Нігозніма Матн. J. 2 (1972), 163–177

Accretive Mappings in Banach Spaces

Nobuyuki Kenmochi

(Received February 25, 1972)

Introduction

In the theory of semigroups of nonlinear contraction mappings, the notion of accretive mappings has appeared to be very practical (see [3], [6], [8]). In this paper, we study a multivalued accretive mapping A of a real Banach space X into itself. A is called *m*-accretive if the range of I + A is the whole of X; thus it is useful in perturbation problems to know whether the given mapping is *m*-accretive.

It is known that if X is a Hilbert space, then an accretive mapping of X into itself is locally bounded at every point of the interior of its domain (see [10], [11]). We shall show that this is also true in case X is a reflexive Banach space provided that the duality mapping of X is bicontinuous (Theo-REM 1), and use this fact to show that, under certain conditions, an accretive mapping is *m*-accretive if and only if it is maximal accretive (COROLLARY 1 of THEOREM 5).

In order to obtain the latter result, we consider the initial value problem of the evolution equation

(E)
$$u'(t) + Au(t) \ni 0, u(0) = a.$$

This problem has a solution (in a certain sense) if A is *m*-accretive. However, it seems difficult to solve (E) without the *m*-accretiveness of A. It was shown in [7] that if X^* is uniformly convex and A is everywhere defined, singlevalued and hemicontinuous, then (E) has a global solution for any given $a \in X$ and A is *m*-accretive. We shall extend this result of the case where Ais multivalued, locally bounded, demiclosed and accretive (THEOREMS 4 and 5). As an application, we shall show that such a mapping A generates a nonlinear contraction semigroup on X (THEOREM 6).

§0. Definitions and notation

Throughout this paper let X be a real reflexive Banach space and X^* be the dual space. The natural pairing between $x \in X$ and $x^* \in X^*$ is denoted by $\langle x, x^* \rangle$. The norms in X and X^* are denoted by $|| \cdot ||$. We denote by I the identity mapping of X onto X.

For a subset S of X, we denote by \overline{S} , $\overset{\circ}{S}$ and co(S) the closure, the interior

and the convex hull of S respectively. For S, $S' \subset X$ and a real λ , we denote by S+S' the set $\{x+y; x \in S, y \in S'\}$ if $S \neq \emptyset$ and $S' \neq \emptyset$, and by λS the set $\{\lambda x; x \in S\}$. When S' consists of a single point y, we write S+y for S+S'.

Let A be a multivalued mapping of X into X, that is, to each $x \in X$ a subset Ax of X be assigned. The sets $D(A) = \{x \in X; Ax \neq \emptyset\}, R(A) = \bigcup_{x \in X} Ax$ and $G(A) = \{(x, x') \in X \times X; x' \in Ax\}$ are called the domain, the range and the graph of A respectively. For a subset S of X, we denote by A(S) the set $\bigcup_{x \in S} Ax$.

Let A and A' be two multivalued mappings of X into X and λ be a real. The mappings A+A', AA' and λA are defined by (A+A')x = Ax + A'x, (AA')x = A(A'x) and $(\lambda A)x = \lambda(Ax)$ respectively.

In what follows a mapping means a multivalued mapping unless otherwise stated.

The duality mapping F of X into X^* is defined by

$$Fx = \{x^* \in X^*; < x, x^* > = ||x||^2 = ||x^*||^2\}.$$

The domain of F is all of X, the range of F is all of X^* and, in general, F is multivalued. The inverse F^{-1} is the duality mapping of X^* into X. We know that if X^* is strictly convex, then F is singlevalued and that if X^* is uniformly convex, then F is uniformly continuous on bounded subsets of X (see [6]).

A mapping A of X into X is called *accretive* if for any (x, x') and (y, y')in G(A) there exists an element $f \in F(x-y)$ such that $\langle x'-y', f \rangle \ge 0$. An accretive mapping A of X into X is called *maximal accretive* if there is no proper accretive extention of A, and called *m-accretive* if R(I+A)=X.

A mapping A of X into X is called *locally bounded* at $x \in X$ if there is a neighborhood U of x such that A(U) is bounded in X.

We denote by B(x, r)(resp. $B^*(x^*, r)$) the closed ball in X (resp. X^*) with center $x \in X$ (resp. $x^* \in X^*$) and radius r. We use the symbols " \Rightarrow " (or "*s*-lim") and " \xrightarrow{w} " (or "*w*-lim") to denote the convergence in the strong and the weak topology respectively.

§1. Local boundedness

In this section we shall prove the following theorem.

THEOREM 1. Let X and X^* be strictly convex and let A be an accretive mapping of X into X. Assume that the duality mapping F is bicontinuous.

Then A is locally bounded at every point of D(A).

The method of proof is based on that in [11]. To prove Theorem 1 we prepare three lemmas.

LEMMA 1. Let X, X* and F be as in THEOREM 1. Let S be a subset of X such that $(-S) \cap \mathring{S} \neq \emptyset$. Then there are positive numbers ε and δ such that

(1.1)
$$B^*(0, \varepsilon) \subset \bigcap_{x \in B(0, \delta)} co(F(S-x)).$$

PROOF. Let $x_0 \in (-S) \cap \mathring{S}$. First we shall show that for suitable numbers r and r' (1.2) $B^*(Fx_0, r') \subset \bigwedge_{x \in B(0,r)} F(S-x).$

Indeed, since $x_0 \in \mathring{S}$, we have for some r > 0

$$x_0+2B(0,r)\subset \mathring{S}.$$

Hence, $F(x_0 + B(0, r)) \subset F(S - x)$ for any $x \in B(0, r)$. By the bicontinuity of F, we have for some r' > 0

$$B^*(Fx_0, r') \subset F(x_0 + B(0, r))$$

Hence (1. 2) holds.

By the continuity of F at $-x_0$, for a number ε satisfying $\frac{r'}{4} > \varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that

(1.3)
$$||F(-x_0-x)-F(-x_0)|| \leq \varepsilon \quad \text{for all } x \in B(0, \delta(\varepsilon)).$$

Set $\delta = \min(r, \delta(\varepsilon))$. Then we have (1.1). In fact, let γ^* be any point of $B^*(0, \varepsilon)$ and x any point of $B(0, \delta)$. From (1.3) it follows that

(1.4)
$$F(-x_0-x)=F(-x_0)+x^* \quad \text{for some } x^* \in B^*(0, \varepsilon).$$

We write

$$y^* = \frac{1}{2}(-F(-x_0) + 2y^* - x^*) + \frac{1}{2}(F(-x_0) + x^*).$$

Since $F(-x_0) = -Fx_0$, $-F(-x_0) + 2y^* - x^* \in B^*(Fx_0, r')$. From (1.2) and (1.4) it follows that $y^* \in co(F(S-x))$. q.e.d.

LEMMA 2. Let A be a mapping of X into X, and assume that $0 \in D(A)$. Then there exist bounded subsets S, S' and Q such that

$$(1.5) \qquad (-S) \cap \mathring{S} \neq \emptyset,$$

$$(1.6) \overline{S'} = S,$$

(1.7)
$$Ax \cap Q \neq \emptyset$$
 for all $x \in S'$.

PROOF. We choose a positive number R such that $B(0, R) \subset D(A)$, and set

for each positive integer n

 $S_n = \{x \in X; x \in B(0, n), Ax \cap B(0, n) \neq \emptyset\}.$

Clearly, $D(A) = \bigvee_{n=1}^{\infty} S_n \subset \bigvee_{n=1}^{\infty} \bar{S}_n$. Therefore we have

$$B(0, R) = \bigcup_{n=1}^{\infty} (\bar{S}_n \cap B(0, R)).$$

From Baire's second category theorem it follows that there exists a positive integer n_0 such that the interior of $(\bar{S}_{n_0} \cap B(0, R))$ is non-empty. Let x_0 be a point in the interior of this set and y_0 be a point of $A(-x_0)$. We set $S' = (S_{n_0} \cap B(0, R)) \cup \{-x_0\}, S = \bar{S}'$ and $Q = B(0, ||y_0|| + n_0)$. Such S, S' and Q satisfy (1.5), (1.6) and (1.7).

A mapping is called demiclosed if the following condition is satisfied: if $x_n \in D(A)$ for $n=1, 2, ..., x_n \xrightarrow{s} x$ and if there are $x'_n \in Ax_n$ such that $x'_n \xrightarrow{w} x'$, then $x \in D(A)$ and $x' \in Ax$.

LEMMA 3. Let A be a maximal accretive mapping of X into X. Assume that X^* is strictly convex and F is continuous. Then A is demiclosed.

PROOF. Let $\{x_n\}$ and $\{x'_n\}$ be sequences in X such that $(x_n, x'_n) \in G(A)$, $x_n \xrightarrow{s} x_0$ and $x'_n \xrightarrow{w} x'_0$. From the accretiveness of A it follows that

$$\langle x'_n - x', F(x_n - x) \rangle \geq 0$$
 for all $(x, x') \in G(A)$.

Letting $n \rightarrow \infty$,

$$< x'_0 - x', F(x_0 - x) > \ge 0$$
 for all $(x, x') \in G(A)$.

Since A is maximal accretive, this implies that $(x_0, x'_0) \in G(A)$. q.e.d.

PROOF of THEOREM 1: Let x_0 be an arbitrary point of D(A). We define A' by $A'x = A(x+x_0)$. It is easy to see that A' is accretive, $D(A') = D(A) - x_0$ and $0 \in D(A')$. The mapping A is locally bounded at x_0 if and only if A' is locally bounded at 0. Therefore it is sufficient to show that A is locally bounded at 0 in case $0 \in D(A)$.

Assume that $0 \in D(A)$. By LEMMA 2 there exist bounded sets S, S' and Q satisfying (1.5), (1.6) and (1.7). Set $\rho = \sup_{x \in S} ||x||$ and $\rho' = \sup_{x \in Q} ||x||$. By LEMMA 1, for suitable positive numbers ε and δ ,

(1.8)
$$B^*(0,\varepsilon) \subset \bigcap_{x \in B(0,\delta)} co(F(S-x)).$$

We shall show that $A(B(0, \delta))$ is bounded. In fact, let x be any point of $B(0, \delta) \cap D(A)$ and let x' be any point of Ax. From the accretiveness of

166

A we infer that for $u \in S'$ and $u' \in Au \cap Q$

$$< x', F(u-x) > \le < u', F(u-x) >$$

 $\le (||u|| + ||x||) ||u'||$
 $\le (\rho + \delta)\rho'.$

Hence, $F(S'-x) \in E \equiv \{x^* \in X^*; \langle x', x^* \rangle \leq (\rho+\delta)\rho'\}$. By the continuity of $F, F(S-x) \in \overline{(F(S'-x))}$. Since E is closed and convex, we have $co(F(S-x)) \in E$. This relation and (1.8) imply that $B^*(0, \varepsilon) \in E$. Hence, $||x'|| \leq (\rho+\delta)\rho'/\varepsilon$. Thus $A(B(0, \delta)) \in B(0, (\rho+\delta)\rho'/\varepsilon)$. q.e.d.

COROLLARY. Let X, X^{*}, F and A be as in THEOREM 1. In addition assume that A is singlevalued and maximal accretive. Then A is demicontinuous at every point of $\stackrel{\circ}{D(A)}$ (i.e., if $x_n \xrightarrow{s} x$ and $x \in \stackrel{\circ}{D(A)}$, then $Ax_n \xrightarrow{w} Ax$).

PROOF Let $x \in D(A)$, $x_n \in D(A)$ and $x_n \stackrel{s}{\to} x$. By the local boundedness of A at x, $\{Ax_n\}$ is weakly relatively compact. Let x' be any weak cluster point of $\{Ax_n\}$. Then there is a subsequence $\{x_{n_k}\}$ such that $Ax_{n_k} \stackrel{w}{\to} x'$. By LEMMA 3, Ax = x'. It follows that $Ax_n \stackrel{w}{\to} Ax$. q.e.d.

§2. Maximal accretive mappings

There is another notion of maximality for singlevalued mappings. A singlevalued accretive mapping A is called *f*-maximal accretive ([4]) if there is no proper singlevalued accretive extention of A.

THEOREM 2. Let X and X^* be strictly convex and F be bicontinuous and let A be a singlevalued accretive mapping of X into X with open domain. Then A is maximal accretive if and only if A is f-maximal accretive and demicontinuous.

PROOF. Assume that A is maximal accretive. Then it is clear that A is f-maximal accretive. By the COROLLARY of THEOREM 1, A is demicontinuous in D(A).

Conversely, assume that A is f-maximal accretive and demicontinuous. Let A' be any accretive extention of A and (x_0, x'_0) be any element of G(A'). Since A is f-maximal accretive, D(A) = D(A'). For small t > 0, $x_t = x_0 + t(x'_0 - Ax_0) \in D(A)$ and

$$0 \leq < Ax_t - x_0', F(x_t - x_0) > = t < Ax_t - x_0', F(x_0' - Ax_0) >$$

Hence, $\langle Ax_t - x'_0, F(Ax_0 - x'_0) \rangle \leq 0$ for small t > 0. Letting $t \searrow 0, ||Ax_0 - x'_0||^2 \leq 0$ by the demicontinuity of A. Hence, $x'_0 = Ax_0$. Thus A' = A. This implies that A is maximal accretive. q.e.d.

Nobuyuki Kenmochi

REMARK. THEOREM 2 is a generalization of THEOREM 2.5 in [5].

THEOREM 3. Let X and X* be strictly convex and F be bicontinuous, and let A be an accretive mapping of X into X. Suppose that D(A) is dense in X and there exists a point at which A is locally bounded. Then A is locally bounded at every point of X. In addition if A is maximal accretive, then D(A) = X.

PROOF. It is sufficient to show that A is locally bounded at 0. By the assumptions of the theorem there exist a point x_0 and a bounded neighborhood U of x_0 such that $-x_0 \in D(A)$ and A(U) is bounded. Let y_0 be a point of $A(-x_0)$. Choose a positive number r such that $y_0 \in B(0, r)$ and $A(U) \subset B(0, r)$, and set $S' = (U \cap D(A)) \cup \{-x_0\}$, $S = \overline{S'}$ and Q = B(0, r). Then $x_0 \in \mathring{S}$. From LEMMA 1, for suitable positive numbers ε and δ

$$B^*(0, \varepsilon) \subset \bigcap_{x \in B(0, \delta)} co(F(S-x)).$$

Just as in the proof of THEOREM 1, we see that $A(B(0, \delta))$ is bounded. Under the additional assumption we infer from the local boundedness of A and the reflexivity of X that for each $x \in X$ there exist a sequence $(x_n, x'_n) \in G(A)$ and a point $x' \in X$ such that $x_n \xrightarrow{s} x$ and $x'_n \xrightarrow{w} x'$. By LEMMA 3, $x \in D(A)$. Thus D(A) = X.

COROLLARY 1. Let X, X* and F be as in THEOREM 3, and let A be an accretive mapping with dense domain in X. If $\stackrel{\circ}{D(A)}$ is non-empty, then A is locally bounded at every point of X. In addition, if A is maximal accretive, then D(A) = X.

COROLLARY 2. Let X be finite dimensional and strictly convex and X^* be strictly convex, and let A be a maximal accretive mapping with dense domain in X. Then D(A) = X.

PROOF. It is sufficient to show that A is locally bounded at 0. If otherwise, there exists a sequence $(x_n, x'_n) \in G(A)$ such that $x_n \to 0$ and $||x'_n|| \to \infty$ as $n \to \infty$. Set $y'_n = x'_n / ||x'_n||$ and choose a subsequence $\{y'_{n_k}\}$ such that $y'_{n_k} \to y'$. Then ||y'|| = 1. From the accretiveness of A it follows that

$$< \frac{x'}{\|x'_{n_k}\|} - y'_{n_k}, F(x - x_{n_k}) > \ge 0$$
 for all $(x, x') \in G(A)$.

Letting $k \to \infty$, we have $\langle y', F_x \rangle \leq 0$ for all $x \in D(A)$. Since F is topological and D(A) is dense in X, F(D(A)) is dense in X*, and hence, y'=0. This is a contradiction.

168

§3. Nonlinear evolution equations

In this section let A be a mapping of X into X. We consider the differential equation

$$(3.1) u'(t) + Au(t) \ni 0$$

where t is a real variable and u'(t) = du(t)/dt.

An X-valued function u(t) is called a strong solution of (3.1) on a real interval \mathcal{Q} if u(t) is strongly absolutely continuous on any finite closed interval contained in \mathcal{Q} and $u'(t) + Au(t) \ni 0$ for a.e. $t \in \mathcal{Q}$.

THEOREM 4. Let X^* be uniformly convex and let A be an accretive mapping with open domain. Suppose that Ax is closed and convex for every $x \in D(A)$ and A is demiclosed and locally bounded at every point of D(A). Then for each $a \in D(A)$ the equation (3.1) has a unique strong solution on $[0, \infty)$ with u(0)=a.

To prove this theorem we prepare several lemmas.

LEMMA 4. Let u_n , n=1, 2, ..., be strongly measurable functions on (0, r)into X such that $||u_n(t)|| \leq K$ for a.e. $t \in (0, r)$ and $u_n \stackrel{w}{\to} u$ in $L^p(0, r; X)$, 1 . Let <math>V(t) be the set of all weak cluster points of the sequence $\{u_n(t)\}$. Then

$$u(t) \in \overline{co(V(t))}$$
 for a.e. $t \in (0, r)$.

For a proof of LEMMA 4 see [7]. Using LEMMA 4, we obtain the following lemma.

LEMMA 5. Let X^* and A be as in THEOREM 4, and let u(t) be an X-valued continuous function on the finite closed interval [0, r] such that $u(t) \in D(A)$ for all $t \in [0, r]$ and $Au(t) \subset B(0, K)$ for all $t \in [0, r]$. Then there exists an X-valued strongly measurable function U(t) on (0, r) such that $U(t) \in Au(t)$ and $||U(t)|| \leq K$ for a.e. $t \in (0, r)$.

PROOF. Set $Z = \{u(t); 0 \le t \le r\}$ and for each positive integer *n*, define a step function $u_n(t)$ on [0, r) into Z by

$$u_{n}(t) = \sum_{k=0}^{n-1} x_{[t_{k}, t_{k+1}]}(t) u(t_{k})$$

where $t_k = \frac{r}{n}k$, k=0, 1, ..., n-1 and $\varkappa_{\lfloor t_k, t_{k+1} \rfloor}$ are the characteristic functions. Then $||u_n(t) - u(t)|| \to 0$ uniformly on $\lfloor 0, r \rfloor$ as $n \to \infty$. Define $U_n(t)$ by

$$U_{n}(t) = \sum_{k=1}^{n-1} \varkappa_{[t_{k}, t_{k+1})}(t) a_{k}^{(n)}$$

where $a_k^{(n)} \in Au_n(t_k) \subset B(0, K)$. Then $||U_n(t)|| \leq K$ for all $t \in (0, r)$ and for all n. Hence there exists a subsequence $\{U_{n_j}\}$ of $\{U_n\}$ such that $U_{n_j} \xrightarrow{w} U$ in $L^p(0, r; X)$, 1 . Let <math>V(t) be the set of all weak cluster points of $\{U_{n_j}(t)\}$ for $t \in (0, r)$. Clearly, $V(t) \subset B(0, K)$ for all $t \in (0, r)$. Since A is demiclosed, $V(t) \subset Au(t)$. From LEMMA 4, $U(t) \in \overline{co(V(t))}$ for a.e. $t \in (0, r)$. Since Au(t) is closed and convex in X, we have

$$\overline{co(V(t))} \subset Au(t) \cap B(0, K).$$

Thus $U(t) \in Au(t)$ and $||U(t)|| \leq K$ for a.e. $t \in (0, r)$.

The following lemma gives a local solution of (3.1).

a.e.d.

LEMMA 6. Let X^* and A be as in THEOREM 4. Then for any given $a \in D(A)$ there are a positive number r and a strong solution u(t) of (3.1) on [0, r) with u(0)=a.

PROOF. Since D(A) is open and A is locally bounded at a, we can choose positive numbers R and K such that $B(a, R) \subset D(A)$ and $A(B(a, R)) \subset B(0, K)$. Set $r = \frac{R}{K}$ and $\varepsilon_n = \frac{r}{n}$, n = 1, 2, ... By induction, define a function $u_n(t)$ on [0, r) for each n as follows. Let $u_n(t) = a$ for $t \in [0, \varepsilon_n]$. For a positive integer $k, 1 \leq k < n$, assume that $u_n(t)$ is already defined on $[0, k\varepsilon_n]$ in such a way that $u_n(t)$ is strongly absolutely continuons on $[0, k\varepsilon_n]$ and $||u_n(t) - a|| \leq (k-1)\varepsilon_n K$ for all $t \in [0, k\varepsilon_n]$. Then $u_n(t) \in D(A)$ and $Au_n(t) \subset B(0, K)$ for all $t \in [(k-1)\varepsilon_n, k\varepsilon_n]$. Hence, by LEMMA 5, there exists a strongly integrable function $U_n^{(k)}(s)$ on $[(k-1)\varepsilon_n, k\varepsilon_n]$ such that $U_n^{(k)}(s) \in Au_n(s)$ and $||U_n^{(k)}(s)|| \leq K$ a.e. on $[(k-1)\varepsilon_n, k\varepsilon_n]$. Let us define $u_n(t)$ on $[k\varepsilon_n, (k+1)\varepsilon_n]$ by

$$u_n(t) = u_n(k\varepsilon_n) - \int_{k\varepsilon_n}^t U_n^{(k)}(s-\varepsilon_n) ds.$$

Then, $u_n(t)$ is strongly absolutely continuous on $[0, (k+1)\varepsilon_n]$ and $||u_n(t)-a|| \le k\varepsilon_n K$ for all $t \in [0, (k+1)\varepsilon_n]$. Thus, for each positive integer *n*, a function u_n on [0, r) into B(a, R) is defined. Set

$$U_n(s) = \begin{cases} U_n^{(1)}(s) & on \ (0, \ \varepsilon_n) \\ U_n^{(2)}(s) & on \ (\varepsilon_n, \ 2\varepsilon_n) \\ \vdots \\ U_n^{(n-1)}(s) & on \ ((n-2)\varepsilon_n, \ (n-1)\varepsilon_n). \end{cases}$$

Then

$$u_n(t) = \begin{cases} a & on \ [0, \ \varepsilon_n) \\ a - \int_{\varepsilon_n}^t U_n(s - \varepsilon_n) ds & on \ [\varepsilon_n, r), \end{cases}$$

and satisfies

Accretive Mappings in Banach Spaces

(3.2)
$$u'_n(t) = -U_n(t-\varepsilon_n) \in Au_n(t-\varepsilon_n) \quad a.e. \text{ on } (\varepsilon_n, r).$$

To show that $\{u_n(t)\}$ converges uniformly on [0, r) as $n \to \infty$, we observe for any n and m with $n \ge m$

$$(3.3) \qquad \frac{d}{dt} (||u_n(t) - u_m(t)||^2) \\ = 2 ||u_n(t) - u_m(t)|| \frac{d}{dt} (||u_n(t) - u_m(t)||) \\ = 2 < u'_n(t) - u'_m(t), \ F(u_n(t) - u_m(t)) > \\ = -2 < U_n(t - \varepsilon_n) - U_m(t - \varepsilon_m), \ F(u_n(t) - u_m(t)) > \\ \le -2 < U_n(t - \varepsilon_n) - U_m(t - \varepsilon_m), \ F(u_n(t) - u_m(t)) \\ - F(u_n(t - \varepsilon_n) - u_m(t - \varepsilon_m)) >$$

for a.e. $t \in (\varepsilon_m, r)$. The above relations follow from LEMMA 1.3 in [6], (3.2) and the accretiveness of A. Integrating both sides of (3.3) on (ε_m, t) , we obtain

(3.4)
$$||u_{n}(t) - u_{m}(t)||^{2} \leq ||u_{n}(\varepsilon_{m}) - a||^{2} + 4K \int_{\varepsilon_{m}}^{r} ||F(u_{n}(s) - u_{m}(s)) - F(u_{n}(s - \varepsilon_{n}) - u_{m}(s - \varepsilon_{m}))|| ds \quad \text{for all } t \in [\varepsilon_{m}, r).$$

On the other hand,

$$\begin{aligned} &\|(u_n(t)-u_m(t))-u_n(t-\varepsilon_n)-u_m(t-\varepsilon_m))\|\\ &\leq \|u_n(t)-u_n(t-\varepsilon_n)\|+\|u_m(t)-u_m(t-\varepsilon_m)\|\\ &\leq K(\varepsilon_n+\varepsilon_m) \quad \text{for all } t \in [\varepsilon_m, r), \end{aligned}$$

and $||u_n(\varepsilon_m) - a|| \leq \int_0^{\varepsilon_m} ||u'_n(s)|| ds \leq \varepsilon_m K$. Hence, $||u_n(t) - u_m(t) - (u_n(t - \varepsilon_n) - u_m(t - \varepsilon_m))|| \to 0$ uniformly on (0, r) as $n, m \to \infty$. Since F is uniformly continuous on B(a, R), $||F(u_n(s) - u_m(s)) - F(u_n(s - \varepsilon_n) - u_n(s - \varepsilon_m))|| \to 0$ uniformly on (0, r) as $n, m \to \infty$. Therefore, it follows from (3.4) that

$$||u_n(t)-u_m(t)|| \rightarrow 0$$
 uniformly on $[0, r)$,

and $\{u_n\}$ converges uniformly on [0, r) to a continuous function u(t) with u(0) = a.

We are to show that u is a strong solution of (3.1). Since $||u'_n(t)|| \leq K$ for a.e. $t \in (0, r)$ by (3.2), there exist a subsequence $\{u'_{n_j}\}$ and $v \in L^p(0, r; X)$, $1 , such that <math>u'_{n_j} \xrightarrow{w} v$ in $L^p(0, r; X)$. Then v = u' in the distribution sense. It follows that u is strongly absolutely continuous and u'=v a.e. on (0, r). Just as in the proof of LEMMA 5, we see that $u'(t)=v(t) \epsilon -Au(t)$ for a.e. $t \epsilon (0, r)$. Thus u(t) is a strong solution of (3.1) on [0, r).

q.e.d.

LEMMA 7. Let A be an accretive mapping and u(t) be a strong solution of (3.1) on [0, r) with $u(0) = a \in D(A)$. Then

$$||u'(t)|| = \inf_{y \in Au(t)} ||y|| \le \inf_{y \in Aa} ||y|| \quad \text{for a.e. } t \in (0, r).$$

For a proof of LEMMA 7 see $\lceil 2 \rceil$.

PROOF of THEOREM 4: By LEMMA 6 there exists a strong solution of u(t)(3.1) on [0, r) with u(0) = a for some r > 0. Let $[0, r^+)$ be the maximal interval of existence. We shall show that $r^+ = \infty$.

Assume that $r^+ < \infty$. From LEMMA 7, $||u'(t)|| \le \inf_{\substack{y \in Aa}} ||y|| < \infty$ for a.e. $t \in (0, r^+)$. Hence, the limit s-lim u(t) exists. We can choose a sequence $\{t_k\}$ such that $t_k \nearrow r^+$ and $\{u'(t_k)\}$ is weakly convergent. Since A is demiclosed, it follows that b = s-lim u(t) belongs to D(A). If we apply LEMMA 6 with the initial time r^+ and initial condition $u(r^+) = b$, we obtain a continuation of u beyond r^+ . This contradicts the definition of r^+ .

Next we prove the uniqueness of the solution. Let $u_1(t)$ and $u_2(t)$ be strong solutions of (3.1) on $[0, \infty)$ such that $u_1(0) = u_2(0) = a$. Then, for any $t \in [0, \infty)$

$$||u_{1}(t) - u_{2}(t)||^{2} = \int_{0}^{t} \frac{d}{ds} (||u_{1}(s) - u_{2}(s)||^{2}) ds$$

= $2 \int_{0}^{t} \langle u_{1}'(s) - u_{2}'(s), F(u_{1}(s) - u_{2}(s)) \rangle ds$
 $\leq 0,$

since $-u_i'(s) \in Au_i(s)$ for a.e. $s \in (0, \infty)$, i=1, 2. Hence, $u_1(t) = u_2(t)$ on $[0, \infty)$.

§4. *m*-accretiveness

The purpose of this section is to prove

THEOREM 5. Let X^* and A be as in THEOREM 4. Then A is m-accretive, that is, R(I+A)=X.

To prove this theorem we consider the differential equation

(4.1)
$$u'(t) + (I+A)u(t) \ni 0.$$

If A is as in Theorem 4, then I + A is accretive, demiclosed and locally

bounded at every point of D(I+A)=D(A) and (I+A)x=x+Ax is closed and convex in X for each $x \in D(I+A)$. Hence, by THEOREM 4, for each $a \in D(I+A)$ the equation (4.1) has a unique strong solution u(t) on $[0, \infty)$ with u(0)=a.

LEMMA 8. Let u(t) be a strong solution of (4.1) on $[0, \infty)$. Suppose that u(t) is differentiable and satisfies (4.1) at t=s and s', $0 < s < s' < \infty$. Then

$$||u'(s')|| \leq e^{s-s'} ||u'(s)||.$$

For a proof of LEMMA 8 see [7].

PROOF of THEOREM 5: Let u(t) be the strong solution of (4.1) on $[0, \infty)$ with $u(0)=a \in D(I+A)$. Choose r>0 such that u(t) is differentiable and satisfies (4.1) at t=r. From LEMMA 8, for t and t', $t \ge t' > r$

$$||u(t) - u(t')|| \leq \int_{t'}^{t} ||u'(s)|| ds$$

$$\leq ||u'(r)||e^{r} \int_{t'}^{t} e^{-s} ds$$

$$= ||u'(r)||e^{r} (-e^{-t} + e^{-t'}).$$

Hence, $||u(t)-u(t')|| \to 0$ as $t, t' \to \infty$, that is, the limit $s-\lim_{t\to\infty} u(t)=u_0$ exists. By LEMMA 8 again there is a sequence $\{t_n\}$ such that $t_n \to \infty$ and $u'(t_n) \to 0$ as $n \to \infty$. Since I + A is demiclosed, we obtain $(I + A)u_0 \ni 0$. Thus $0 \in R(I + A)$.

Let b be an arbitrary point of X. We define the mapping A_b by $A_b x = Ax-b$. Applying the same argument for A_b , we conclude that $b \in R(I+A)$. Thus R(I+A)=X. q.e.d.

COROLLARY 1. Let X be strictly convex, X^* be uniformly convex, F be bicontinuous, and A be an accretive mapping of X into X with open domain. Then A is m-accretive if and only if A is maximal accretive.

PROOF. Assume that A is maximal accretive. Then A satisfies conditions in THEOREM 4. In fact, the maximal accretiveness of A implies that Ax is closed and convex for all $x \in D(A)$. The demiclosedness and the local boundedness of A follow from LEMMA 3 and THEOREM 1 respectively. Hence, by THEOREM 5, A is *m*-accretive.

The converse is true in general (see [7; LEMMA 5.3]) q.e.d.

REMARK. In Banach spaces *m*-accretiveness always implies maximal accretiveness, but the converse is not true (for a counter-example see [4]). In Hilbert spaces both notions coincide.

COROLLARY 2. Let X, X^* and F be as in COROLLARY 1 and let A be an f-maximal accretive mapping of X into X with open domain. Then A has an m-accretive extension.

PROOF. By Zorn's lemma, A has a maximal accretive extension \tilde{A} The f-maximal accretiveness of A implies $D(A) = D(\tilde{A})$ By COROLLARY 1, \tilde{A} is m-accretive. q.e.d.

§5. A certain class of nonlinear contraction semigroups

Let $T = \{T(t); t \ge 0\}$ be a family of nonlinear singlevalued mappings of X into X with D(T(t)) = X for all $t \ge 0$. We say that T is a contraction semigroup on X if the following conditions (5.1), (5.2) and (5.3) are satisfied;

(5.1)
$$T(t+t')x = T(t)T(t')x \quad \text{for } t, t' \ge 0 \text{ and } x \in X,$$

 $(5.2) T(0)x = x for x \in X,$

(5.3)
$$||T(t)x - T(t)y|| \le ||x - y||$$
 for $t \ge 0$ and $x, y \in X$.

We define the strong infinitesimal generator G_s of T by

$$G_s x = s - \lim_{h > 0} \frac{T(h)x - x}{h},$$

and the weak infinitesimal generator G_w of T dy

$$G_w x = w - \lim_{h \searrow 0} \frac{T(h)x - x}{h}$$

whenever the right sides exist.

It is easy to see that $-G_s$ and $-G_w$ are accretive and G_w is an extension of G_s .

For mappings A and B, by $B \subset A$ we mean that A is an extension of B, that is, $G(B) \subset G(A)$.

THEOREM 6. Let X^* be uniformly convex.

(a) Let A be an m-accretive mapping of X into X with D(A)=X and suppose that A is locally bounded at every point of X. Then there exists a unique contraction semigroup T on X satisfying $-G_s \subset A$ and the following condition: (5.4) There exists a real-valued and locally bounded function K(x) on X such that

$$||T(t)x - T(t')x|| \leq K(x)|t - t'|$$
 for $t, t' \geq 0$ and $x \in X$.

(b) Let T be a contraction semigroup on X satisfying (5.4). Then there exists a unique m-accretive mapping A with $-G_s \subset A$. Furthermore D(A) = X and A is locally bounded at every point of X.

PROOF of (a): First we prove the existence of such a semigroup on X. By THEOREM 4, for each $x \in X$ there exists a unique strong solution u(x; t) of (3.1) on $[0, \infty)$ with u(x; 0) = x. Put T(t)x = u(x; t). Then $T = \{T(t); t \ge 0\}$ clearly satisfies conditions (5.1) and (5.2). For x, $y \in X$ and $t \ge 0$,

(5.5)
$$||T(t)x - T(t)y||^{2} - ||x - y||^{2}$$
$$= \int_{0}^{t} \frac{d}{ds} (||T(s)x - T(s)y||^{2}) ds$$
$$= 2 \int_{0}^{t} < \frac{d}{ds} (T(s)x - T(s)y), F(T(s)x - T(s)y) > ds.$$

Since $-\frac{d}{ds}T(s)x \in A(T(s)x)$ and $-\frac{d}{ds}T(s)y \in A(T(s)y)$ for a.e. $s \in (0, t)$, the last integral of (5.5) is non-positive. Hence, $||T(t)x - T(t)y|| \le ||x - y||$. Thus *T* satisfies (5.3). Further (5.4) follows from LEMMA 7 and the local boundedness of *A*. The inclusion $-G_s \subset A$ follows from COROLLARY 1 in [9]. In fact, the corollary say that $-G_w \subset A^0$, where A^0 is defined by $A^0x = \{x' \in Ax; ||x'|| = \inf_{y \in Ax} ||y||\}$. Since $G_s \subset G_w$ and $A^0 \subset A$, we conclude that $-G_s \subset A$.

Now we prove the uniqueness of such a semigroup. Let $\hat{T} = \{\hat{T}(t); t \ge 0\}$ be another contraction semigroup on X satisfying $-\tilde{G}_s \subset A$ and (5.4) for \hat{T} , where \tilde{G}_s is the strong infinitesimal generator of \hat{T} . By (5.4) the function $t \to \hat{T}(t)x$ is Lipschitz continuous on $[0, \infty)$ for each $x \in X$. Therefre $\hat{T}(t)x$ is differentiable a.e. on $[0, \infty)$, and hence $\frac{d}{dt} \hat{T}(t)x = \tilde{G}_s(\hat{T}(t)x) \in -A(\hat{T}(t)x)$ for a.e. $t \in [0, \infty)$, that is, $\hat{T}(t)x$ is the strong solution of (3.1) on $[0, \infty)$ with the initial value x. By the uniqueness of a strong solution we have $\hat{T}(t)x$ = T(t)x for $t \ge 0$ and $x \in X$. Thus $T = \hat{T}$.

To prove (b) we use the following lemma.

LEMMA 9. Let X^* be uniformly convex and let A be an accretive mapping of X into X with open domain. Suppose that for each $x \in D(A)$ there exist a neighborhood U_x of x and a bounded subset V_x of X such that $Ay \cap V_x \neq \emptyset$ for all $y \in U_x$. Then A is locally bounded at every point of D(A).

PROOF. For each $x \in D(A)$, choose a closed ball B(x, r) such that $B(x, r) \in U_x$. Put $K = \sup_{z \in V_x} ||z||$. Let $y \in B\left(x, \frac{r}{2}\right)$ and $y' \in Ay$. For any $z \in B\left(0, \frac{r}{2}\right)$, $y+z \in U_x$. Let $z' \in A(y+z) \cap V_x$. Then we have by the accretiveness of A

$$\langle y', Fz \rangle = \langle y', F(y+z-y) \rangle \leq \langle z', F(y+z-y) \rangle$$

 $\leq K ||z||$
 $\leq \frac{Kr}{2}.$

Hence, $B\left(0, \frac{r}{2}\right) \in \left\{z; < y', Fz > \leq \frac{Kr}{2}\right\}$. Since $B^*\left(0, \frac{r}{2}\right) = F\left(B\left(0, \frac{r}{2}\right)\right)$, we

have
$$B^*\left(0, \frac{r}{2}\right) \subset \left\{z^*; < y', z^* > \leq \frac{Kr}{2}\right\}$$
. This implies that $||y'|| \leq K$. Thus $A\left(B\left(x, \frac{r}{2}\right)\right) \subset B(0, K)$. q.e.d.

PROOF of (b): We shall prove the existence of such an *m*-accretive mapp ing. Let *A* be a maximal accretive extension of $-G_s$. Then, D(A)=X and *A* is locally bounded at every point of *X* and *m*-accretive. In fact, let *x* be any point of *X*. Since the function T(t)x is Lipschtiz continuous on $[0, \infty)$ by (5.4), there is a sequence $\{t_n\}$ such that T(t)x is differentiable at $t=t_n, t_n \searrow 0$ and $\frac{d}{dt}T(t)x\Big|_{t=t_n} = G_s(T(t_n)x) \xrightarrow{w} x'$ for some $x' \in X$ as $n \to \infty$. Since $T(t_n)x \xrightarrow{s} x$ as $n \to \infty$ and *A* is demiclosed by LEMMA 3, $x \in D(A)$ and $-x' \in Ax$. Thus D(A)=X. Furtheremore, we easily obtain $||-x'|| \leq K(x)$. Since K(x) is locally bounded, there is a neighborhood U_x of *x* such that $\rho = \sup_{y \in U_x} K(y) < \infty$. By taking $V_x = B(0, \rho)$ in LEMMA 9, we see that *A* is locally bounded at every point of *X*, and hence, *A* is *m*-accretive by THEOREM 5.

Next we prove the uniqueness of such an *m*-accretive mapping. Let \tilde{A} be any *m*-accretive extension of $-G_s$. Then, by (a) of THEOREM 6, there is a semigroup $\tilde{T} = \{\tilde{T}(t); t \ge 0\}$ such that $\tilde{A} \ge -\tilde{G}_s$, where \tilde{G}_s is the strong infinitesimal generator of \tilde{T} . For each $x \in X$, T(t)x satisfies $\frac{d}{dt}T(t)x=G_s$ $(T(t)x) \in -\tilde{A}(T(t)x)$ a.e. on $[0, \infty)$, and $\tilde{T}(t)x$ satisfies $\frac{d}{dt}\tilde{T}(t)x=\tilde{G}_s(\tilde{T}(t)x)$ $\epsilon -\tilde{A}(\tilde{T}(t)x)$ a.e. on $[0, \infty)$. Therefore, $T(t)x=\tilde{T}(t)x$ for all $t\ge 0$. Thus $T=\tilde{T}$. From COROLLARY 2 in [1] we obtain $A=\tilde{A}$. q.e.d.

References

- [1] H. Brezis, On a problem of T. Kato, Comm. pure Appl. Math., 24 (1971), 1-6.
- H. Brezis and A. Pazy, Accretive sets and differential equations in Banach spaces, Israel J. Math., 8 (1970), 367-383.
- [3] F.E. Browder, Nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc., 73 (1967), 470-476.
- [4] B. Calvert, Maximal accretive is not *m*-accretive, Boll. Un. Mat. Italiana, Serie 4 Anno 3 (1970), 1042-1044.
- [5] M. G. Crandall and A. Pazy, Semi-groups of nonlinear contractions and dissipative sets, J. Functional Analysis, 3 (1969), 376-418.
- [6] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508– 520.
- [7] T. Kato, Accretive operators and evolution equations in Banach spaces, Symp. Nonlinear Functional Analysis, Chicago, Amer. Math. Soc., Part 1 (1970), 138-161.
- [8] Y. Kōmura, Nonlinear semigroups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507.
- [9] I. Miyadera, Some remarks semigroups of nonlinear operators, Tõhoku Math. J. 23 (1971), 245–258.
- [10] A. Pazy, Semi-groups of nonlinear contractions in Hilbert space, Problems in Nonlinear Analysis, C.I.M.E. 4 (1971), 345 430.

Accretive Mappings in Banach Spaces

 [11] R. T. Rockafellar, Local boundedness of nonlinear monotone operators, Michigan Math.J., 16 (1969), 397-407.

> Department of Mathematics, Faculty of Science, Hiroshima University