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1. Introduction.

This paper is concerned with the oscillatory behavior of solutions of n-
th order nonlinear differential delay equations of the form

where

°°, 7 = 0, 1, ..., τι-1

All functions considered are assumed to be continuous on their domains of
definition, and such that they guarantee the existence of solutions of (*)
which are indefinitely extendable to the right. In what follows, we deal
exclusively with such solutions which are nontrivial for all large t. A solu-
tion of (*) is called oscillatory if it has arbitrarily large zeros and nonoscil-
latory if it is eventually of constant sign.

The purpose of this paper is to present some criteria for all solutions of
several variants of (*) to be oscillatory in the case n is even, and oscillatory
or strongly monotone in the case n is odd.

In Section 2 we establish an oscillation criterion (Theorem 1) for the
simplest equation

(A) *<»>(ί)+j>(0/(*(ί(0))=0,

which generalizes to arbitrary n^>2 recent results of Odaric and Sevelo
[8, Theorem 5; 11, Thoerem 2] for the second order delay equation of the
form (A). The proof of Theorem 1 is based on combining the arguments of
Odaric and Sevelo [8 ,11] with those of Ryder and Wend [10].

In Section 3 we give two oscillation theorems (Theorems 2 and 3) for
the equation

(B) x^\t)+p(t)g(x(δo(t)\ * W 0 ) , - , ^-1 )(i«-i(0)) = 0 .

Theorem 2 is a generalization of a theorem of Sevelo and Odaric [11,
Theorem 5], while Theorem 3 generalizes to equation (B) results of Kartsatos
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[4, 5] for the differential equation χ(f°+p(t)g(x, χ\ • •-, Λ ( I | - 1 ) ) = 0. The
latter has points of contact with results of one of the authors [9].

In Section 4, we prove two oscillation theorems for the equation

under the assumption that δ(t) is merely continuous but the delay τ(t) = t —
δ(i) is bounded from above. These theorems generalize, on the one hand,
some of the recent results of Bradley [2], and Gollwitzer [3] pertaining to
second order differential delay equations, and, on the other, the oscillation
criteria obtained by Licko and Svec [7], Ryder and Wend [10] for ordinary
differential equations of the form x{n)+h(t, x) = 0.

We note that related results have been obtained by Bourkowski [1],
Ladas [6] and Staikos and Petsaulus [12].

2. Oscillation of solutions of (A).

With regard to equation (A) assume that the following conditions are
satisfied:

(a) p(i) is continuous and eventually positive on [α, oo);

(b) δ(t) is a continuously differentiate nondecreasing function on
[α, oo) such that δ(t)<Lt and lim δ(t) = oo

(c) f(u) is a continuous nondecreasing function on R = ( — oo, oo) such
that uf(u)>0 for uφO, and

(d) lim inf , J >0 for some positive aφl.
liil — \ u \ a

THEOREM 1. Let equation (A) satisfy (a)—(d) and in addition

(1) \Ύδ(ty]a*iH-1)p(t)dt = oo, α*=min (α, 1) .

Then if n is even, every solution of (A) is oscillatory, while if n is odd, every
solution of (A) is oscillatory or tends monotonically to zero as t-^oo together
with all its first n — 1 derivatives.

The proof of this theorem is carried out by contradiction and requires
the following two lemmas which describe the possible behavior for large t of
a nonoscillatory solution; see [10].

LEMMA 1. If x(t) e Cw[ό, oo), χ(t)^>0 and x(m)(t) is monotone on [ό, oo),
then either

(i) lim x<
m\t) = 0, or
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(ii) lim x(m\t)>0 and x(t\ xf(t), ..., x(m-λ\i) tend to oo as *->oo .

LEMMA 2. Suppose x(t) e Cn[b9 oo), χ(t)^>0 and x(n)(t)<,0 on [b9 oo).
Then exactly one of the following cases occurs:

(I) χ'(t\ ., χ{n~ι\t) tend monotonically to zero as t -> oo

(II) there is an odd integer k, l^k^n — 1, such that lim x{n~j)(t) = Q for

^ 0 , \\m x^n~k-l\t)>0 and χ(t\ x'(t\ •••, x(n-
/-.oo

Analogous statement can be made if χ(t)<L0 and χ(w)(z)^>0 on Qό, oo).

PROOF OF THEOREM 1. Let x(t) be a nonoscillatory solution of (A). We
may assume that x(t) is eventually positive. A parallel argument holds if
x(t) is eventually negative. Form (A)

(2) x^(t)=-p(t)f(x(δ(t)))<0

for large ί, so, by Lemma 1, ^(w~1}(i) decreases to a nonnegative limit as
£—•00. Integration of (2) from t to infinity yields

and a fortiori

(3) x«-ιKδ(t)) ^ ^p(u)f(x(δ(u)))du

for large ί, say ί ̂  Γ.
Suppose Case I of Lemma 2 holds. Multiply both sides of (3) by δ'(t)

and integrate the resulting inequality from t to 5, T<t<s,

(4) x^\δ(s)) - x'n-

4-

Since Λ;(W~2)((Ϊ(£)) increases to zero as ί->oo5 letting 5 tend to infinity in (4)
we have

Proceeding in this fashion we see that

(5) (-l)
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If n is even, integrating (5) multiplied by δ'(t) from T to ί, T< ί,

Λ;(^O(ί;;^\ , TYl p(u)f(x(0(u)))au

(6)

κ TYi \ P\u)j\χ\y\u)))du .

Let α > l . I t follows from (6) t h a t

(V) [

Multiplying both sides of (7) by ^ ' ( " ^ f f p(t)f(χ(δ(t))) and integrat-

ing from ίi to t2, T<ti<t2,

1 -"

As ί2 tends to infinity the right side remains finite, hence the integral on the
left converges.

If χ(δ(t)) increases to a finite limit c as ί->oo5 then there exists a con-
stant r > T such that c/2 <; Λ;(ί(ί)) < c for ί ̂  r. Then from (8)

which contradicts (1).
If χ(δ(t)) increases to infinity as ί->oo5 then, in view of (d), there exists

a positive constant M such that

for

provided that ίi is sufficiently large, hence from (8)

which again contradicts (1).
LetO<α<l. It follows from (6) with the first integral on the right

side removed that
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(9) i

Multiplying both sides of (9) by p(t)f(χ(δ(t)))/(n — ΐ) ! and integrating from
ίi to t2, T<t1<t2,

p(u)f(x(δ(u)))
= \-a \)t (n-V)\

from which the desired contradiction

can be derived exactly as in the case α > l .
If re is odd, then

(50

which implies that Λ/(ί)<JO for all large t. Hence x(t) decreases to a limit
ΛI>0. Suppose h>0. Then, by integration of (5') multiplied by δ'(t) from

x(δ( Γ)) - x ( δ ( φ ^ ^ C g ( l t ( ~_!i )

r

!

) : p(u)f(x(δ(u)))du

Letting ί-+oo, we arrive at the following contradiction:

-

Suppose now Case II of Lemma 2 holds. Observe that there exists
to^T such that xU)(t)>0 for t^>t0, j=0, 1, •••, n — k — 1. Proceeding as in
Case I,

Integrating the above inequality multiplied by δ'(t) from t0 to t, to<t,
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(10) x^-'KSit)) ^ ίd(t) ^fίo)] Y P(u)f(x(δ(u)))du .

Multiplication of both sides of (10) by δf(t) and integration from t0 to t yield

Repeating this procedure,

^^f^J"p(u) f(x(δ(u)))du ,

which leads directly to the following inequality analogous to (6):

P^-^p"'1 p(u)f(x(δ(u)))du

The proof now proceeds exactly as in Case 1.
This completes the proof of Theorem 1.

COROLLARY. Consider the equation

(D) χ

where p(t) and d(t) satisfy, respectively, conditions (a) and (b) of Theorem 1,
and γ is the ratio of odd positive integers relatively prime. Let any one of
the following hold:

(i)

(ii) r = l, ^LKt)Ύ~λ~ep^)dt = oo for some ε with 0 < ε < l ;

(iii) r<i,

ever?/ solution of equation (D) is oscillatory when n is even, and every
solution of (D) is oscillatory or tends to zero together with its first n — 1 de-
rivatives α s ί ^ o o when n is odd.

PROOF. It is only necessary to consider equation (D) with γ = l. Since
this equation satisfies condition (d) for any a less than 1, it follows from the
proof of Theorem 1 that
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for any a with 0 < α < l , in particular, for a=l — ε/(n — 1). But this is not
consistent with our hypothesis.

3. Oscillation of solutions of (B).

The following theorem is a straightforward extension of Theorem 1.

THEOREM 2. With regard to equation (B) assume that

(a) p(t) is continuous and eventually positive on [_a, oo);

(b) ίy(ί), y = 05 1, ..., n — 1, are continuously differentiate nondecreasίng
functions on [α, oo) such that δj(t) <Ξ t and lim δj(t) = oo

(c) g(u, uu ..., itβ_i) is continuous on Rn and satisfies

^•(w, MI, ..., un-ι)^>f2(u)φ2(uu ..., MΛ_I) i / ^ < 0,

(d) fj(u), y = l , 2, are continuous nondecreasing functions on R such that

ufj(u)>0 for uφO and

lim inf y > 0 / o r some positive ctjφl, and

(e) 0y(ui, ..., M Λ _I), 7 = 1, 2, are continuous on R n l and

inf φj(uu ..., uw_i) = /9, > 0 ;
(«l,.. ,Mn-l)eJR

n-1

(f) ^\Ίίo(t) 2aJiH-1)P^)dt = oo9 a* = min(a y , l ) , / = 1 , 2 .

Tfee ,̂ every solution of (B) is oscillatory if n is even, and every solution of
(B) is oscillatory or tends to zero together with its first n — 1 derivatives if n
is odd.

The proof of this theorem follows exactly the same procedure as the
proof of Theorem 1. As before, the contradiction is obtained from the as-
sumption that equation (B) has a nonoscillatory solution. The details are
omitted.

LFMMA 3. Let φ(t) be a function such that φ(t) e Cn\Ί), oo), φ(t)>0 and

Φ(n\t)<:0 on [6, oo), and let dj(t)9j=O, 1, ••, rc-1, satisfy (b) of Theorem 2

and the additional condition
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(11)

Then it holds that

(12) lim^mi^O for l^j^n-1,

unless φ(t) and its first n — 1 derivatives tend to zero as ί—>oo. The excep-
tional case may arise only when n is odd.

This lemma is a variant of a proposition given in [9, Lemma 2] and can
be proved quite similarly.

Let us now consider equation (B) which satisfies, in addition to (a), (b)
of Theorem 2 and (11), the following condition (G):

g(u, uu . . , un-ι) is continuous on Rn, ug(u, uu • •-, un_ι)>0 for every
(u, uu •.., un-ι) e Rn with uφO, and for every (w, uu •-, un_i) e Rn and
every /t>0, g( — u, —ul9 •••, —un_1)= — g(u, uu ..., un-ι), g(λu, λuu ...,

λun-1) = λΎg(u, uu ..., Mn_i), where r is the ratio of odd positive integers
relatively prime.

We shall prove the following

THEOREM 3. Suppose equation (B) satisfies, in addition to (a), (b), (11)
and (G), any one of the following conditions:

(i)

(ii) r = l, ( \jS0(t)2n-1-6p(t)dt = oo for some ε>0 with 0 < ε < l ;

(iii) r < i ,

if n is even, every solution of (B) is oscillatory, and if n is odd, every
solution of (B) is oscillatory or tends to zero as ί ^ o o together with its first
n — 1 derivatives.

PROOF. Let χ(t) be a nonoscillatory solution of (B). Since, by (G),
— x(t) is again a solution of (B), we may suppose that x(t) is eventually
positive. On account of (B), x(n\t)^0 for sufficiently large t, so it follows
from Lemma 3 that either x(t) tends to zero together with its first rc —1
derivatives as £—•oo, or x(t) satisfies (12), remaining bounded away from
zero for all large t, say t [> t0.

Let the latter possibility hold. Then x(t) must satisfy the equation

(13) y
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for t e [jo> oo)5 where

In view of (12), there is a ί i ^ ί 0 and ε<#(l, 0, • •-, 0) such that

l 0 0 ) -

for all ίl>ίi. Consequently, if (i) holds, then for equation (13) with r > l w e
have

which implies by Corollary to Theorem 1 that every solution of (B) is oscil-
latory or tends monotonically to zero as ί—•oo. The contradiction thus
obtained shows that the assertion of the theorem is true in the case (i). The
cases (ii), (iii) can be discussed similarly by using the corresponding results
of Corollary to Theorem 1.

REMARK. It is easily verified that, in the presence of condition (11),
conditions (i), (ii), (iii) of Theorem 3 are equivalent to the following (i'), (ii'),
(iiiO, respectively:

(iiO r = l, i\tn-1-ε

P(t)dt = oo for some ε>0 with 0 < ε < l ;

(ΠiQ

4. Oscillation of solutions of (C).

Finally, we study the oscillatory properties of solutions of equation (C)
under the assumption that δ(t) is merely continuous but the delay τ(ϊ) = t —
δ(t) is bounded from above by a positive constant M.

Assume moreover that the following conditions are satisfied:

(a) Λ(ί, x) is continuous in 5=Qα, oo)xR;

(b) A(ί, χ)^a(t)φ(x) if χ>0 and A(ί, χ)<Lb(i)φ(x) if χ<0, (ί, x) e 5,
where

(c) α(ί) and b(t) are nonnegative locally integrable on [>, oo) and
neither a(t) nor bit) is identically zero on any subinterval of [α, oo),
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(d) φ(x) and φ(x) are nondecreasing, and xφ(x)>0 and xψ(x)>0 on R
for xφO, and

(e) for some ε ;> 0,

du ^ A f °° du .
-——<oo and \ - — — - < o o .

THEOREM 4. Lei the function h(t, x) in (C) satisfy (a)—(e) and assume
that

(15)

i/ ^ is even, every solution of (C) is oscillatory, and if n is odd, every
solution is either oscillatory or tends monotonically to zero together with its
first n — 1 derivatives.

Theorem 4 is a natural extension of a theorem of Ryder and Wend [10,
Theorem 1] for the differential equation x(n) + h(t, x) = Q. This theorem also
extends to arbitrary n >̂ 2 results of Bradley [_2, Theorem 1] and Gollwitzer
[3, Theorem 1] for the delay equation x"(t) + a(t)[x(δ(t))~]Ύ = 0, γ being the
ratio of odd integers.

PROOF. The proof is essentially that contained in Ryder and Wend
CIO], so we only sketch it.

Let x(t) be a nonoscillatory solution of (C). We may assume that
x(t)>0 for ί^>£0>0, since a parallel argument holds if x(t) is eventually
negative. In view of (b)-(d)

(16) *<">(*)= -h(t, x

for t^tι = to + M. Now we have to examine two cases: Cases I and II of
Lemma 2.

Suppose Case I holds. Then an integration of (16) n — 1 times gives

(17) (-1)V(0> Γ ( y ~ ^ a { v + M)φ(x(v))dv>0, t^t, .

If n is even, then integrating (17) from tλ to t, we have

(Vr~h^a(v + M)φ(x(v))dυ ,

from which, by using (d) and (e), we can derive the inequality
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But this is impossible because of the hypothesis (15).
If n is odd, then

(170 -
t \TL —

so x(t) decreases to a limit Z,̂ >0 as £->oo. LetL>0. Then, integrating
(170 from tx to oo,

which again contradicts (15).
Suppose Case II holds. Proceeding exactly as in Q1(Γ| it can be shown

that there is a r^>ίi such that the inequality

(18) x'(t) >

holds for ί ^ r , regardless of the parity of n. An integration of (18) from
r to t yields

and the required contradiction is obtained just as in Case I.
Our final result is contained in the following theorem which constitutes

a generalization of results of Ryder and Wend [10, Theorem 2] and Gollwit-
zer [3, Theorem 2].

THEOREM 5. Let the function h(t, x) satisfy (a)—(d) and
(f) there exist positive constants λ0, M, N and constants α, β with 0<iα<l 5

0<:/9<l such that for

φ{λx)>zMλaφ{x\ x>0,

ψ(λx)<,Nλβψ(x\ x<0,

and assume that

(19)

Then every solution of (C) is oscillatory when n is even, while every solution is
either oscillatory or tends monotonically to zero together with its n — 1 deriva-
tives when n is odd.

PROOF. Let n be even and suppose there exists a nonoscillatory solu-
tion x(t) such that x(t)>0 for t~^>tQ. Since x{n\t)<,0 for t^>tι =
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x{n~λ\t) is nonincreasing and positive on [_tu oo); i.e., there exists a constant
K such that Q<x{n~ι\t)<K for t^h.

Proceeding as in [10] we can deduce that

(20) χ(n\t) + AaBa(t)(t-M)a(n-ι^n-ι\t)y<,$

for t^t* = 2nt! + M, where ^ = 2~w2/(w-1)! and B=M[_λQ/x(t*)~laxφ(x(t*)/λQ).
Dividing (20) by ^x(n-ι\t)Ja and integrating from r to Γ, £*<r< Γ, we

have

J T j x (T) U

Since the latter integral is bounded from above by \ du/ua, we have the re-
Jo

quired contradiction by letting Γ->oo.
The case where x(t)<0 for t^>t0 can be treated similarly.
Let n be odd and let x(t) be a nonoscillatory solution of (C). Then,

arguing as in the case of even n, we are led to a contradiction unless x{t)
approaches zero as ί->oo. Consequently, a nonoscillatory solution of (C), if
it exists, does tend to zero together with its first n — 1 derivatives when t
increases to infinity.
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