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Introduction

In the theory of semigroups of nonlinear contraction mappings, the
notion of accretive mappings has appeared to be very practical (see [3], [6],
[8]). In this paper, we study a multivalued accretive mapping A of a real
Banach space X into itself. A is called m-accretive if the range of I -\- A is
the whole of X; thus it is useful in perturbation problems to know whether
the given mapping is ^-accretive.

It is known that if X is a Hubert space, then an accretive mapping of X
into itself is locally bounded at every point of the interior of its domain (see
[10], [11]). We shall show that this is also true in case I is a reflexive
Banach space provided that the duality mapping of X is bicontinuous (THEO-

REM 1), and use this fact to show that, under certain conditions, an accretive
mapping is zn-accretive if and only if it is maximal accretive (COROLLARY 1
of THEOREM 5).

In order to obtain the latter result, we consider the initial value problem
of the evolution equation

(E) u'(t) + Λu(t) B 0, u(0) = a.

This problem has a solution (in a certain sense) if A is m-accretive. How-
ever, it seems difficult to solve (E) without the ra-accretiveness of A. It was
shown in [7] that if X* is uniformly convex and A is everywhere defined,
singlevalued and hemicontinuous, then (E) has a global solution for any given
a e X and A is zn-accretive. We shall extend this result ot the case where A
is multivalued, locally bounded, demiclosed and accretive (THEOREMS 4 and 5).
As an application, we shall show that such a mapping A generates a nonli-
near contraction semigroup on X (THEOREM 6).

§ 0. Definitions and notation

Throughout this paper let X be a real reflexive Banach space and X* be
the dual space. The natural pairing between x e X and x* e X* is denoted
by <x, χ*>. The norms in X and X* are denoted by || ||. We denote by /
the identity mapping of X onto X.

For a subset S of X, we denote by 5, 5 and co(S) the closure, the interior
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and the convex hull of 5 respectively. For 5, S'CX and a real A, we denote
by S+S' the set {χ + y; xeS, ye Sf} if SφQ and S'ΦQ, and by IS the set
{λx; x e S}. When S7 consists of a single point y, we write S+y for 5+5' .

Let A be a multivalued mapping of X into X, that is, to each x e X a
subset ,4* of X be assigned. The sets 2)(^) = {* e X; J * ^ 0 } , ΛGί) = \J Λx

X€X

and GC4) = {(A;, Λ/) e XxX; *' 6 y4#} are called the domain, the range and the
graph of A respectively. For a subset S of X, we denote by A(S) the set
\JΛx.

χ€S

Let A and ^ be two multivalued mappings of X into X and A be a real.
The mappings A + A\ A A and λA are defined by (A + A')x = Ax + A fx, (AA')x
= A(Afx) and (λA)x = λ(Ax) respectively.

In what follows a mapping means a multivalued mapping unless other-
wise stated.

The duality mapping F of X into X* is defined by

The domain of F is all of X, the range of F is all of X* and, in general, F is
multivalued. The inverse F~ι is the duality mapping of X* into X. We
know that if X* is strictly convex, then F is singlevalued and that if X* is
uniformly convex, then F is uniformly continuous on bounded subsets of X
(see [6]).

A mapping A of X into X is called accretive if for any (#, Λ/) aud (y, j 7 )
in G(A) there exists an element / e F(x — y) such that < x — y\ f > > 0 . An
accretive mapping A of X into X is called maximal accretive if there is
no proper accretive extention of A, and called m-accretive if Λ(/+ A) = X.

A mapping A of X into X is called locally bounded at Λ; e X if there is a
neighborhood f/of Λ; such that A(U) is bounded in X.

We denote by JS(#, r)(resp. £*(**, r)) the closed ball in X (resp. X*) with
center x e X (resp. #* e X*) and radius r. We use the symbols "-V (or "s-
lim") and "-V (or "w-ίΐm") to denote the convergence in the strong and the
weak topology respectively.

§ 1. Local boundedness

In this section we shall prove the following theorem.

THEOREM 1. Let X and X* be strictly convex and let A be an accretive
mapping of X into X. Assume that the duality mapping F is bicontinuous.

o

Then A is locally bounded at every point of D(A).
The method of proof is based on that in Cll]. To prove THEOREM 1 we

prepare three lemmas.
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LEMMA 1. Let X, X* and F be as in THEOREM 1. Let S be a subset of X

such that ( — S)Γ\Sφ0. Then there are positive numbers ε and δ such that

(1.1) £*(0,ε)C A co(F(S-x)).
£ ( O δ )

PROOF. Let x0 e ( — S)Γ\S. First we shall show that for suitable num-
bers r and r
(1.2) B*(Fxo,r')C A F(S-x).

χ€B(0,r)

Indeed, since χ0 e 5, we have for some r>0

Hence, F(xo + B(O, r))CF(S-x) for any xe B(0, r). By the bicontinuity of
F, we have for some r'>0

Hence (1. 2) holds.

By the continuity of F at -x0, for a number ε satisfying j > ε > 0 there

exists ί(ε)>0 such that

(1.3) \\F(-xo-χ)-F(-xo)\\<ε for all x e 5(0, ί(e)).

Set (ϊ = min(r, (J(ε)). Then we have (1.1). In fact, let y* be any point of
£*(0, ε) and x any point of 5(0, 5). From (1. 3) it follows that

(1.4) F(-xo-χ) = F(-xo) + x* for some i

We write

Since F(-xo)=-Fxo, -F(-xo) + 2γ*-x* e B*(FxQ, /). From (1.2) and (1.4)
it follows that y* e co(F(S-x)). q.e.d.

o

LEMMA 2. Let A be a mapping of X into X, and assume that 0 e D(A).
Then there exist bounded subsets S, S' and Q such that

(1.5) (

(1.6) ^ = 5 ,

(1.7) AxίΛQφQ foraUxeS'.
O

PROOF. We choose a positive number R such that 5(0, R) C D{A), and set
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for each positive integer n

Sn = {xt X; xe B(0,n), AxΓ\B(0, n)φ0}.

Clearly, D(Λ)= \J SnC 0 Sn. Therefore we have

B(0,R)=\J(SnΓ\B(0,R)).

From Baire's second category theorem it follows that there exists a positive
integer n0 such that the interior of (SnQΓ\B(0, R)) is non-empty. Let χ0 be a
point in the interior of this set and y0 be a point of Λ( — x0). We set S' =
(SnQΓΛB(09R))u{-x0}, S=S' and Q = B(0, | |yo | | + ^o). Such S, 5' and Q satis-
fy (1.5), (1.6) and (1.7). q.e.d.

A mapping is called demiclosed if the following condition is satisfied:
if xneD(A) for n = l, 2, ..., xn^>x and if there are x'n e Axn such that
χ'n^χ\ then x e Z>(̂ 0 and x e 4* .

LEMMA 3. Lei A be a maximal accretive mapping of X into X. Assume
that X* is strictly convex and F is continuous. Then A is demiclosed.

PROOF. Let {xn} and {x'n} be sequences in X such that (xn, x'n) 6 G(A),
xn^>x0 and xr

n^>xr

Q. From the accretiveness of A it follows that

<x'n-x\ F(xn-x)>>0 for all (x, x)eG(A).

Lett ing τι—*c>o5

<x'0-χ/,F(x0-x)>>0 for all (x, x')eG(A).

Since A is maximal accretive, this implies that (#0 5 XQ) £ G(A). q.e.d.
o

PROOF of THEOREM 1: Let x0 be an arbitrary point of D(A). We define
A by A/x = A(x + x0). It is easy to see that A is accretive, D(A/) = D(A) — x0

o

and 0 e D(Ar). The mapping 4̂ is locally bounded at # 0 if and only if A is
locally bounded at 0. Therefore it is sufficient to show that A is locally

o

bounded at 0 in case 0 e D(A).
o

Assume that 0 e D(A). By LEMMA 2 there exist bounded sets 5, 5' and
Q satisfying (1.5), (1.6) and (1.7). Set p = sup||#|| and P/ = SUP||Λ;||. By LEMMA

xes χ€Q

1, for suitable positive numbers ε and d,

(1.8) £*(0,ε)C A co(F(S-x)).

We shall show that A (B(0, d)) is bounded. In fact, let x be any point
of #(0, δ)f\D(Λ) and let x be any point of Ax. From the accretiveness of
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A we infer that for u e Sr and u e ΛuΓ\Q

<*', F(u-x)> <><u\ F(u-x)>

Hence, F(S'-χ)CE = {x* e X*; <χ\ χ*><(ρ + δ)p'}. By the continuity of
F, F(S-x)C(F(S'-x)). Since E is closed and convex, we have co(F(S-χ))
CE. This relation and (1.8) imply t h a t £*(0, e)CE. Hence, \\χf\\<(ρ + δ)p'/e.

Thus A(B(0, δ)) C 5(0, (p + ff)p'/e). q.e.d.

COROLLARY. Let Z, X*, F and A be as in THEOREM 1. In addition as-
sume that A is singlevalued and maximal accretive. Then A is demiconti-

o o

nuous at every point of D(A) (i.e., if xn^x and x e D(A), then Axn^Ax).
o o

PROOF Let x e D(Λ), χn e D(A) and xn-^>x. By the local boundedness of
A at x9 {Axn} is weakly relatively compact. Let x' be any weak cluster
point of {Axn}. Then there is a subsequence {χnk} such that Axnjc^>x\ By
LEMMA 3, Ax = x'. It follows that Axn^>Ax. q.e.d.

§2. Maximal accretive mappings

There is another notion of maximality for singlevalued mappings. A
singlevalued accretive mapping A is called f-maximal accretive ([4]) if there
is no proper singlevalued accretive extention of A.

THEOREM 2. Let X and X* be strictly convex and F be bicontinuous and
let A be a singlevalued accretive mapping of X into X with open domain. Then
A is maximal accretive if and only if A is f-maximal accretive and demicon-
tinuous.

PROOF. Assume that A is maximal accretive. Then it is clear that A
is /-maximal accretive. By the COROLLARY of THEOREM 1, A is demiconti
nuous in D(A).

Conversely, assume that A is /-maximal accretive and demicontinuous.
Let A be any accretive extention of A and (x0, χ'o) be any element of G(A).
Since A is/-maximal accretive, D(A) = D(A). For small ί>0, χt = χo + t(x'o —
Ax0) e D(A) and

0<<Axt-xf

0, F(xί-xo)>=t<Axt-x/

o, F(xf

0-Ax0)>.

Hence, <Axt-χΌ, F(AXQ-X'Q)> < 0 for small ί>0. Letting ί\0, \\Ax0 —
#oll2 < 0 by the demicontinuity of A. Hence, x'0 = Ax0. Thus A = A. This
implies that A is maximal accretive. q.etd.
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REMARK. THEOREM 2 is a generalization of THEOREM 2.5 in

THEOREM 3. Let X and X* be strictly convex and F be bicontinuous, and
let A be an accretive making of X into X. Suppose that D {A) is dense in X
and there exists a point at which A is locally bounded. Then A is locally
bounded at every point of X. In additidn if A is maximal accretive, then
D(A) = X.

PROOF. It is sufficient to show that A is locally bounded at 0. By the
assumptions of the theorem there exist a point x0 and a bounded neighbor-
hood ϋ of x0 such that — x0 e D(A) and A(U) is bounded. Let y0 be a point
of A(—x0). Choose a positive number r such that y0 e B(0, r) and A(U)C
B(0, r), and set S' = (UΓ\D(A))KJ{-X0}, S=H' and Q = B(0, r). Then x0 e S.
From LEMMA 1, for suitable positive numbers ε and δ

A co(F(S-x)).
B(OS)

Just as in the proof of THEOREM 1, we see that A(B(0, δ)) is bounded.
Under the additional assumption we infer from the local boundedness of A
and the reflexivity of X that for each x e X there exist a sequence (xH9 x'n) e
G(A) and a point x' a X such that xn^>x and x'H*>x'. By LEMMA 3, x e D(A).
T h u s # U ) = X q.e.d.

COROLLARY 1. Let X, X* and F be as in THEOREM 3, and let A be an ac-
o

cretive mapping with dense domain in X. // D(A) is non-empty, then A is
locally bounded at every point of X. In addition, if A is maximal accretive,
thenD(A) = X.

COROLLARY 2. Let X be finite dimensional and strictly convex and X* be
strictly convex, and let A be a maximal accretive mapping with dense domain
inX. ThenD(A) = X.

PROOF. It is sufficient to show that A is locally bounded at 0. If other-
wise, there exists a sequence (xn, x'n) e G(A) such that χn-+0 and ||#HI|—>°° as
τι->oo. Set yή = *»/lk»ll and choose a subsepuence {yr

nk} such that y'nk-*yf.
Then | |y | | = l. From the accretiveness of A it follows that

<-1ΓTΊr--yrnu> F(x-xnk)>>0 for all (x, xf)tG(A).
\\xnk\\

Letting £-*oo5 we have < y!, Fx> <C0 for all x e D(A). Since F is topologi-
cal and D(A) is dense in X, F(D(A)) is dense in X*, and hence, y'=Q. This
is a contradiction.
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§3. Nonlinear evolution equations

In this section let A be a mapping of X into X. We consider the differ-
ential equation

(3.1) u'(t) + Au(t)Bθ

where t is a real variable and u(t) = du(t)/dt.
An X-valued function u(t) is called a strong solution of (3.1) on a real

interval Ω if u(t) is strongly absolutely continuous on any finite closed inter-
val contained in Ω and u\t) + Au(t) 9 0 for a.e. t c Ω.

THEOREM 4. Let X* be uniformly convex and let A be an accretive map-
ping with open domain. Suppose that Ax is closed and convex for every x e
D(A) and A is demiclosed and locally bounded at every point of D(A). Then
for each a e D(A) the equation (3.1) has a unique strong solution on Q0, <χ>)
with u(0)=a.

To prove this theorem we prepare several lemmas.

LEMMA 4. Let um n = l, 2, •••, be strongly measurable functions on (0, r)
into Xsuch that \\un(t)\\<^K for a.e. t e (0, r) and un^u in 2/(0, r\ X), Kp<
oo. Let V(t) be the set of all weak cluster points of the sequence {un(t)}.
Then

u(t) e co(V(t)) for a.e. t e (0, r).

For a proof of LEMMA 4 see [7]. Using LEMMA 4, we obtain the following
lemma.

LEMMA 5. Let X* and A be as in THEOREM 4, and let u(t) be an X-valued
continuous function on the finite closed interval [0, r] such that u(t) e D(A)
for all t e [0, rj and Au(t)C B(0, K) for all t e [0, r]. Then there exists an
X-valued strongly measurable function U(t) on (0, r) such that U(t) € Au(t) and
\\U(t)\\<Kfora.e.te(0,r).

PROOF. Set Z={u(t); 0 < ί <r} and for each positive integer n, define a
step function un(t) on [0, r) into Z by

(O Σ

where tk = —&, k = 0, 1, ..., n — 1 and Xιtk,tk+1) are the characteristic functions.

Then \\un(t) — u(t)\\-+0 uniformly on [0, r) as ^->oo. Define Un(t) by
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where a(

k

n) e Aun(tk)CB(0, K). Then \\Un(t)\\<K for all t e (0, r) and for all
n. Hence there exists a subsequence {Un.} of {Un\ such that Un.^U in I?(0,
r; X), l < p < o o . Let F(ί) be the set of all weak cluster points of {Un.(t)}
for t e (0, r). Clearly, V(t)CB(0, K) for all ί e(0, r). Since ^ is demiclosed,

V(t)CAu(ή. From LEMMA 4, Z7(ί) e co{V(t)) for a.e. ί 6 (0, r). Since ^α(ί) is
closed and convex in X9 we have

co(V(t))CAu(t)Γ\B(0,K).

Thus U(t) c Au{t) and ||Z7(ί)ll <K for a.e. ί e (0, r). a.e.d.
The following lemma gives a local solution of (3.1).
LEMMA 6. Let X* and A be as in THEOREM 4. Then for any given a e

D(A) there are a positive number r and a strong solution u(t) of (3.1) on Q0, r)
with u(0) = a.

PROOF. Since D(A) is open and A is locally bounded at a, we can choose
positive numbers R and K such that B(a, R)CD(A) and A(B(a, R)) C B(0, K).

Setr = ̂ ?andε w = —, n = l, 2, .... By induction, define a function nn(ί) on

Q0, r) for each n as follows. Let un{i) — a for ί 6 [Ό, ε j . For a positive in-
teger &, 1<A;<^, assume that un(t) is already defined on [Ό, ftεj in such a
way that uw(ί) is strongly absolutely continuons on [0, AεJ and ||uw(ί) —α|| <
(A - l ) ε ^ for all t a [0, kεnj Then uΛ(ί) e Z)(^) and Aun(t)CB(0, K) for all
t e\\k — l)emkεn~}. Hence, by LEMMA 5, there exists a strongly integrable
function U{

n

k\s) on [(A;-l)εM, &εj such that U{

n

k)(s) € Aun{s) and \\U{
n
k)(s)\\<K

a.e. on [(& — l)εΛ, AεJ. Let us define un(t) on [A:εw, (A: + l ) ε J by

n)-[ U{

n

k)(s-εn)ds.
ken

Then, un(i) is strongly absolutely continuous on QO, (& + l ) ε J and \\un(t) —
kεnK for all t e [0, (& + l )εJ . Thus, for each positive integer n, a function
un on [0, r) into B(a9 R) is defined. Set

f U™(s) <yn(P,εH)

Un(s) = \ U?](s) on(εn,2εn)

^ U{

n

n-1](s) on ((n-2)εn9 (n-l)εn).

Then

a on [0, εn)

a—\ Un(s — εn)ds on \jn9 r),

and satisfies
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(3.2) u'n(t)=- Un(t-en) e Aun(t-εn) a.e. on (en, r).

To show that {un{t)} converges uniformly on [0, r) as rc—>-oo? we observe
for any n and m with n>m

(3.3) ^ ( I W O -

— l ^ a * (ί — εn) — um(t — εm)) >

for a.e. t c (εm, r). The above relations follow from LEMMA 1.3 in [6], (3.2)
and the accretiveness of A. Integrating both sides of (3.3) on (εm, t)9 we ob-
tain

(3.4) \\un(t)-um(t)\\2

^\\un(εm)-a\\2 + 4κ\r \\F(un(s)-um(s))

— F(un(s — εn) — um(s — εm))\\ds for all t e [εm r).

On the other hand,

\\{un{t)-um{t))-un{t-εn)-um{t-εm))\\

<\\un(t)-un(t-εn)\\ + \\um(t)-um(t-εm)\\

<K(εn + εm) for all t e [εw, r),

C€m
and |k«(εw)-α||<\ \\u'n(s)\\ds<εmK. Hence, \\un(t)-um(t)-(un(t-εn)-um(t

Jo
— £m))\\->0 uniformly on (0, r) as n, m^co. Since F is uniformly continuous
on B(a, R), \\F(un(s)-um(s))-F(un(s-εn)-un(s-εm))\\-+O uniformly on (0, r)
as n, m^co. Therefore, it follows from (3.4) that

\\un(t) — um(i)\\-*0 uniformly on [0, r),

and {un} converges uniformly on [0, r) to a continuous function u(t) with
u(0) =α.

We are to show that u is a strong solution of (3.1). Since \\ur

n(t)\\<K
for a.e. t e (0, r) by (3.2), there exist a subsequence {u'nj} and i; c 1 (̂0, r; X),
l<p<co 5 such that u'n.^v in Lp(0,r;X). Then t ^i^' in the distribution
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sense. It follows that u is strongly absolutely continuous and u=υ a.e. on
(0, r). Just as in the proof of LEMMA 5, we see that u'(t) = υ(t) e — Au(t) for
a.e. t e (0, r). Thus u(t) is a strong solution of (3.1) on [0, r).

q.e.d.

LEMMA 7. Let A be an accretive mapping and u(t) be a strong solution of
(3.1) on [0, r) with u(0)=a e D(A). Then

\\u'(f)\\= inf | | r | | < i n f | | j | | for a.e. t e (0, r).
y€Au(t) y€Aa

For a proof of LEMMA 7 see [2].

PROOF of THEOREM 4: By LEMMA 6 there exists a strong solution of u(t)
(3.1) on Q0, r) with u(0) = α for some r>0. Let [Ό, r+) be the maximal inter-
val of existence. We shall show that r+ = co.

Assume t h a t r+ < oo. From LEMMA 7, H^X^)!! < inf | | y | | < o o for a.e.
y€Aa

t 6 (0, r+). Hence, the limit s-lim u(t) exists. We can choose a sequence {tk}
tSr+

such that tk/r
+ and {ur(tk)} is weakly convergent. Since A is demiclosed, it

follows that b =s-lim u(t) belongs to D(A). If we apply LEMMA 6 with the
initial time r+ and initial condition u(r+) = b, we obtain a continuation of u
beyond r+. This contradicts the definition of r+.

Next we prove the uniqueness of the solution. Let uι(t) and u2(t) be
strong solutions of (3.1) on [0, oo) such that ^i(0) = ̂ 2(0) = α. Then, for any
t e [0, oo)

= 2[ <uί(s)-uί,(s\F(Ul(s)-u2(s))>ds
Jo

since — α{(s) e Au&s) for a.e. 5 6 (0, oo)3 £ = 1, 2. Hence, u1(t) = u2(t) on [0, 00).

§4. tfi-accretiveness

The purpose of this section is to prove

THEOREM 5. Let X* and A be as in THEOREM 4. Then A is m-accretive,
that is, R(I + A) = X.

To prove this theorem we consider the differential equation

(4.1)

If A is as in THEOREM 4, then / + A is accretive, demiclosed and locally
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bounded at every point of D(I+Λ) = D(Λ) and (I+A)x = x + Ax is closed and
convex in X for each x e D(I+ A). Hence, by THEOREM 4, for each a e D(I+
A) the equation (4.1) has a unique strong solution u(t) on [0, oo) with u(0)=a.

LEMMA 8. Let u(t) be a strong solution of (4.1) on [0, oo). Suppose that
u(t) is differentiate and satisfies (4.1) at t = s and s\ 0<s<s'<oo. Then

\\u'(s')\\£e—'\\u'(s)\\.

For a proof of LEMMA 8 see [7J.

PROOF of THEOREM 5: Let u(t) be the strong solution of (4.1) on [0, oo)
with u(0) = a e D(I + A). Choose r>0 such that u(t) is differentiate and
satisfies (4.1) at t=r. From LEMMA 8, for t and t\ £>£'> r

Hence, \\u(t) — u(t')\\-*0 as ί, ί'->oo, that is, the limit s-lim u(t) = u0 exists.
By LEMMA 8 again there is a sequence {tn} such that tn->°o and u{tn)-^ϋ as
τι->oo. Since I+A is demiclosed, we obtain (I+A)u0 3 0. Thus 0 e R(I+A).

Let b be an arbitrary point of X. We define the mapping Ab by ^ # =
Ax — b. Applying the same argument for Λb, we conclude that b e R(I+A).
ΎhusR(I+A)=X. q.e.d.

COROLLARY 1. Let X be strictly convex, X* be uniformly convex, F be
bίcontinuous, and A be an accretive mapping of X into X with open domain.
Then A is m-accretive if and only if A is maximal accretive.

PROOF. Assume that A is maximal accretive. Then A satisfies condi-
tions in THEOREM 4. In fact, the maximal accretiveness of A implies that
Ax is closed and convex for all x e D(A). The demiclosedness and the local
boundedness of A follow from LEMMA 3 and THEOREM 1 respectively. Hence,
by THEOREM 5, A is ra-accretive.

The converse is true in general (see [7; LEMMA 5.3]) q.e.d.

REMARK. In Banach spaces τra-accretiveness always implies maximal ac-
cretiveness, but the converse is not true (for a counter-example see [4]). In
Hubert spaces both notions coincide.

COROLLARY 2. Let X, X* and F be as in COROLLARY 1 and let A be an

f-maximal accretive mapping of X into X with open domain. Then A has an

m-accretive extension.
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PROOF. By Zorn's lemma, A has a maximal accretive extension A The
/-maximal accretiveness of A implies D{A) — D{Λ) By COROLLARY 1, A is
m -accretive. q.e.d.

§ 5. A certain class of nonlinear contraction semigroups

Let T={T(t); ί > 0 } be a family of nonlinear singlevalued mappings of
X into X with D(T(t)) = X for all ί > 0 . We say that T is a contraction
semigroup on X if the following conditions (5.1), (5.2) and (5.3) are satisfied;

(5.1) Γ(*+ *')*= T(t)T(t')x for ί, tf>0 and x e X,

(5.2) T(0)x = x forxeX,

(5.3) \\T(t)x-T(t)γ\\<\\x-γ\\ fort>0andx, y e l

We define the strong infinitesimal generator Gs of T by

h\0 Γl

and the weak infinitesimal generator Gw of T dy

whenever the right sides exist.
It is easy to see that — Gs and — Gw are accretive and Gw is an extension

of Gs.

For mappings A and B, by B C A we mean that A is an extension of B,
that is, G(B)CG(A).

THEOREM 6. Let X* be uniformly convex.
(a) Let A be an m-accretive mapping of X into X with D(A) = X and suppose
that A is locally bounded at every point of X. Then there exists a unique con-
traction semigroup T on X satisfying —GSCA and the following condition:
(5.4) There exists a real-valued and locally bounded function K(x) on X such
that

\\T(t)x-T(tf)χ\\<K(x)\t-tr\

(b) Let T be a contraction semigroup on X satisfying (5.4). Then there ex-
ists a unique m-accretive mapping A with —GSQA. Furthermore D(A) — X
and A is locally bounded at every point of X.

PROOF of (a): First we prove the existence of such a semigroup on X.
By THEOREM 4, for each x e X there exists a unique strong solution u(x; t) of
(3.1) on [0, oo) with u(x;0) = x. Put T(t)x = u(x; t). Then T={T(t); t>0}
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clearly satisfies conditions (5.1) and (5.2). For x, ye Xand ί > 0 ,

(5.5)

<Λ-(T(s)X- T(s)y), F(T(s)x-T(s)y)>ds.
o as

Since —~T(s)x c A(T(s)x) and --^T(s)yeA(T(s)y) for a.e. s e (0, 0,

the last integral of (5.5) is non-positive. Hence, \\T(t)x— T(t)y\\ < \\x — y\\.
Thus T satisfies (5.3). Further (5.4) follows from LEMMA 7 and the local
boundedness of A. The inclusion —GSCA follows from COROLLARY 1 in Q9].
In fact, the corollary say that —GWCA°, where A0 is defined by A°x = {x' e
Ax; \\χr\\= inf ||y|[}. Since GSCGW and A°CA, we conclude that — GSCA.

yζAx

Now we prove the uniqueness of such a semigroup. Let T= { T(t) £>0}
be another contraction semigroup on X satisfying —GSCA and (5.4) for T,
where Gs is the strong infinitesimal generator of T. By (5.4) the function
t-+T(t)x is Lipschitz continuous on [0, oo) for each x e X. Therefre T(t)x is

differentiate a.e. on [0, oo), and hence -^ T(t)x = Gs(T(t)x) e — A(T(t)x)

for a.e. t e [0, oo)5 that is, T(t)x is the strong solution of (3.1) on [0, oo) with
the initial value x. By the uniqueness of a strong solution we have T(t)x
= T(t)x for ί>:0 and x e X. Thus T= T. q.e.d.

To prove (b) we use the following lemma.

LEMMA 9. Let X* be uniformly convex and let A be an accretive mapping
of X into X with open domain. Suppose that for each x e D(A) there exist a
neighborhood Ux of x and a bounded subset Vx of X such that AyΓ\ Vxφ0 for
all y e Ux. Then A is locally bounded at every point of D(A).

PROOF. For each x e D(A), choose a closed ball B(x, r) such that B(x, r)

C Ux. Put K= sup ||z||. Let ye B\x, -̂ -j and y' e Ay. For any z e B

γ \ y+z 6 Ux. Let z' e A(y+z)Γ\Vx. Then we have by the accretiveness

of A

<K\\z\\

Hence, β(θ, γ)c{z; <y\ Fz><^}. Since , γ ) ) ? we
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have B*(θ, y ) c {**; <y\ **> <^f }• This implies that | |/ | | <iC Thus

K). q.e.d.

PROOF of (b): We shall prove the existence of such an 771-accretive mapp
ing. Let A be a maximal accretive extension of — Gs. Then, D(A) — X and
A. is locally bounded at every point of X and m-accretive. In fact, let x be
any point of X. Since the function T(t)x is Lipschtiz continuous on [[0, 00) by
(5.4), there is a sequence {tn} such that T(t)x is differentiate at t = tn, tn\0

and —, = Gs(T(tn)χ)^x/ for some / e l a s ^ o o , Since T(tn)χ^x

as n^>°o and A is demiclosed by LEMMA 3, x e D(A) and —x' e Ax. Thus
D(A)=X. Furtheremore, we easily obtain \\ — x'\\<K(x). Since K(x) is
locally bounded, there is a neighborhood Ux of # such that p — sup ^ ( y ) < o o .

By taking Vx = B(0, p) in LEMMA 9, we see that A is locally bounded at every
point of X, and hence, A is ra-accretive by THEOREM 5.

Next we prove the uniqueness of such an zn-accretive mapping. Let A be

any 772,-accretive extension of — Gs. Then, by (a) of THEOREM 6, there is a

semigroup T={T(t); t>0} such that A^—Gs, where Gs is the strong in-

finitesimal generator of T. For each x e X, T(t)x satisfies —^T(t)x = Gs

(T(t)x) 6 -A(T(t)x) a.e. on [0, 00), and Ί\t)x satisfies -^ T(t)x = Gs(T(t)x)

6 -A(T(t)x) a.e. on [0, 00). Therefore, T(t)x=T(t)x for all *>0. Thus
T— T. From COROLLARY 2 in [1] we obtain A=A. q.e.d.
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