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1. Introduction

Consider the initial value problem

11 y'=f(x, y), y(x0)= yo,
where the function
(1.2) gx, = fulx, )+ f(x, ) fy(x, ¥)

is assumed to be sufficiently smooth. Let
1.3) x1=x0+h, y1=y(x1),

where & is a small increment in x and y(x) is the solution to the given initial
value problem. We are concerned with the case where the approximate
value z; of y, is computed by means of the explicit one-step methods of the
type

(1.4) a=yothkot B 5 pli  (p,0),

and put

(1.5) T=z1—y1=0(h**"),

where '

(16) ko= f (0, y0)s

@ L= glrotah, yotahkoth D bal) (=12, 7).

In our previous paper [1]", we have shown that the formulas (1.4) of orders
p=r+2 exist for r=1,2,3,4and 5. In this paper, together with (1.4), we
consider the formulas

r—1
(1.8) w1 = yo+hko+h? El ilss

1) Numbers in sQﬁare brackets refer to the references listed at the end of this paper.



354 Hisayoshi SHINTANI

and put
(1.9) S=w;— y1=0(h"*"),
(1.10) S=w "‘zl—h Zri ie

In the case where p> g, for sufficiently small 4, the truncation error S of
w, will be approximated by s. Thus we are interested in the relations among
r, g and p. It will be shown that, for r=2, 3 and 4, the formulas of orders
g=r and p=r+2 exist, but those of orders ¢g=r+1 and p=r+2 do not exist;
for r=5, those of orders ¢=4 and p=7 and those of orders ¢=5 and p=6
exist, but those of orders ¢=5 and p=7 do not exist. Finally numerical
examples are presented.

2. Preliminaries

Let D be a differential operator defined by

0 0
2.1 D—a——i-ko—a?
and put
(2.2) Dig(xo, yo):Zb -Digy(an yo) Y;, D’ gyy(xo, yo) X;,

Digyyy(xo, ¥o)=W; (i=0,1,2,..).

Then y§’ = y¥(x,) (i=1, 2,.--) can be written as follows:

(2.3) Y =koy yP =Zo, ¥ =21, y =Zy+ Z, Y,

(2.4) Y =Z;+8Z, Y1+ Z, Yo,

(25) YO =Z,+6Z, Y, +4Z, Y+ Z, Yo+ Z, Y 2+ 872X,

(2.6) Y =Zs+10Z,Y3+10Z, Y, +52, Y, + Z; Yo+ 82, Y, ¥,
+2,Y2+10Z,Z,X,+152Z3 X,

@7 PO =Zs+15Z,Yi+20Z,Ys+152, Y, + 625 Y, + Z, Yo+ 212, Y, Y,

+10Z, Y, Y, +18Z, Y2+ Z, Y3+ Zo Y3+ 1822 Y o Xo+15Z02Z, X,
+602,2, X, +10Z2X,+ 4522 X, +15Z3 W,

Put for simplicity

(2.8) d,-,-=i(i+1):$ia;;'1bj,, G=1, 2, 1} j=2, 3,0, 1)
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29) =G+ D+ Dol duby (=3, 4 1)
(2.10) =G+ 3+ 4) T, afduabye
@11) miy =G+ ) +5) T af dsabye
212) Q=G+ OG+5) T, ol dbiba,
(213) r=GHOGHE) Daitewbs  (j=4, 5,0,

Then z, in (1.4) can be expanded as follows:

@14)  z1=yothbo+h* AoZo+ KA Z, +5 K (drZs+ 4sZ0Y)

3, hs(A4ZS+3ASZOY1+AGZI Yo)+ hG(B1Z4+6BzZoYz

+4B3Z, Yl+B4Z2Y0+B5ZOY2+3BGZ2XO)+ h7(CIZ5
+10C,Z,Y3+10C32,Y,+5CZ, Y1+ C5Z3Y+8CsZ, Y Y,
+C1Z,Y3+10CeZ,Z: X+ 15Cs Z2 X)) + ——hs(DlZe +15D,Z,Y,

+20D52,Y5+15D,Z,Y,+6DsZ; Y, + DsZy Yo+ 21D;Z, Y, Y
+10D5Z, Yo Y1 +18DsZo Y3+ D102, Y3+ D112, Y3+ 18D, 23 Y, X,
+15D,5Z0Z5 X0+ 60D14Z0Z, X, + 10D, 523Xy + 45D 1622 X,
+15D1,Z3W o)+ -,

where
(2.15) Ao= _i:lPi, Ai1=2Za;pi, Az=Zalp;, As= _Zz d1,pj
i= ji=
(2.16) As= Za}pi, As= Za;di;p;, Ae=2d2;pj,
(2.17) B1= Za‘,?p;, Bg=2a]2~d1,-pj, B3=Zajd2,~pj, B4=Zd3jpj,

Bs;= kz=:3€1kpk, Bs=2d}%;pj,

(218) Cl= Za?p,-, szza?dljpj, C3=Za?dszj, C4=20jd3jpj,
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Cs= 2d4jpj, 8Cs=bZasenpr+32esnpr, Cr= Zlips,
Cs= 2d1;dz;pj, Co= Za;d}; pj,

(2.19) Dy= Falpi, Dy=2atd:;p;, D3=2Ialds;p;, Di=2Zalds;pj,
b5=2ajd4jpj, De=23ds;pj;, TD;=53a}eisps+23essp
5Ds=8Saylixpi+23 15 pry Do=Iaressps, Dio=Imisps,

D= 1é4r11p1, 601, =53 diser1sps+ Zq14pes
Dis= 2d,;ds;pj, Dis=2Za;dy;jdsjpj, Dis=2d3;pj,
Di¢= Ja3di;pj, Dir= 2 di;p;.
If we impose the condition that
(2.20) a1=0, di;=a} (j=2,38,..., 1),

then it follows that

(221) dj2:0 (]22, 3,"'3 T), li3=mi3=0 (1/:1, 23"'3 T),
(2.22) eir="dir2,b Qir=ir4,k, Tii =M,
(223) A3=A2, A5:A4, BZZBGZBl, B5:B4, Cz———C9=C1,

8Cs=5C,+8Cs, Cs=Cs, Dy;=D,s=D,,=D;,
TD;=5D,+2D¢, Dy=Ds, D;;=D1y, 6D1,=5D,+ D,
Dy3=D,, D1y=D;.

We make use of the following notations:

o 1
@20 VP aine ey

W(in)z V(”“)——aiV(”),
XPB=WyrP —a; WP, Y =X —a, XY,
Zgu=Y 0 —aY G, U=V O=3a VD (1=0,1,.).
We denote by ()" the expression ( ) in which p,=0and p; (;=1,2,..,
r—1) are replaced by ¢; respectively.

8. Case where r=2

Tha formulas of orders ¢=2 and p=4 exist. For instance, the choice
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a; =% obtains the following results:

_ 1,3, 19 16 2%
(3’1) al*"_g_') aZ_T) 621_100, Pl_ 57 }) P2_114>
_ 1% %
R I § VA VY
_ 1 1
(3.2) T=— 2 H ( ot Zit+-3 L Yo>+0(h ),
8
(3.3) s=— g 2= L1 (B 2,4 2,¥,)+ 0.
The formulas of orders ¢=3 and p=4 do not exist. For otherwise the
equations
(3.4) a1=a2=—§—, az(az—al)Pzz—‘ll—z——é“m

must be satisfied.

4. Case where r=38

The formulas of orders ¢=3 and p=>5 exist. For instance, the choice

ay ———% and a3;=1 obtains the following results:

(4'1) al:%’ (l2=—%, b21 :”]%s a’3=1, b31:_37_4’

b, —189 =32  _100 5 _13

2Ty T LT 4 PP T YT R

=102 T "3 2T o1 378’
42)  T=— b (g Zit o ZoYs— s LVt o5 Lo Vot o ZoY 3+

2
202 Xo>+0(h ),

43 s=—ght ez (S zir L 2y 3 2v) o).

We shall show that the formulas of orders g=4 and p=>5 do not exist.
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Assume the contrary. Then the following equations must be satisfied:

(4.9) (as—a1)(as—as)=0,
(45) Xp=0 (n=0,1),
(4.6) (as—a1)dry=(az—a1)dus,
4.7 (as—as)disps=W .

The system (5) has the solution ai, a; =(4++v6)/10. Hence a;a; and
W =0. Then, from the equation (7), it follows that (a3—a;)d13 0, and so
as#a; by (6). This contradicts the condition (4), and our assertion is proved.

5. Case where r=4

We shall show first the following

Lemma 1. In order that the formulas of orders g=4 and p=6 may exist
for r=4, the conditions

5.1 (az—a1)(as—a1)(as—az) #0,
5.2) a1=0, dy;=a? (j=2,3,4)
must be valid.

Proor. Assume that such formulas exist. Then there must hold the
following equations:

4
(6.3),, 'Zz a(aj—a)pi=W (n=0, 1, 2),
=
(5.4),, k=Z‘; 4az(ak_al)(ak—ai)Pk=X(1'? (j=#i;51, j=2,3),
4
(5.5)7; Zza?dljp,-= V(n+2),
=

and (4);, (6); and (3); (n=0, 1).
Suppose that (az—ai)(as—az)=0. Then, from (4); and (4), (j=3), it
follows that

(as—a1)(as—az)=0, X{9=0.

Hence, from (4), (n=1, 2), we obtain the equations X{#=0 (n=1, 2), so that
a; and a; must satisfy the system of equations X% =0 (n=0,1,2). Asis
easily checked, this system has no solution. Hence as;=~a; and aza;. Simi-
larly it can be shown that a; 7 a;.
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Put
(5.6) dij=(a;—a1)s; (j=2,3), s3—S;=(as—az)rs.
Then, from (3){, (4)4, (5)5, (8)., (4), and (5),, (n=0, 1, 2), it follows that
(5.7 diy=(as—a1)[sz+(as—az)rs],
(5.8), VoD s, + Xrs  (n=0, 1, 2).

Solving the system of equations (8), (n=0, 1, 2), we have the solution
a1=0, s;=a, r3=1,

and the condition (2) follows from (6) and (7). This completes the proof.
The formulas of orders ¢g=4 and p=6 exist. For instance, the choice

a; =% and a4=1 yields the following results:

(5.9) 111—_—0, az=%, b2y =5—10, az= g ) ba1— %

~1 2 2 1 1
=g Pr=ge P31 P4 g6 VT 120

-9% .5  _1 __5 __5
=9 13~ 24 T3 "2 96° "°T 144

T
(5.10)  T= —7i 125(25 +10Z, Y5+ 15Z3X,) +_<z1 Y2+ ZoZi Xo)
g ZaYi— e Z Yot LYo+ Y3 |40,
5 75 25 15
(5.11) s=——51!—h5 1 (Za+3zoyl)—ih6[ 45(Z4+620Y2+421Y1

+3Z2X,) JF%(Z2 Y0+ZOY3)]+0(M).

Now we shall show that the formulas of orders ¢=5 and p=6 do not

exist. Assume the contrary. Then the following equations must be satisfi-
ed:

(5.12) as(as—az)(as—a3z)=0,
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(5.13) XH=0, X&=0,

(6.14) as(as—az)ps+alas—az)ps= W5,

(5.15) dysps+ dzapa=V'®,

(5.16) (as—as)deps=W§,

and (14)" and (15)". Solving the system (13), we have the solution
(5.17) az, a3 == Y8

Put dis=as(as—az)ts. Then, from (14), (15), (14) and (15) it follows
that

(6.18) dza=as(as—as)ts.

By (18), (16) and (12) we have the equation W =0, from which follows that

as =—§—. This contradicts the result (17). Hence such formulas do not exist.
Summarizing the results, we have the following

TueoreM 1. For r=2, 3 and 4 the formulas of orders g=r and p=r+2
exist, but those of orders g=r+1 and p=r+2 do not exist.

6. Case where r=35

We shall show the following

TueOREM 2. For r=5, the formulas of orders g=4 and p="T and those of
orders g=>5 and p=6 exist, but those of orders g=>5 and p="T do not exist.

Assume that the formulas of orders ¢=5 and p="T exist. Then there
must hold the following equations:

5
(61)11 kzzaﬁ (ak_al)Pk: W;n) (n'__Oa 13 2) 3) 4),
5
(6.2), k_zazdupk: y oD (n=0, 1, 2, 3),
(6.3)n k_;k%_aﬁ(ak—al)(ak—af)pk=X‘1”3 (1=1,2,8,4;n=0,1, 2, 3),

(6.4), ki dep=U®  (n=0,1,2),
=3

5
(6.5)” Z aZ(ak—a4)d1kpk= WE{H'Z) (n=0, 1, 2),

k=2,k+4
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(6.6), _Zsa’i(ak——a4)ckpk= Wt —8a, We®  (n=0, 1),
(6.7), 2 af(ar—a)ai—ai)ai—a)pi=Y{;
I1=Ek,5

G#j, ks jF=k; i, ], k=2, 3, 4; n=0, 1, 2),
(6.8 af(as—ai)(as—az)(as—as)(as—a) ps=2Z 334 (n=0, 1),
(6.9) 2 (ar—az)(ar—as)dupi=XE,
(6.10) (ar—as)ar—aj)cipr=X§ —8a; X ¥ (j#k; j, k=4,5),
(6.11) (as—az)(as—as)as—as)diaps=Y 3s,

5
(6.12) Menwpi=VW,
k=3

613) % fups=P,
(6.14) 20(‘14_al)(a4—¢lz)(a4_(13)[754}75:03
(6.15)  (as—as)fups=R,

and (1);, (n=0, 1, 2), (2);,, (3),, (m=0, 1), (4);, (6); and (7);, where

k—1
(6.16) c,=6 _Zz (aj—a1)bs; (k=38, 4, 5),
P
k—1
(6.17) fk :12 .23 (a]--—al)(aj—az)bkj (k:4, 5),
p2
(6.18) P=%—1—10(a1+a2)+-;—a1az,
(6.19) ) =%—1—18(a1 +a2)—l——(13—a1a2 ——%agP,

1

(6.20) R=—42——%(a1 +az)+1‘3’—0a1a2—a5P.

Consider the following system of equations:
Then it follows that

9 3 1
(622) ai+a,~+ak =—77—, a;aj+a,-ak+ajak ='T7—9 aiajak:_gs_,

so that a;, a; and a, are the roots of the equation
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(6.23) P(x)=85x%—45x%4+15x —1=0.
This equation has three real distinct roots and they can be expressed as

follows:

3 42
7 7343

cos %(¢+2k7z) k=0, 1, 2),

where tan ¢=7. Hence these|roots do not satisfy any quadratic equation
with rational coefficients, and they lie in the interval (0, 1).

LemMMmA 2. Let a;, a; and a, be the solution of the system (6.21). Then

and '%‘ak 18 not a root of the equation (6.23).

(2) —

Proor. Suppose that X{»=0. Then, from the equation Y %,=0, it
follows that X3 =0. Hence a; and a; must satisfy the equation 7x*—8x +2=0.
But this is impossible, and so X Z'=~0.

Suppose that X{9=0. Then X{}’=0 by the equation Y{%,=0, and X{%¥=0
from Y{,=0. This contradiction shows that X{9=~0.

Assume that P(a;/8)=0. Since a,+0, evidently a;=a;/3. Hence sup-
pose that a;=a,/3. Then by (22) we have

40,' + a; :—g—, 3(2? + 4a,-aj :—%——,
so that «; must satisfy the equation 91x%2—86x+3=0. But this is impossible
and so a;a;/3. Similarly it can be shown that a;a,/3. Hence P(a;/3)
0 and the lemma is proved.

LemMa 3. Under the assumption that the formulas of orders ¢=5 and
p=" exist for r=b, let i, j, k and | be a permutation of 1,2,3 and 4. If a;=
a, then a;, a; and a; satisfy the system (6.21),

(6.25) (as—a1)(as—az)(as—as)(as—as)=0,
and
(6.26) X% —8a, XE+0.

Proor. Suppose that a;=a;. From (7); and (7), follow (25) and Y%, =0.
Then by (7), (n=1, 2) we have Y, =0 (n=1, 2).

Suppose that (26) is not true. Then, since X{¥—a,X¥=0 by (21), we
have (a;—38a:)X®=0. By (24) it follows that a;,=38a;. Since ¢; and a, are
roots of the equation (23), this contradicts the lemma 2. Thus the proof is
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complete.

Lemma 4. In order that the formulas of orders ¢=5 and p=T may exist
for r=>5, it is necessary that

aFar (k3K 1=1,2,3,4).

Proor. Suppose first that a;=a;. Then ¢;=0 and e, must satisfy the
equation (23) by the lemma 3. If we put cys=(as—a;)(as—a3)ts, from (4),
(83)4, (4)0 and (8), (i =38), it follows that

(6.27) cs=(as—a1)(as—as)ts.
By (27), (25) and (6), (=0, 1) we have
Wptd —8a, Wt =0 (n=0,1).

Solving this system, we have a;=(4+v2)/21. But this value does not satis-
fy the equation (23). Hence a;a;.

Suppose next that (a3s—a;)(as—az)=0. Then f;=0 and R=0 by (15).
Since by (22)

7(a1+a2)=9—7a4, 7a1a2=7aﬁ—9a4+3,
from the equation R=0 we have

g — 63a2—67a,+14
® T 10502 —114a,+ 25"

By (25) as must be equal to one of a;, a; and a4, so that it must satisfy the
equation (23). But, as is easily checked, it is impossible. Hence a3=~a; and
as 7&0,2.

Suppose that ay=a; and put d;3—di2=(azs—az)w. Then, from (5);, (1)¢,
(8)5, (6)0, (1)g and (3), (i=2), it follows that

(6.28) (as—a1)[d1s— d1oa—(as—az)w]=0,
(6.29) WE=Wdi+ X Gw.

By (5)1, (1)1, (3); and (28) we have

(6.30) Wi =Wi'di+XHw.

Since by (21) and (24)
X =aaX1y, XF=aX1y, X0,

we have di;=a} from (29) and (80). Similarly d;3=a% can be obtained.
By (26) and (10) (k=5) we have

(6-31) (as—al)(as—as)%#O-
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Hence it must hold that as=a, by (25) and then d,s=d;; by (28). Put ¢;3=
(a3—aq)(@s—az)t;. Then, from (4)5, (8);, (4), and (8), (i=2), it follows that

(6.32) caqs=UP —XQt3=csps+csps.
From (2){, (3)5, (2)o and (3), (i=2, 3) we have
d14t_]4 = d14}74— (0)/(02 a1)(as—a;) 0.

Hence ¢;=p;0, and c5ps=0 by (82). Since p;+#0, we must have ¢;=0,
which contradicts (31). Hence a,+a;.

Suppose that (as—az)(as—a3;)=0. Then we have X{¥=asX$% by (11) and
XP¥=a: X% by Y{%,=0. Hence as=a; by (24). Assume ﬁrst that as=as;.
Then X{¥=38a:X{% by (10) (k=4). This contradicts (26), so that as=*as.
Next suppose that a;=a,. Then (as—a;)di5=0 from (5);, (8){, (6)o and (3)
(i=2). Since as—as=a;—a; 0, it follows that d,s=0 and XZ =0 by (9).
This contradicts (24). Hence ay5~a,. Thus the lemma has been proved.

Proor of the theorem. Assume that the formulas of orders ¢=5 and
p="T exist and put

(6.33) dipy=(ar—ai)s: (k=2,3, 4)
(6.34) si—se=(a;—az)r; (j=3,4), ra—ry=(as—as)u.

Then, from (2)g, (1)g, (8)g, (71, (2)ny (L), (8)n (1=2), (7), (k=4) (n=0, 1, 2), it
follows that

(6.35) dis=(as—a1)[s2+(as—az)(r3+(as—a3)u)],

(6.36) Vo= Ws,+ X Wrs+ Y Bsu (n=0, 1, 2).

Also from (2)§, (1)§, (8¢, (2)ny (1)n, (B)s (i=2) (n=0, 1, 2, 3), we have
(6.37) (as—a1)(as—az)(as—a3)(as—as)u=0,

(6.38) Wrth=X"s+ Y Byrs (n=0,1, 2).

From (12), (4),, (13) and (14) it follows that

(6.39) V=205, + Pr;+Qu.

The system (36) can be solved as follows:
(6.40) u=3b5a%/d, rs=[1—15a,+35a%(az+as3)]/d,
s2=(a,+a2—15a1a,+3bala3)/d, d=1—15a;+4b6a% —35a3.
Put
(6.41) ci=(aj—a)(a;—az)t; (j=38,4), ts—t3=(as—as)v.
Then from (4)5, (8)§, (1)4, (4),, (8), (i=2), and (7), (k=4) (n=0, 1, 2) we have
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(6.42) cs=(as—a1)(as—az)[ t3+(as—as)v],
(6.43) UM=XWts3+ Y %0 (n=0, 1, 2).

Suppose that a, 0. Then (25) must be valid by (40) and (37), so that
we have by (8),

(6.44) Z%y=0 (n=0, 1).
Since Y%V =asY {3, (n=0, 1) by (44), from (38) it follows that
XGP=Ys  (2=0,1)

and from this we have

(6.45) X =a X%,

because Y4, =a,Y (%, by (44). Similarly from (43) it follows that
Weed—8a, W2 =Y ®%,13 (n=0, 1),

and from this we have

(6.46) X =38a;X{.

From (45) we have Y %,=0 and so by (44).

(6.47) Yy, =0 (n=0, 1, 2),

because a¢; =0 by the assumption. From (45) and (46) it follows that a,=
az/3. Then by the lemma 2 qa, is not a root of P(x)=0, so that a,ai.
Substituting (40) into (89), we have

6 —14(a,+az+as)+42(a1az +a1a3 + aza3) —210a1a2a3 =0.
On the other hand, by (47) and (22) there holds
6 —14(az+as+as) +42(azas + azas + azas) —210aza3a, =0.
From these we have
(6.48) (as—a1)[1—38(az+as3)+15aza;3 ]=0.
Since as5~a; and
7[1—38(az+a3)+15aza; ]=105a% —114a,+ 250,

(48) can not be satisfied. Hence a,=0.
When a, =0, the system of equations (43) has the solution

a2=0, ’U=1, t3=as,
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which contradicts a;=a;. Thus the last part of the theorem has been
proved.

The formulas of orders g=>5 and p=6 exist. For instance, we have the
following formulas:

(6.49) a1=0, az:%, 621=%, 03——512—, b31=0, b3 =%,
_ 337 _ 44 _ 472 _ 2
bs1=1050° 5= ~315° P = 1575° P54 105
1% %5 1
P1= 18° P2= 96 y P3=VY, P4'—1443P5— 96°
1 2 %
91—36s92—72,93 9,q4 72,
1 25 2 25 1

r=—

360 2oy °T T 90 T14L °T T 96

(650) T— 71, [125 (Zs+10Z, Y3+ 1522 X;) —ﬂ_(z1 Y2+ ZoZ,Xo)
1z Y2}+0(h8)
15 0 ’
651)  s=—o b o (Ze+620Y2+323X0) + 5 (2 Yo+ Z0YD) |
1 H 161 7 1 10z,Y. +1BZ3X) +40 (z Yot ZoZi X,
_— 1000 5 0£3 1 142 041 0)
+%ZZY1+ 510 Z, Y+ gg ZYoY, — ZOY2]+0(h8)

The formulas of orders g=4 and p=7 exist. For instance, we have the
formulas as follows:

(6.52) a, =0, a2=—,:}—, 1721=—918—, aa=%, b31=—25L0’
bo,—2L , 6 5 238 ., __ 10
27950 4T T 41T 2058 T 1323
1875 4T _56 , _ 425
bis=gger @=L b=~ 2= gz bss= e
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po_ 147 13 _ 2401 625 _ 2401
4= 7605 * P17300° P27 12960 £ 3564° P4 26400
~un 1 49 325 49
Ps=3160° 1~ 40> 9* " 216 9°T 2376° 9T 440°
11 _ 539 2 49 11
! 600° '2T12960° °T 648 T 2400’ T 2160°

(6.53) T— Lh8[525(z,~,+15ZOY4+45ZZX2+1523W0>+ (Z: Y3 482,72, X,

—Z%YOXO)-——;—(ZZYZ—I—ZOZZXO)—F (Z3Y1+3Z0Y§)—I—10524Y0
5’5 Z Yo Yot 2o 2, Yo Vi — g (L Y3+ 2,V D+ 1115;522)(0]
+O0(h°),
(654) s—=— 5‘h5 1 7 v,— GL [490(Z4+6Z0Y2+322Xo)+24521Y1
8 (Z,Yo+2,Y? h7 869 (1 10Z,Y:+1522X
9_8( 2 Yo+ 2ZoY3) | — 12250( 5+ 0 Y3+15Z3X;)
L 1012 8 % 141
+ 1002 (21 Yok 2023 Xo) + e Ze Vit ooy Zs Yot gon 2o YOYle
+ORY.

Thus the theorem has been proved.

7. Numerical examples

The initial value problem

(T.1) Y=y y0=1

is solved numerically by means of the formulas for r=2, 3 and 4 with the
step-size h=0.25. At each step of integration z; is accepted as the approxi-
mate value of y,. The values of s and S are listed in the table 1 for com-
parison.
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Table 1.
r=2 r=3 r=4
X ] S s S s S
0.25 —1.80E—3 | —1.80E—3 | —3.37TE—6 | —3.40E—6 | —1.47TE—7 | —1.48E—7
0. 50 —2.31E-3 | —2.31E—3 | —4.32E—6 | —4.37TE—6 | —1.89E—7 | —1.90E—7
0.75 —2.96E—3 | —2.97E—3 | —5.55E—6 | —5.61E—6 | —2.43E—7 | —2.44E—-7
1.00 —3.80E—3 | —38lE—3 | —7.13E—6 | —7.20E—6 | —3.12E—7 | —3.14E—7
1.25 —4.88E—3 | —4.89E—3 | —9.15E—6 | —9.25E—6 | —4.00E—7 | —4.03E—7
1. 50 —6.27TE—3 | —6.28E—3 | —1.18E—5 | —1.19E—5 | —5.14E—7 | —5.17E—-7
1.75 —8.05E—3 | —8.06E—3 | —1.51E—5 | —1.53E—5 | —6.60E—7 | —6.64E—7
2.00 —1.03E—2 | —1.0dE—2 | —1.94E—5 | —1.96E—5 | —8.47TE—7 | —8.53E—7
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