Нікозніма Матн. J. **2** (1972), 221–229

On Width Ideals of a Module

Tadahiko Tsutsui (Received February 26, 1972)

The notion of width of a module was introduced by M.-P. Brameret and some properties of it were shown in the paper [1]. Moreover M. Wichman obtained some results on this subject in the case of modules over a commutative ring in [4]. On the other hand H. Fitting studied the determinantal ideals of a finitely generated module over a commutative ring for the first time in [2] and several authors used this notion for the study of modules. In particular it was shown by T. Matsuoka in [3] that some properties of the torsion submodule of a module have a close connection with Fitting's determinantal ideals.

The aim of this note is to show relations between these two notions. For this purpose we give the notion of weak width of a module over a commutative ring which is more fitting for us than that of width of a module, and elementary properties of it are shown. Next we define the width ideals of a module and show that these ideals are natural modifications of Fitting's determinantal ideals for a not necessarily finitely generated module. Moreover it is shown that the weak width of a module over an integral domain has a close connection with width ideals or Fitting's determinantal ideals of the module. Lastly we shall give a generalization of the results on the torsion submodule of a module in [3].

Throughout this paper all rings will be commutative with unit and all modules will be unitary.

§1. Weak width of a module

Let R be a commutative ring with unit and U the set of regular elements of R^{1} . Let M be an R-module. Then we understand by the weak width W'(R, M) of M over R the smallest integer n such that for any set $\{x_1, \dots, x_{n+1}\}$ of n+1 elements of M, we have a solution $ax_i = \sum_{j \neq i} a_j x_j$ for some i, a in U and a_j in R. In other words W'(R, M) is the width $W(R_U,$ $M_U)$ of M_U over R_U in the sence of [1]. If W'(R, M) = n, there exists a set $\{x_1, \dots, x_n\}$ of n elements of M such that ax_i is not contained in $\sum_{j \neq i} Rx_j$ for any i and any a in U. We call a system with the above property a set of

¹⁾ An element of a ring R is called regular, if it is not a zero-divisor of R. If an ideal of R contains a regular element of R, it is called a regular ideal.

Tadahiko Tsutsui

weak width determiners of M over R. The following proposition is a direct consequence of the definition of weak width and Proposition 1.1 in [4].

PROPOSITION 1.1. Let M be an R-module.

- (1) W'(R, M) = 0 if and only if M is a torison R-module.
- (2) For any submodule N of M, $W'(R, N) \leq W'(R, M)$.
- (3) If N is a homomorphic image of M,

$$W'(R, M) \ge W'(R, N).$$

- (4) Assume that $W'(R, M) = n < \infty$ and let N be a finitely generated submodule of M with a system $\{x_1, \dots, x_l\}$ of generators. Then there exists an element a in U such that a N is contained in a submodule of N generated by at most n elements among the elements x_1, \dots, x_{l-1} and x_l .
- (5) If $W'(R, M) < \infty$, there exists a finite R-submodule N of M such that W'(R, M) = W'(R, N).
- (6) Let N be a submodule of M. If W'(R, M) = m and there exists a regular element a in R such that $aM \in N$, then W'(R, N) = m.

PROPOSITION 1.2. Let M be an R-module and N a submodule of M. If W'(R, N) = n and W'(R, M/N) = l, then $W'(R, M) \le n + l$.

PROOF. Since W'(R, M) (resp. W(R, N) or W'(R, N) is equal to the W'(R, M/N)) (resp. $W(R_U, M_U)$ or $W(R_U, M_U/N_U)$), this follows immediately from proposition 1.2 of [4]. q.e.d.

COROLLARY 1.3. Let M be an R-module and M_t the torsion submodule of M. Then $W(R, M) = W'(R, M/M_t)$.

PROOF. By (3) of proposion 1.1, $W'(R, M/M_t) \leq W'(R, M)$. Conversely, by (1) of proposition 1.1 and proposition 1.2, $W(R, M) \leq W'(R, M_t) + W'(R, M/N_t) = W'(R, M/M_t)$. q.e.d.

LEMMA 1.4. Assume that W'(R, R)=1 and let \mathfrak{a} be an ideal generated by n elements a_1, \dots, a_n of R. If \mathfrak{a} is a regular ideal, one of them is contained in the set U of units of R.

P_{ROOF.} This is easily seen from (4) of proposition 1.1.

LEMMA 1.5. Let M be an R-module of the weak width W'(R, M) = n and $\{x_1, ..., x_n\}$ a set of weak width determiners of M over R. Then the annihilator Ann (x_i) of x_i is zero for any i. Moreover if R is an integral domain, the submodule $\sum_{i=1}^{n} Rx_i$ is a free module with a free basis $\{x_1, ..., x_n\}$.

This is easily seen from the definition of a set of weak width determiners.

222

§2. Width ideals of a module.

Let M be an R-module and S_n the set of the elements a in R such that aM is contained in the submodule $\sum_{i=1}^{n} Rx_i$ of M generated n by elements x_1 , \dots , x_n . Then we denote by $W_n(M)$ the ideal of R generated by S_n for a nonnegative interger n and call it the *n*-th width ideal of M over R. The elements of S_n will be called the generators of $W_n(M)$. From the definition of $W_n(M)$, we see easily the following.

PROPOSITION 2.1. Let M be an R-module.

- $(1) \quad W_n(M) \subset W_{n+1}(M).$
- (2) If N is a submodule of M, $W_n(M) \subset W_n(M/N)$.

Let M be a finite R-module, and denote by $F_n(M)$ the n-th Fitting ideal of M over R^{2} . Now we give some relations between Fitting ideals and width ideals.

PROPOSITION 2.2. Let M be a finite R-module. Then, for any n,

 $F_n(M) \subset W_n(M) \subset \sqrt{F_n(M)}.$

PROOF. If n=0, since $(Ann(M))^s \subseteq F_0(M \subseteq Ann(M))$ for some *m*, the proof is easily seen. Now we assume $n \ge 1$ and let $\{x\} = \{x_1, \dots, x_m\}$ be a system of generators of *M*. Let $A = (a_{ij})(i=1, \dots, m, j=1, \dots, m-n)$ be a matrix such that $A \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = 0$, and let a be the minor det $(a_{ij})(i, j=1, 2, \dots, m, j=1, \dots, m-n)$.

m-n) of A. Then we can easily see that aM is contained in the submodule $N = \sum_{j=m+n-1}^{m} Rx_j$ of M. From this we see that $F_n(M)$ is contained in $W_n(M)$.

Conversely let a be a generator of $W_n(M)$. From the definition there exist *n* elements x_1, \ldots, x_n in *M* such that *aM* is contained in the submodule $\sum_{i=1}^{n} Rx_i$ of *M*. Let $\{y_1, \ldots, y_m, x_1, \ldots, x_n\}$ be a system of generator of *M*. Then we have relations

$$a y_j + \sum_{j=1}^n a_{ij} x_i = 0$$
 (*i*=1, ..., *m*).

Put $A = \begin{pmatrix} a & & & \\ & & & & & \\ &$

²⁾ As to the definition and basic results of Fitting ideals of a module, see the papers [2] and [3].

 $F_n(M)$. This implies $W_n(M) \subset \sqrt{F_n(M)}$

We shall say that an *R*-module *M* is of type (W_n) if the (n-1)-th width ideal $W_{n-1}(M)$ of *M* is zero and the *n*-th width ideal $W_n(M)$ of *M* is regular.

PROPOSITION 2.3. Let M be a finite R-module.

- (1) If M is of type (W_n) , the Mn is of type (F_n) .
- (2) If R is a reduced ring³⁾ and M is of type (F_n) , then M is of type (W_n) .

PROOF. This is a direct consequence of the definitions of types (W_n) and (F_n) and of proposition 2.2. q.e.d.

Next we show that the weak width of a module has a close connection with width ideals of the module and the additivity of the weak widths of modules over an integral domain holds. For this purpose we give the following;

LEMMA 2.4. Assume that the weak width W'(R, R) of R is one, and let M be an R-module of type (W_n) for some $n \ge 1$. Then there exists an element x of M such that M/Rx is of type (W_{n-1}) and that Ann(x)=0.

PROOF. By lemma 1.4, there exists a regular element g in R such that $gM \in \sum_{i=1}^{n} Rx_i$ for some x_1, \dots, x_n in M. Since $W_{n-1}(M)$ is zero, $Ann(x_i)=(0)$ for any $i=1, \dots, n$. Put $M'=M/Rx_i$. Then we can easily show that M' is of type (W_{n-1}) . q.e.d.

Remark. If R is an integral domain, W'(R, R) = 1.

PROPOSITION 2.5. Assume that the weak width W'(R, R) of R is one. If M is an R-module of type (W_n) , then W'(R, M) = n.

PROOF. We show our assertion by an induction on *n*. If n=0, $M=M_i$. Hence we have W'(R, M)=0 by (1) of proposition 1.1. Now we assume that n>0 and M is of type (W_n) . By Lemma 1.4, there exists a regular generator a of $W_n(M)$. Therefore we may assume that aM is contained in the submodule $\sum_{j=1}^{n} Rx_j$ of $M(x_j \in M, j=1, ..., n)$. By lemma 2.4, there exists an element y in M such that M/Ry is of type (W_{n-1}) and Ann(y)=0. From the induction hypothesis, W'(R, M/Ry)=n-1. Since $R \cong Ry$, we have W'(R, Ry)=W'(R, R)=1. By Proposition 1.2, $W'(R, M) \le W'(R, Ry)+W'(R, M/Ry)=n$. Since $W_{n-1}(M)=(0)$, the system $\{x_1, ..., x_n\}$ is a set of weak width determiners of M. Hence we have $W'(R, M) \ge n$ and have W'(R, M)=n.

224

q.e.d.

³⁾ A ring R is called reduced when R has no nilpotent elements except zero.

COROLLARY 2.6. Let R be an integral domain and M an R-module. Then the following conditions are equivalent:

- (1) M is of type (W_n) .
- (2) The weak width W'(R, M) of M is n and aM is contained in a finitely generated submodule of M for an element a in U. Moreover if M is finitely generated, these conditions are equivalent to the following.
 (3) M is of type (F_n).

PROOF. In order to prove the first half, it is sufficient to show that (2) means (1). Since aM is contained in finitely generated submodule of M, there exists an integer s such that $W_s(M)$ is not zero and hence there exists an integer t such that $0 = W_{t-1}(M) \cong W_t(M)$. Since R is an integral domain, $W_t(M)$ must be a regular ideal and hence M is of type (W_t) . By Proposition 2.5, n is equal to t. The latter half is immediately seen from Proposition 2.3. q.e.d.

Example. Let K and L be two fields and R the direct product of K and L. Then we have W'(R, R)=2, but R is of type (W_1) . This means that we cannot exclude the assumption W'(R, R)=1 in Proposition 2.5.

Let *M* be an *R*-module generated by *m* elements x_1, \dots, x_m of *M* and *F* a free *R*-module with a free basis $\{e_1, \dots, e_m\}$. Denoting by ϕ the *R*-homomorphism of *F* onto *M* such that $\phi(e_i) = x_i$ for any *i*, let *N* be the kernel of ϕ .

LEMMA 2.7. Let M, F and N be as above, If R is an integral domain, then M is of type (W_n) if and only if N is of type (W_{m-n}) .

PROOF. We assume that M is of type (W_n) . By (4) of proposition 1.1, there exists a non-zero element a in R such that, $aM \in \sum_{i=1}^{n} Rx_i$ by exchanging the order of x_1, \ldots, x_m if necessary. Since $W_{n-1}(M) = (0)$, the system $\{x_1, \ldots, x_n\}$ is a set of weak width determiners of M. Put $ax_{n+j} = \sum_{i=1}^{n} a_{j\cdot i}x_i$ $(j = 1, \ldots, m-n, a_{ji} \in R)$ and put $\alpha_j = ae_{n+j} - \sum_{i=1}^{n} a_{j,i}e_i$. Then $\alpha_j \in N$ for $j=1, \ldots, m-n$. If $\gamma \in aN$, there exists $\gamma' = \sum_{i=1}^{m} b_i e_i$ in N such that $\gamma = a\gamma'$. Since $\gamma' \in N$, $\sum_{i=1}^{m} b_i x_i = 0$. Then we have the following relation

$$\sum_{i=1}^n (b_i a + \sum_{1 \leq j \leq m-n} b_{n+j} a_{j \cdot i}) x_i = 0.$$

Since $\{x_1, \dots, x_n\}$ is lineary independent over R, $b_i a + \sum_{1 \le j \le m-n} b_{n+j} a_{ji} = 0$ for $i=1, \dots, n$. Thus, $\gamma = a\gamma' = \sum_i (b_i a + \sum_j b_{n+j} a_{ji}) e_i + \sum_j b_{n+j} \alpha_j = \sum_{1 \le j \le m-n} b_{n+j} \alpha_j$. This

Tadahiko Tsutsui

implies $aN \subset \sum_{j} R\alpha_{j}$. Since $\{\alpha_{1}, \dots, \alpha_{m-n}\}$ is linearly independent over R. $N' = \sum_{i} R\alpha_{j}$ is of type (W_{m-n}) . Then N is also of type (W_{m-n}) . q.e.d.

THEOREM 2.8. Let R be an integral domain and let the sequence

 $0 \longrightarrow L \longrightarrow M \xrightarrow{\phi} N \longrightarrow 0$

of R-modules be exact. Then the weak width of M is the sum of those of N and L.

PROOF. Put W'(R, N) = n, W'(R, M) = m and W'(R, L) = l, Let $\{\phi(z_1), \dots, \phi(z_n)\}$ (resp. $\{y_1, \dots, y_m\}$) be a set of weak width determiners of N (resp. M), where z_i is in M. By (5) of proposition 1.1, there exists a finite R-submodule L_0 of L such that $W'(R, L_0) = W'(R, L)$. Put $M_1 = L_0 + R y_1 + \dots + R y_m + R z_1 + \dots + R z_n$, $N_1 = \phi(M_1)$ and $L_1 = L \cap M_1$. Then we have the next exact sequence

$$0 \longrightarrow L_1 \longrightarrow M_1 \stackrel{\phi}{\longrightarrow} N_1 \longrightarrow 0.$$

By Corollary 2.6, M_1 (resp. N_1) is of type (W_m) (resp. of type (W_n)). Since M_1 is a finite *R*-module of type (W_m) , there exists a non-zero element a in *R* such that aM_1 is contained in the submodule $\sum_{j=1}^m Ru_j$ of M_1 generated dy *m* elements u_j in M_1 . As $W_{m-1}(M_1) = (0)$, $\{u_1, \dots, u_m\}$ is a set of weak width determiners. By Lemma 1.5 $M' = \sum_j Ru_j$ is a free module with free basis $\{u_1, \dots, u_m\}$. Now put $N' = \phi(M')$ and $L' = L \cap M'$. Then we have the following exact sequence

$$0 \longrightarrow L' \longrightarrow M' \stackrel{\phi}{\longrightarrow} N' \longrightarrow 0.$$

Since aN_1 (resp. aL_1) is contained in N' (resp. L'), N') (resp. L') is of type (W_n) (resp. of type (W_1)) by (6) of Proposition 1.1 and Corollary 2.6, and hence m = l + n by Lemma 2.7. q.e.d.

COROLLARY 2.9. Let R, M, N and L be the same as in proposition 2.5.

- (1) If M is of type (W_m) , then N is of type (W_n) if and only if L is of type (W_{m-n}) .
- (2) If N (resp. L) is of type (W_n) (resp. (W_1)), then M is of type (W_{n+1}) . This is a direct cousequence of proposition 2.8.

COROLLARY 2.10. Let a sequence

 $0 \longrightarrow M_n \longrightarrow M_{n-1} \longrightarrow \cdots \longrightarrow M_1 \longrightarrow M_0 \longrightarrow 0$

be an exact sequence of R-modules. If M_i is of type (W_{m_i}) , i=0, 1, ..., n, then $\sum_{i=0}^{n} (-1)^i m_i = 0$.

226

§3. Torsion submodules

THEOREM 3.1. Assume that the weak width W'(R, R) of R is one. and let M be an R-module of type (W_1) . Then there exist a regular ideal α of R and an R-homomorphism ϕ on M into α can be defined such that the next sequence

$$0 \longrightarrow M_t \longrightarrow M \xrightarrow{\phi} \mathfrak{a} \longrightarrow 0$$

is exact.

PROOF. By Lemma 1.4, there exists an element a in U such that aM is contained in the submodule Rx_0 of M for some x_0 in M.

Since Ann(M)=0, $Ann(x_0)=0$. Therefore there exists an isomorphism f on Rx_0 onto R such that $f(bx_0)=b$ for any b in R. Now we put $\phi=f\cdot\phi_a$ where ϕ_a is an R-homomorphism on M into Rx such that $\phi_a(y)=ay$ for any y in M. Then ϕ is an R-homomorphism on M into R. Let $\{x_i\}_{i\in I}$ be a system of generators of M and c_i the elements of R such that $ax_i=c_ix_0(i \in I, i_i \in R)$. If we write $x_0=\sum_{i\in I}a_ic_i$, we have $a=\sum_{i\in I}a_ic_i$ since $ax_0=\sum_{i\in I}(a_ic_i)x_0$. On the other hand $\phi(x_i)=a$ and hence $a=\phi(M)$ is a regular ideal of R.

On the other hand, $\phi(x_0) = a$ and hence $a = \phi(M)$ is a regular ideal of R.

Now if x is contained in M_i , there exists a regular element c in R such that cx=0. Since $ax=\phi(x)x_0$, we have $c\phi(x)x_0=cax=0$. This means $c\cdot\phi(x)=0$ and hence $\phi(x)=0$. Therefore x is contained in the kernel of ϕ . Conversely if x is in the kernel of ϕ , $ax=0\cdot x_0=0$. Since a is a regular element, x is in M_i . Therefore M_i is the kernel of ϕ . q.e.d.

PROPOSITION 3.2. Let R be a noetherian ring such that Krull dimension of R is one and that the weak width W'(R, R) is one. If M is an R-module of type (W_1) , then the following conditions are equivalent:

- The module M is the direct sum of its torsion submodule and a free module of rank one (resp. a projective module).
- (2) The module $\operatorname{Hom}_R(M, R)$ is a free module of rank one (resp. a projective module).

This is a direct consequence of prop. 3.1. and prop. 2 and 3 in [3]

Remark If R is an integral domain and M is a finite R-module then Theorem 3 in [3] is obtained from prop. 3.2.

LEMMA 3.3. Let S be a multiplicatively closed subset of R and M a finite R-module. Then the n-th Fitting ideal $F_n(M_S)$ of the R_S -module M_S is $F_n(M)_S$. In particular if M is of type (F_n) , so is M_S .

This is easily seen by a routine calculation and hence we omit the proof.

PROPOSITION 3.4. Let M be a finite R-module. Then the following conditions are equivalent:

Tadahiko Tsutsui

- (a) M is a projective module of rank n.
- (b) M is of type (F_n) and the n-th Fitting ideal $F_n(M)$ of M is the unit ideal.

PROOF. This is easily seen by Lemma 3.3 and Theorem 1 in [3].

PROPOSITION 3.5. Let M be an R-module. If $W_n(M) = R$ and $W_{n-1}(M) =$ (0), then M is a finite projective module of rank n. Moreover if R is a reduced ring and if M is a finite projective module of rank n, then $W_n(M) = R$ and $W_{n-1}(M) = (0)$.

PROOF. Assume that $W_n(M) = R$ and $W_{n-1}(M) = (0)$. Then there exists a set $\{\alpha_1, \dots, \alpha_i\}$ of generators of $W_n(M)$ such that $a_1\alpha_1 + \dots + a_i\alpha_i = 1$ for some a_i in R. Therefore there exist $t \cdot n$ elements $x_j^{(i)}$ in $M(i=1, \dots, t, j=$ $1, 2, \dots, n)$ such that $\alpha_i M \subset \sum_{j=1}^n Rx_j^{(i)}$ and hence we see that $M = \sum_{i=1}^t \sum_{j=1}^n Rx_j^{(i)}$. This means that M is a finite R-module. Then, by Proposition 2.3 and Proposition 3.4, M is a projective module of rank n. The converse is also a direct consequence of Prop. 2.3 and Proposition 3.4. q.e.d.

LEMMA 3.6. Let M be a finite R-module. Then the following conditions are equivalent:

- (1) M is of type (F_n) .
- (2) M/M_t is of type (F_n) .

PROOF. First we note that $F_s(M) \subset F_s(M/M_t)$ and $aF_s(M/M_t) \subset F_s(M)$ for some regular element a in R. In fact if $\{x_{1u}, \dots, x_u\}$ is a system of generators of M, $\{\bar{x}_1, \dots, \bar{x}_u\}$ is that of M/M_t , where \bar{x}_i is the class of x_i modulo M_t . If M is of type (F_n) , $F_{n-1}(M)=0$ and $F_n(M)$ is a regular ideal. Therefore $F_n(M/M)$ is also regular and $aF_{n-1}(M/M_t)=0$ for some regular element a of R from the above assertion. This means $F_{n-1}(M/M_t)=0$ and hence M/M_t is of type (F_n) . For the converse we can give a proof similarly but we omit the detail. q.e.d.

PROPOSITION 3.7. Let M be a finite R-module. Then M is of type (F_n) and $F_n(M/M_t) = R$, if and only if M is a direct sum of the torsion submodule M_t and a finite projective module of rank n.

This is easily seen from Lemma 3.6 and Proposition 3.4.

Remark 1. If R is a reduced ring in Proposition 3.7, we may replace F_n by W_n by Proposition 2.3.

Remark 2. It is well known that if R is a semi-local ring or a principal ideal domain, a projective R-module of rank n is a free module. Therefore we may replace "projective" by "free" in Propositions 3.4 and 3.7.

Example. Let K pe a field and a the ideal of the polynomial ring K[X, Y]

228

of two variables X and Y generated by X^2 and Y^2 . Put R = K[X, Y]/a and let x and y be the classes of X and Y in R respectively. Let F be a free R-module with a free basis $\{e_1, e_2\}$. Then we see that (xy)F is contained in $R(xe_1 + ye_2)$, and hence the first width ideal $W_1(R)$ of R contains a non-zero element xy. This means that R is not of type (W_2) . Therefore the condition that R is reduced is necessary in (2) of Proposition 2.3 and in Proposition 3.5.

References

- [1] Brameret, M.P., Anneaux et modules de larger finie, C.R. Acad. Sci. Paris 258 (1964), 3605-3608.
- [2] Fitting, H., Die Determinanten ideale eines Modules, Jahresbericht d. Deutsheu Math. Ver. 46 (1936), 195-228.
- [3] Matsuoka, T., On the torsion submodule of a module of type (F_1) , J. Sei. Hiroshima Univ. Ser. A-I. **31** (1967), 151-160.
- [4] Wichman, M., The width of a module, Can. J. Math. 22 (1970), 102-115.

Department of Mathematics Faculty of Science Hiroshima University