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The notion of width of a module was introduced by M.-P. Brameret
and some properties of it were shown in the paper [1~]. Moreover M. Wich-
man obtained some results on this subject in the case of modules over a
commutative ring in [4]. On the other hand H. Fitting studied the deter-
minantal ideals of a finitely generated module over a commutative ring for
the first time in Q2] and several authors used this notion for the study of
modules. In particular it was shown by T. Matsuoka in [β~] that some pro-
perties of the torsion submodule of a module have a close connection with
Fitting's determinantal ideals.

The aim of this note is to show relations between these two notions.
For this purpose we give the notion of weak width of a module over a com-
mutative ring which is more fitting for us than that of width of a module,
and elementary properties of it are shown. Next we define the width ideals
of a module and show that these ideals are natural modifications of Fitting's
determinantal ideals for a not necessarily finitely generated module.
Moreover it is shown that the weak width of a module over an integral
domain has a close connection with width ideals or Fitting's determinantal
ideals of the module. Lastly we shall give a generalization of the results on
the torsion submodule of a module in pΓ|.

Throughout this paper all rings will be commutative with unit and all
modules will be unitary.

§ 1. Weak width of a module

Let R be a commutative ring with unit and U the set of regular ele-
ments of i?1}. Let M be an i?-module. Then we understand by the weak
width Wf(R, M) of M over R the smallest integer n such that for any set
{xι, ..., xn+i} of 7i + l elements of M, we have a soluution ax{ = ΣajXj for

some i, a in U and α; in R. In other words W\R, M) is the width W(Ru,
Mu) of Mu over Ru in the sence of [}Γ\. If W(R, M) = n, there exists a set
{xu •••? χn} of n elements of M such that axi is not contained in Σ Rx; for

any ί and any a in U. We call a system with the above property a set of

1) An element of a ring R is called regular, if it is not a zero-divisor of R. If an ideal of R contains

a regular element of R, it is called a regular ideal.
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weak width determiners of M over R. The following proposition is a direct
consequence of the definition of weak width and Proposition 1.1 in [_4Γ\.

PROPOSITION 1.1. Let M be an R-module.
(1) Wr{R, M) = 0 if and only if M is a torison R-module.
(2) For any submodule N of M, W'{R, N) < W'{R, M).
(3) If N is a homomorphic image of M,

W\R,M)>Wr{R,N).

(4) Assume that W(R, M) = n < oo and let N be a finitely generated sub-
module of M with a system {χu .'.., χt} of generators. Then there exists an
element a in U such that a N is contained in a submodule of N generated
by at most n elements among the elements xu ••-, xt_ι and χt.

(5) // W(R9 M)<oo? there exists a finite R-submodule N of M such that
W(R,M)=W'(R,N).

(6) Let N be a submodule of M. If W(R9 M) = m and there exists a regular
element a in R such that aMQN^ then W\R, N) = m.

PROPOSITION 1.2. Let M be an R-module and N a submodvle of M. If
W\R, N) = n and W'{R, M/N) = l, then W'{R, M)<n + l.

PROOF. Since W\R, M) (resp. W(R, N) or W'(R, N) is equal to the
W\R, M/N)) (resp. W(Rn, MΌ) or WίRu, MO/Nu)\ this follows immediately
from proposition 1.2 of Q4]. q.e.d.

COROLLARY 1.3. Let M be an R-module and Mt the torsion submodule of
M. Then W(R, M)= W'(R, M/Mt).

PROOF. By (3) of proposion 1.1, W\R, M/Mt)<Wf(R, M.). Conversely,
by (1) of proposition 1.1 and proposition 1.2, W(R, M)<W'(R, Mt)+Wf{R,
M/Nt)= W(R, M/Mt). q.e.d.

LEMMA 1.4. Assume that W'{R, R) = l and let a be an ideal generated by
n elements αi, ••.-,«» of R. If a is a regular ideal, one of them is contained
in the set U of units of R.

PROOF. This is easily seen from (4) of proposition 1.1.

LEMMA 1.5. Let M be an R-module of the weak width W'{R, M) — n and
{%u •? χn} & set of weak width determiners of M over R. Then the annihi-
lator Ann (#, ) of Xi is zero for any ί. Moreover if R is an integral domain,

n

the submodule ΣRxi is a free module with a free basis {xu ••-, xn}.
i = l

This is easily seen from the definition of a set of weak width deter-
miners.
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§ 2. Width ideals of a module.

Let M be an /ϋ-module and Sn the set of the elements a in R such that
n

aM is contained in the submodule ΣRxi of M generated n by elements xu
ί = l

..., xn. Then we denote by W»(M) the ideal of R generated by Sn for a non-
negative interger n and call it the n-th width ideal of M over R. The
elements of Sn will be called the generators of Wn(M). From the definition
of Wn(M), we see easily the following.

PROPOSITION 2.1. Let M be an R-module.
(l)
(2) If N is a submodule of M, Wn{M) C Wn{M/N).

Let M b e a finite i?-module? and denote by Fn(M) the n-th Fitting ideal
of M over R2\ Now we give some relations between Fitting ideals and
width ideals.

PROPOSITION 2.2. Let M be a finite R-module. Then, for any n,

PROOF. If ra = 0, since (Ann(M))s^F0(M <^Ann{M) for some m, the
proof is easily seen. Now we assume n~^>l and let {χ} = {χu ..., χm} be a
system of generators of M. Let A = (a,ij)(i = l, ••-, m, / = 1, •• ,/n—τι) be a
matrix such that 4̂ /Λ^Λ =0, and let a be the minor det (αί7)(i,y = l, 2, ...,

m — n) of 4̂. Then we can easily see that αM is contained in the submodule
m

N= Σ RXJ of M. From this we see that Fn(M) is contained in W»(M).
j=m+n-l

Conversely let a be a generator of Wn(M). From the definition there
exist n elements xu ••-, xn in M such that aM is contained in the submodule

n

ΣRxi of M. Let {yi,
i = l

Then we have relations

., ym xu •••, xn} be a system of generator of M.

Put A =

a

0 0

. Since A annihilates {x}, αw is a generator of

2) As to the definition and basic results of Fitting ideals of a module, see the papers [2] and [3].
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Fn(M). This implies Wn(M)C<JFn(M) q.e.d.

We shall say that an R-module M is of type (Wn) if the (n — l)-th width
ideal Wn-\(M) of M is zero and the 71-th width ideal Wn{M) of M is regular.

PROPOSITION 2.3. Let M be a finite R-module.

(1) // M is of type (Wn)9 the Mn is of type (Fn).
(2) If R is a reduced ring3) and M is of type (Fn), then M is of type (Wn).

PROOF. This is a direct consequence of the definitions of types (Wn)
and (Fn) and of proposition 2.2. q.e.d.

Next we show that the weak width of a module has a close connection
with width ideals of the module and the additivity of the weak widths of
modules over an integral domain holds. For this purpose we give the follow-
ing;

LEMMA 2.4. Assume that the weak width Wr{R, R) of R is one, and let M
be an R-module of type (Wn) for some rc>l. Then there exists an element x
of M such that M/Rx is of type (Wn-i) and that Ann(x) = 0.

PROOF. By lemma 1.4, there exists a regular element g in R such that
n

gMC TiRxi for some xu • ••, xn in M. Since Wn-ι(M) is zero, Ann(xi) = (O)
ί = l

for any ί = l, •••, n. Put M/ = M/Rxi. Then we can easily show that M is
of type(RVi). q.e.d.

Remark. If R is an integral domain, W'{R, R) = l.

PROPOSITION 2.5. Assume that the weak width W\R, R) of R is one. If
M is an R-module of type (Wn), then W'{R, M) — n.

PROOF. We show our assertion by an induction on n. If n = 0, M=
Mt. Hence we have W\R, M) = 0 by (1) of proposition 1.1. Now we as-
sume that n>0 and M is of type (Wn). By Lemma 1.4, there exists a
regular generator a of Wn(M). Therefore we may assume that aM is con-

n

tained in the submodule ΣRXJ of M(xj e M, y = l, •••,71). By lemma 2.4,

there exists an element y in M such that M/Rγ is of type (Wn-ι) and
Ann(y) = 0. From the induction hypothesis, W\R, M/Ry) = n — 1. Since
R^Rγ, we have W'(R, Ry)=W(R, R) = l. By Proposition 1.2, W'(R,
M)<LW(R9 Rγ)+W/(R,M/Rγ) = n. Since ΪΓlf_i(M) = (0), the system {xu

. . , xn} is a set of weak width determiners of M. Hence we have W(R, M)
;>π, and have W\R, M) = n. q.e.d.

3) A ring R is called reduced when R has no nίlpotent elements except zero.
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COROLLARY 2.6. Let R be an integral domain and M an R-module. Then
the following conditions are equivalent:

(1) Mis of type (Wn).
(2) The weak width W'(R, M) of M is n and aM is contained in a

finitely generated submodule of M for an element a in U. Moreover if
M is finitely generated, these conditions are equivalent to the following.

(3) M is of type (Fn).

PROOF. In order to prove the first half, it is sufficient to show that (2)
means (1). Since aM is contained in finitely generated submodule of M,
there exists an integer s such that WS{M) is not zero and hence there exists
an integer t such that 0= Wt-\(M) ξi Wt(M). Since R is an integral domain,
Wt(M) must be a regular ideal and hence M is of type (Wt). By Proposition
2.5, n is equal to t. The latter half is immediately seen from Proposition 2.3.

q.e.d.

Example. Let K and L be two fields and R the direct product of K and L.
Then we have W'{R, R) = 2, but R is of type (W{). This means that we
cannot exclude the assumption W(R, i?) = l in Proposition 2.5.

Let M be an i?-module generated by m elements xu • ••, xm of M and F a
free i?-module with a free basis {eu •• , em}. Denoting by φ the R-
homomorphism of F onto M such that φ(ei) = Xi for any ΐ, let TV be the kernel
of φ.

LEMMA 2.7. Let M, F and N be as above, If R is an integral domain,
then M is of type (Wn) if and only if N is of type ( Ψm-n)

PROOF. We assume that M is of type (Wn). By (4) of proposition 1.1,
n

there exists a non-zero element a in R such that, aMC ΣRxi by exchanging
i = l

the order of xu ••-, xm if necessary. Since JF»_i(M) = (0), the system {xu
n

..-, xn} is a set of weak width determiners of M. Put axn+j= Σaj.iXi (/' =
i = l

n

1, ..., m—n,aji€R) a n d p u t α ; = α e n + J — Σ α y , ^ 2 . T h e n aj € N fo r y = l , •••,
ί = l

772— 7i. If γ e aN, there exists r / = =Σ^/^/ i n -W such that γ=af. Since
i = l

r' e N, Σ 6/#i = 0. Then we have the following relation

Σ(
ί = l

Since {#i, • ,Λ;W} is lineary independent over R, b{a+ Σ bn+jaji = 0 for
i<y<

/ = 1, ..., 7i. Ύhus,r = af=Σ(bia+Σbn+jaji)ei+Σbn+jaj= Σ bn+j<Xj. This
ί J y
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implies αiVCΣ^tay Since {α i5 ,α w _ w } is linearly independent over R.
j

N'^ΣRaj is of type (Wm-n). Then Nis also of type (ίFm_n). q.e.d.

THEOREM 2.8. Let R be an integral domain and let the sequence

0 >L >M^->N >0

of R-modules be exact. Then the weak width of M is the sum of those of N
and L.

PROOF. Put Wf(R,N) = n, W'(R, M) = m and W(R, L) = l9 Let {φ(zλ\
..., φ(zn)\ (resp. {ji, • •-, ym}) be a set of weak width determiners of TV (resp.
M), where z{ is in M. By (5) of proposition 1.1, there exists a finite R-
submodule Lo of L such that W'(R, Lo)= W'(R, L). Put M1 = L0 + Ry1 + - +
Rym + Rzι-\ \-Rzn, Nι = φ(Mι) and L1 = Lr\Mi. Then we have the next
exact sequence

0 >Lλ >M1-±-*N1 >0.

By Corollary 2.6, Mλ (resp. ΛΓi) is of type (Wm) (resp. of type (JFW)) Since
Mi is a finite R-module of type (Wm)9 there exists a non-zero element a in R

m

such that aMi is contained in the submodule Σ ΛM ; of Mi generated dy m
y=i

elements w; in Mi. As F"w_i(Mi) = (0), {^i, ..., um} is a set of weak width
determiners. By Lemma 1.5 M/=ΣιRuJ is a free module with free basis

y

•Ui, •••, MW}. Now put N' = φ(M') and Lf = Lr\M. Then we have the follow-
ing exact sequence

0 >V >M-^Nr >0.

Since aNλ (resp. aLi) is contained in Nr (resp. Lf), Nf) (resp. V) is of type
(Wn) (resp. of type (Wι)) by (6) of Proposition 1.1 and Corollary 2.6, and
hence m = I + n by Lemma 2.7. q. e. d.

COROLLARY 2.9. Lei i?, M, JV* and L be the same as in proposition 2.5.
(1) / / M is of type (Wm), then N is of type (Wn) if and only if L is of type

(2) If N (resp. L) is of type (Wn) (resp. (JFi)), then M is of type (ΪFn+1).
This is a direct cousequence of proposition 2.8.

COROLLARY 2.10. Let a sequence

0 >Mn >Mn^ > >M1 >M0 >0

be an exact sequence of R-modules. If Mi is of type (JFWi), i = 0, 1, ..-, n,

then Σ(-iy7n, = 0.
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§ 3. Torsion submodules

THEOREM 3.1. Assume that the weak width W(R, R) of R is one. and let
M be an R-module of type (Wι). Then there exist a regular ideal a of R and
an R-homomorphism φ on M into a can be defined such that the next sequence

0 >Mt >M-±-*a >0

is exact.

PROOF. By Lemma 1.4, there exists an element a in U such that aM is
contained in the submodule Rχ0 of M for some x0 in M.

Since Ann(M) = 0, Ann(xo) = O. Therefore there exists an isomorphism
/ on Rx0 onto R such that f(bxQ) = b for any b in R. Now we put φ=f-φa

where φa is an i?-homomorphism on M into Rx such that φa(y) — ay for any
y in M. Then φ is an i?-homomorphism on M into R. Let {xi}ui be a sys-
tem of generators of M and c{ the elements of R such that axi = CiX0(ί e /,
ίj£R). If we write χo= Σ<*>iCh w e have α = Σ α z cz since axo= Σ(βtcdχo

iei i€l iel

On the other hand, φ(xo) = a and hence a=φ(M) is a regular ideal of R.
Now if x is contained in Mh there exists a regular element c in R such

that CΛ ^ O . Since ax = φ(x)x0, we have c0(x)^o = cax = O. This means
c φ(x) = 0 and hence φ(x) = 0. Therefore x is contained in the kernel of φ.
Conversely if x is in the kernel of φ, ax = O xo = O. Since a is a regular
element, x is in Mt. Therefore Mt is the kernel of φ. q.e.d.

PROPOSITION 3.2. Let R be a noetherian ring such that Krull dimension
of R is one and that the weak width Wf(R, R) is one. If M is an R-module
of type (JFi), then the following conditions are equivalent:
(1) The module M is the direct sum of its torsion submodule and a free

module of rank one (resp. a protective module).
(2) The module Hom#(M, R) is a free module of rank one (resp. a proiective

module).
This is a direct consequence of prop. 3.1. and prop. 2 and 3 in [β~]

Remark If R is an integral domain and M is a finite i?-module then
Theorem 3 in |ΊΓ| is obtained from prop. 3.2.

LEMMA 3.3. Let S be a multiplicatively closed subset of R and M a finite
R-module. Then the n-th Fitting ideal Fn(Ms) of the Rs-module Ms is
Fn(M)s. In particular if M is of type (Fn), so is Ms.

This is easily seen by a routine calculation and hence we omit the proof.

PROPOSITION 3.4. Let M be a finite R-module. Then the following con-
ditions are equivalent:
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(a) M is a projectίve module of rank n.
(b) M is of type (Fn) and the n-th Fitting ideal Fn(M) of M is the unit ideal.

PROOF. This is easily seen by Lemma 3.3 and Theorem 1 in [3].

PROPOSITION 3.5. Let M be an R-module. If Wn(M) = R and Wn-ι(M) =
(0), then M is a finite protective module of rank n. Moreover if R is a
reduced ring and if M is a finite protective modvle of rank n, then Wn(M) = R
and r »

PROOF. Assume that Wn(M) = R and ϊΓΛ_i(M) = (0). Then there exists
a set {au • ••,«,} of generators of Wn(M) such that aλaλΛ Yatat = l for
s o m e α f i n R. T h e r e f o r e t h e r e e x i s t t n e l e m e n t s x(/] in Λf(/ = 1, • •-, t9j =

1, 2, ..., n) s u c h t h a t a{MC ΣRχ(jn a n d h e n c e w e see t h a t M= Σ ΣRx^.
j=l ί = l j=l

This means that M i s a finite R -module. Then, by Proposition 2.3 and Pro-
position 3.4, M is a protective module of rank n. The converse is also a
direct consequence of Prop. 2.3 and Proposition 3.4. q.e.d.

LEMMA 3.6. Let M be a finite R-module. Then the following conditions
are equivalent:
(1) M is of type (Fn).
(2) M/Mt is of type (Fn).

PROOF. First we note that FS(M) C FS(M/Mt) and aFs(M/Mt) C FS(M) for
some regular element a in R. In fact if {xlu, •• , χu} is a system of gen-
erators of M, {χu •••, Xu) is that of M/Mu where %ι is the class of x{ modulo
Mt. If M is of type (Fn\ Fn_1(M) = 0 and Fn(M) is a regular ideal. Therefore
Fn(M/M) is also regular and aFn^ι(M/Mt) = 0 for some regular element a of
R from the above assertion. This means Fn_1(M/Mt) = 0 and hence M/Mt is
of type (Fn). For the converse we can give a proof similarly but we omit
the detail. q.e.d.

PROPOSITION 3.7. Let M be a finite R-module. Then M is of type (Fn)
and Fn(M/Mt) = R, if and only if M is a direct sum of the torsion submodule
Mt and a finite protective module of rank n.

This is easily seen from Lemma 3.6 and Proposition 3.4.

Remark 1. If R is a reduced ring in Proposition 3.7, we may replace Fn

by Wn by Proposition 2.3.

Remark 2. It is well known that if R is a semi-local ring or a principal
ideal domain, a protective i?-module of rank n is a free module. Therefore
we may replace "projective" by "free" in Propositions 3.4 and 3.7.

Example. Let K pe a field and α the ideal of the polynomial ring K[X9 YJ
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of two variables Zand Y generated by X2 and Γ2. Put R = K[X, F]/α and
let x and y be the classes of X and Y in R respectively. Let F be a free
i?-module with a free basis {βi, e2}. Then we see that (χy)F is contained in
R(xeλ + ye2), and hence the first width ideal WΊ(R) of R contains a non-zero
element xy. This means that i? is not of type (JF2). Therefore the condi-
tion that R is reduced is necessary in (2) of Proposition 2.3 and in Proposi-
tion 3.5.
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