra)0'N(OR0) =aR0+0Ra, since S and
p: Q0 +0&p; have the empty intersection for any i, j. By assumption we have

430N B) C(aR0+08a)0'N(AR,4)
=(a®0+0Qa)N (A& 4)
=(@NA)R A+ ARQi(aN A)

and cplanB)CanA. This means that
(HNU) (HNU)CHNVCH and (HNU) *CHNV CH.
Therefore, by Lemma 12, H is an algebraic subgroup of G, since HNU is a
dense open subset of H. Then a must be a prime ideal, because a connected
algebraic group is irreducible. q.e.d.
Now we have the last

THEOREM 6. Let G be a group variety defined over k and 9(G) the Hopf
algebra attached to G. Then a Hopf subalgebra D of $(G) is an algebraic one
1f and only ©f © satisfies the following conditions:

(i) the ideal a of O, ¢ consisting of the elements x such that D(x)=0 for
any D in O is equal to its radical v a,
and (i1) 9 is the set of the elements D in O(G) such that D(a)=0.

Proor. It is sufficient to see the “if” part. We assume that © satisfies
(i) and (ii) in our theorem. Then, by Proposition 7, a satisfies the condition
in Corollary of Lemma 12 and hence, by the collorary, a is a prime ideal

corresponding to a group subvariety H of G, since a=v a. This means that
9 is a Hopf algebra attached to H by the condition (ii). q.e.d.
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