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§ 1. Introduction

Let 2 be a domain in the n-dimensional complex space C*, and let H(2)
be the space of all holomorphic functions in £ equipped with the compact
convergence topology. In this note, we shall study the range of a differen-

tial operator P<z, i) with variable coefficients. If £ is convex and P<i>
0z 0z

is a differential operator with constant coefficients, it is well known that
P(i) maps H(R) onto itself, in particular the range of P(i) P<—8—>
0z 0z 0z
H(Q), is dense in H(2). Now we shall be interested in the case where an
operator has variable coefficients. For example, if the coefficients of an

operator P<z, %—) have a common zero in £, every holomorphic function

in P<z, %)H(Q) vanishes at the point, so that P(z, %)H(.Q) cannot be
z

dense in H(2). The purpose of this note is to construct an operator with

polynomial coefficients without dense range even if its coefficients have no

common zero in some polydisc £. The essential idea is due to I. Waka-

bayashi (4], who proved that for some domain of holomorphy D in C?, the

ou __

equation 2

f cannot be solved for some holomorphic function f in D.

§ 2. Construction of a differential operator without dense range

We use Wermer’s example for a domain of holomorphy (see Gunning-
Rossi [17], p. 38). Let F be the holomorphic mapping of C* into C® defined
by

F(z1, 23, 23) = (w1, ws, ws)

=(Z1, 2122+Z3, 2125—22“)“227223).

Then, for sufficiently small b<0<b<%> F maps the polydisc 4,,

Ab:{(zb 22, ZS); IZ1|<1+b, |Zzl<1+b, IZ3|<I)},
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biholomorphically onto its image D=F(4,). Let 7= be the complex plane

{(w1, 1, 0)}. Then #\D is the annular domain { ) < |wy| <1+b} in the

7 plane. Now, we recall the following

Prorosition 1. (Y. Tsuno [3], p. 148): Let P(%

operator with constant coefficients of order =1, and 2 a non-simply connected

domain in C. Then, P< >H(.Q) 18 mot dense in H(RQ).

> be any differential

Remark. Professor Hikosaburo Komatsu kindly informed the author
that this proposition could also be proved using the index of an operator
instead of analytic functionals. (see [5])

From this proposition and the fact that every holomorphic funection
f(wy) on 7ND is a restriction of some holomorphic function f(w:, ws, ws) €

H(D) to the plane 7N\D (Cartan’s Theorem B), any operator P<5%>:
1
Z“k( D, > (m =1, an+#0, a;: constant) has not a dense range in H(D).

Since D is biholomorphic to 4,, we can pull back the operator P(OZ)
1
to that on H(4;). Now,

6 021 (’9zz a 623 ('9

awl 0w1 021 awl 622 0w1 623

_0 A8 0, zzi—zmt2zmz 0
T 0z1 1—2z502; 1—22z,4 0z3

Therefore

m 0 253 0 | zzi—z,+2z323 0
{];Z=:0ak<b—zz 1—223 0Z2+ 1—‘223 0Z3> }H(Ab)

is not dense in H(4,). (Note that 1—2z;5~0 in 4,.) We define the operator
0 )
Q(z, 5;) as follows:

0 2m-1 le%—ZZ+2ZZZg_a_k
Q(z, 0z> (A—2z) Z <0z1 1— 2z30zz+ 1—2z; 02z

where m>1, a,=+0 and a, is a constant number. Then Q(z, ) has poly-

nomial coefficients which have no common zero in 4, and Q(z, E)H(A,,) is

not dense in H(4,).
Thus we have the following
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ProrosiTion 2. Let Q(z, ai) be the differential operator defined as
V4

above. Then Q(z, %) has not a dense range in H(4,) even if its polynomial

coeffictents have no common zero in 4,.

§ 3. Some comments

Now, we have the following Cauchy-Kowalewski theorem due to J.
Leray.

Tuaeorem (J. Leray [27], p. 399). Let P<z, %) be a differential operator
of order m whose coefficients are holomorphic on {z||z;| <R, j=1, ---, n}, and
0 . .
Pm<z, 5;) be its principal part.

Suppose that P,(0, N)=0 where N=(1,0,...,0). Then the wunique
holomorphic solution u(z) of the Cauchy Problem

P(z, %)u(z) =v(z)

(L) u

where v(z) s holomorphic on {|z;| <R, j=1, ..., n} and w,(z) ts holomorphic

_Ozwk(z% Tty zn), k:(), 1’ Tty m—l’

. . . 1 .
on {|zj| <r, j=2, ..., n}, exists in {zl Hz”<_1ﬁn?qu(qR’ r)}, where

IPn(0,N)|
SupRle(z, Pl

[z71=
{13121

l=Af= 5 1=1%  g=q(®R)=

We shall apply this theorem to find a sufficient condition for an operator to

have a dense range. For a given operator P(z,% of order m with en-

tirely holomorphic coefficients, we define the quantities ¢(R) and [ as follows;
g(R) is the same as in the theorem, and [/ =21>1p q(R)2~R. Let 4 be the unit
0

polydise, i.e. 4={z]||z;| <1, j=1,.-.,n}. Then we obtain
ProrosiTiON 3.  Asusme that 1 >12n%%m, then P(z, %)H(A) 18 dense in
z
H(4).

Proor. Let v(z) be any polynomial and apply the Cauchy-Kowalewski
Theorem with w,(z)=0, k=0, 1, ..., m—1. Then there exists a solution u(z)
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0 . .o 1
of P<z, E)u(z)zv(z), where u(z) is holomorphic in {z||iz||<m-q(R)z-
R} for any R>0, that is, u(z) is holomorphic in {I|z[|<—l——}. If 1>
12nm

121%2%m, 4 is contained in the ball {I|Z||<—l—}. Therefore for any poly-
12nm

nomial »(z), we can find u(z) € H(4) such that P(z, %)u(z)=u(z). This

proves the proposition.

Remark. From Cauchy’s inequality, it is easy to see that [=oco if and
only if P, has constant coefficients and P, (0, N)==0. And if P, has constant

coefficients, P<z, %) maps H(C") onto itself by the Cauchy-Kowalewski

Theorem.
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