
HIROSHIMA MATH. J.
2 (1972), 285-298

Groups of Self-equivalences of Certain Complexes

Shichirδ OKA
(Received September 19, 1972)

Introduction

Throughout this note, all spaces, maps and homotopies are assumed to be
based, and any map and its homotopy class are written by the same letter.

Let «?(X) denote the group of self-equivalences of a topological space X.
The member of £(X) is a homotopy class of homotopy equivalences of X into
itself. The group operation of £(X) is given by the composition of maps.
This group <£(X) is a homotopy type invariant of X

Several examples are known (see [ΊΓ|-[10]). In particular, for a CW-
complex K~Sn\Jen+k+1, k^>— 1, having two cells, the group £{K) has been
studied in the case k=— 1, n^>2 and the case k = 0, τ&J>l. The former case
is treated in [9: Example 8], and the latter is due to P.Olum [Ύ] for n = l and
the recent work of A.J. Sieradski [10] for arbitrary rc^>l.

The purpose of this note is to determine the group £(K) for a CfF-complex
K=Sn\Jae

n+k+1, &;>1, under the condition that the attaching class a is a
double suspension, a—E2a!\ and both a and Ea" have the same order. Our
main result is stated as follows:

THEOREM 3.2. Let K=Sn\jae
n+k+1, &;>1, n^>2. Suppose that there exists

an element a!1 6" πn+k-2(Sn~2) such that E2arf=a, and both Ea!' and a have the
same order m. Let ί: Sn->K and p: K-+Sn+k+1 be the inclusion and the projec-
tion^ respectively', and set

G=ί*P*πn+k+1(Sn\

which is a subgroup of the group [_K, K~} with the track addition.
Define a two-sided action of the multiplicative group Z2 —{ —1, 1} on G by

-*n)r, g(-ϊ)=-g for g=i*

where cn e πn(Sn) is the class of the identity map of Sn.
Then, the group &(K) of self-equivalences of K is isomorphic to the multi-

plicative group whose entries are matrices

0 yj ' ^ J ^ 2 , g£G for 771 = 1,:

(θ f \ oc^Z2, geG, for m>2,

where the matrix multiplication is given as usual.
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The procedure of the computation is as follows. We first calculate, in
§1, the homotopy set [X, KJ, which is an abelian group with respect to the
track addition + , since K is a double suspension. The result is summarized
in Thm. 1.3. We study secondly, in §2, the multiplicative structure of [Ί£9 K^
defined by the composition of maps. As is well known, the left distributive
law β(r + δ) = βγ + βδ holds, but the right one does not in general. Introducing
the homomorphisms ψa\ [K, K"]->[X, KJ defined by φa(θ) = (ac)Θ for arbitrary
integer a(c denotes the class of the identity map of K\ the multiplicative
structure of [_K, KJ is determined in Thm. 2.2. In §3, the group £(K) is
determined by making use of Thm. 2.2, where £(K) is regarded as the subset
of \Ί£9 KΓ\ of all invertible elements with respect to the multiplication. The
result is, first, summarized in Thm. 3.2. by use of certain matrices. Next, we
paraphrase the result as the form of certain semi-direct products of groups
(Thm. 3.3). Finally, in Thm. 3.5, we treat especially the case when a=0 or
K is a wedge of two spheres. In §4, several examples are given.

The author would like to thank Professor M. Sugawara who read the
manuscript and gave him useful su ggestions.

§ 1. Additive structure of [K, KΓ\

Let K denote a CϊF-complex

(1.1) K=Sn\Jae
n+k+\ 7i^2, &^1,

such that the attaching class a e πn+k(Sn) satisfies the following condition:

(1.2) There is an element a!' e πn+k-2(Sn~2) such that a is the double suspension
of a/f\ a—E2a'\ and both a;=Ea/; and a have the same order m.

Obviously, by (1.2), zιί>4 if α^=0, and m is finite.
Set K/=Sn~1\ja,e

n+k the mapping cone of a'. Then, there is a sequence
of cofibrations

o « - l j ' ) Jζ' P' cn + k a ς*n j jζ- p on +

We identify canonically K and the suspension EK! of K!\ EK'=K, and so

(1.3) Ei'=ί9 Epf=-p, Ecf=c,

where (c' resp. c) stands for the class of the identity map of K! (resp. K). Also
we denote by cn e πn(Sn) the identity class of Sn.

Since a! is a suspension and of order m,, we have (mcn-i)<x/=a/(mcn+k-i) = O,
hence there are elements ξr e πn+k(K') and -η' e [K!y S w - r ] satisfyingpίξ/==τncn+k
and i'*y'=mcn-i. The element $' is a coextension (for the definition, see e.g.
[11: p. 13H) of mcn+k-i and determined up to ϊ*πn+k(Sn-1). Also rf is an exten-
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sion of mcn-ι and determined up to p'*πn+k(Sn~ι). We put

λ'=p'*ξ' and M'=i'W in [K, iΓ].

These are determined up to i^p/^πn+k(Sn~1). Since K! is a suspension, the set
[Kf, K'~] becomes a group by the track addition + . We shall show the rela-
tion λ' + β'=πu' in [_K\ K'J

Since ϊ is a suspension, we have ίr*(λr + βr—mcr) = ί/*λ' + ί/*β' — mi/^c/ = 0,
and so λ' + β'-mt'=p'*γ, γ e πn+k(Kf\ by the exactness of πn+k(K')-^[_K\ Kf~]
->πn-ι(K'). We have also pr*p*γ=p*(λ' + βf — mcf) = § and p*γ = 0 since
/ * : πn+k(Sn+k)->[K\ Sn+kΊ is isomorphic. The homomorphism pi,: πj(K\ 5" ' 1 )
->Uj{Sn+k) is isomorphic for j^2n + k — 3 and rc^>3 by Thm. IIof [2], hence
if n^>3 we have r €" ί^πn+k(Sn~1) from the exact sequence πn+k(Sn~ι)^»πn+k(K-r)
->πn+k(K\ Sn~ι). Thus, ^ / + y - τ τ i ί / 6 ί£//*7Γn+ik(S11-1), and by a suitable choice
of λ' up to iίp'+πn+kίS"-1), we obtain λ' + β'—mc'=Q if τ ι ^ 3 . If n = 29 then
α/=0 by (1.2), Kf is a wedge of 5 1 and Sk+2: K=S1VSk+\ and £' and ^ r are
unique since 7ΓA.+2(51) = 0. SO we can choose ξf (resp. τjf) as the inclusion (resp.
retraction). Thus, ξrp' + ίfη'=cf and so λf + μr=tr.

We have proved the following

LEMMA 1.1. There exist elements λr and β' of [_Kf, K'~} satisfying

λf=pr*ξ\ pf*ξ' = mtn+k for some ξ' e πn+k(K!\

β'=i'*η\ ϊ*η' = mcn-i for some ηr e [K\ 5*-1],

The track addition + defines a group structure on [7Γ, KJ, which is
abelian since K is a double suspension. We define two elements λ and β of

ZK, K2 by

(1.4) λ=Eλ\ β=Eμr.

By (1.3) and Lemma 1.1, these elements satisfy

(1.5)

where ξ= —Eξf and η=Eη'.

LEMMA 1.2. The images of the following two homomorphisms are equal.

(Eά)*: πn+1{Sn)-+πn+k+1{Sn\

α*: πn+k+1(Sn+k)-*πn+k+1(Sn).
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PROOF. If a=0, the lemma is obviously true. So, we prove the lemma
assuming a^ψO and n^>4:.

As is well known, the group πi+1(Sι), l^>2, is cyclic and the generator τjι
satisfies E ηι-i = -ηι and 2̂ / = 0 for Z;>3.

Applying the theorem of M.G. Barratt and P.J. Hilton [1 : Thm. 3.2H to
the reduced join Ύj2/\a" e πn+k+i(Sn) for an element a" satisfying E2a"=a,
we obtain the commutativity

This proves the lemma. q. e. d.

Now, we calculate the group [_K, K~].

THEOREM 1.3. Let K be a complex of (1.1) such that the attaching class a
of K satisfies (1.2). Then, the group \ΊK, K^\ is the direct sum

where the elements c of (1.3) and λ of (1.4) generate the first and the second
infinite cyclic factors, and G is isomorphic to πn+k+i(Sn)/Ima* = πn+k+ι(Sn)/

PROOF. By Thm. II of [21 the homomorphism p*: πj(K, Sn)-+πj(Sn+k+1)
is isomorphic for j = n + k + l and epimorphic for j = n-\-k + 2. The boundary
homomorphism d: πj+χ(K, Sn)-+πj(Sn) of the homotopy sequence of the pair
(K, Sn) coincides with a^E~%: πj+1(K, Sn)-+πj+ί(Sn+k+1)^πj(Sn+k)->πj(Sn)
for / = rc + & + l, n + k + 2. Thus, we obtain an exact sequence

πn+k+ι(Sn+k) -**+ πn+k+1(Sn) - i ^ πn+k+1(K) -^ πn+k+1(Sn+k+1)

from which the group πn+k+1(K) is calculated: πn+k
the first factor is generated by £ of (1.5).

By the cellular approximation theorem, i*\ πn+ι(Sn)-+πn+ι(K) is epimor-
phic. Hence, by Lemma 1.2, the homomorphism (£α)*: πn+i(K)->πn+k+ι(K)
is trivial. Also it follows that πn(K) is isomorphic to Z with the generator
i and α*: πn(K)->πn+k(K) is trivial.

We have, therefore, the following split exact sequence

(1.6) 0-+πn+k+1(K) JU IK, KJ J1+ πn(K) -> 0.

A splitting homomorphism s: πn(K) —• [_K, K~J is given by s(i) = c, and so
\^K, KJ is the direct sum of Imp* and Ims, since [X, KJ is abelian. Thus, the
theorem is established. q.e.d.

REMARK. The above discussion can be done for K' instead of K. Conse-
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quently, the group \JC, K!^\ is a semi-direct product of Imp7* and Im/ for a
splitting s': T^-IOT)-+[£', K'J

§ 2. Multiplicative structure of [K, KΊ

The composition of maps defines an associative multiplication of [K> K~]
with the unit c. Concerning with the addition +, the left distributive law
β(r + δ) = βγ + βd holds, but the right one does not hold in general. As is well
known,

(2.1) ( r + δ)Eβ = γEβ + δEβ for β e [X, Γ], r , 8 e [_EY, Z],

and in particular

(2.2) aγ = r(ac), aEγr=(ac)Eγf for γ 6 [K, F], f e [X, K'J and any integer α.

For any integer α, we define a homomorphism

? β : K ϊ ] - > K KJ by ^β(θ) = (αθβ.

Similarly we define φa\ πn+k+ι(Sn)^»πn+k+ι(Sn) as the left translation by acn

instead of ac. Then, the following is obtained immediately.

LEMMA 2.1. φaί*p* = i*p*Φa9 <Pa(θ) = aθ if θ = Eθf and ψa(g) = ag if g=Eg\

Especially we have

(2.3) φa(λ) = aλ, φa(μ) = aβ for λ and β of (1.4).

By Lemma 2.1, the subgroup G of {Jζ, K'] defined in Thm. 1.3 is closed
with respect to φa, and φa\G is determined by ψa.

REMARK. According to the theorem of P. J. Hilton |ΊΓ], the homomorphism
φa is described by use of the (iterated) Whitehead products and the (higher)
Hopf invariants.
(2.4) (Hilton [3: Thms. 6.7 and 6.9]) For any integer a and any ge πn+k+i(Sn),

where Ho: πi{Sn)~>πi{S2n-1) and Hλ: πi(Sn)->πi(S3n~2) are the Hopf invariants
being generalized by P.J. Hilton [3: p. 165].

Now we consider the multiplication of \ΊK9 JSΓ]. Since pi = 0, for the ele-
ments λ and β of (1.4) and (1.5), we have easily

(2.5) λβ = (JίpXi η) = 0, mλ-λ2 = λ(mc -λ) = λβ = 0.

Since λ and β are suspensions, we have
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mju — jU2 = (me — β)β = λju = θ, βλ = (me — λ)λ = mλ — λ2 = 0,

by (2.1) and (2.2). For any elements g=ί*p*r and h = i*p*δ of G C K KJ9

γ, δ e πn+k+i(Sn), we have also

(2.6) λg= (ξp)(ίγp)=0, gu=(irpXίy)=0,

gh = (ίrp)(ίδp) = O.

THEOREM 2.2. Let K be a complex of Thm. 1.3 and G be the subgroup of
QJSΓ, K~] defined in Thm. 1.3. Then, the multiplication in [_K, K~] is given by
the formula:

where α, ό, α', b' e Z and g, g 6 G.

PROOF. Put θ=ac + bλ + g and θ/=a/c + b/λ + g'. Then, by use of the
right distributive law and (2.1-2.2), we have

θ(a't) =a/θ = aa'c g

θ(Vλ) = Vθλ=abfλ + bb'λ2 + b'gλ = (abf + mbbr)λ + mb1 g by (2.5-2.6).

Set g'=ίτp- Then, since i is a suspension and λi = gi = 0, we have also

Thus, the theorem is established. q.e.d.

§3. The group

The group &(K) consists of the elements θ of [_K, K~] having two-sided
inverses θ\ that is to say

(3.1) θθ' = θrθ = c.

Put θ=ac + bλ + g and df=art + bfλ + g\a,b,a\b'eZ,g,g'<ϊG. Then,
by Thm. 2.2, we have

From the first two equations, it follows that
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α = α ' = ± l , b = b'=O for arbitrary m,

a — a = = i t A, o = = o — -hv^/77i/ i o r ττι — JL, Z.

Therefore the solutions of (3.1) are the following elements.

θ = c + g, θr = c — g for arbitrary 77i,

θ=— c + g, θ'= — c + ( — c)g for arbitrary TTI,

θ = θr = c — λ + g for 77i = 2,

for 77i = 2,

for 771 = 1,

for 77i = l .

In the above, g runs over the whole of G.

Summarizing the above, we have proved the following

PROPOSITION 3.1. As a subset of [_K, KJ the group &(K) is as follows:

{•± c-\r g\ gζ G} for 77i>2,

{±c+g, ±(c — λ) + g\geG} for 77i = 2,

{±c + g, ±(c — 2λ) + g\ g€ G} for 771 = 1.

When 77i = l,2, we define an element σ e £(K) by

f -c + λ for 77i = 2,

σ =
{ -c + 2λ for 77i=l.

Then, from Prop. 3.1, any entry of £{K) is written as

<7£(—tf)6 -fg , ε, ε / = 0 or 1, g^G for ττι = l, 2,

( — c)6 + g, ε = 0 or 1, gςG for 771 >2.

By Thm.2.2, we have easily

(-<ry'+η'' + (-!)"'g+(-c)£h for m=l, 2,

y + h) = (-cγ+» + (-l)»g+(-cγh ίorm>2.

This suggests us to describe the group tf(K) as a matrix form.

THEOREM 3.2. Let K be the complex of (1.1) satisfying (1.2), and G be the
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(additive) subgroup i*p*πn+k+ι(Sn) of [_K, K~\. Define a two-sided action of
the multiplicative group Z2 = { —1, 1} on G by

(-l)g=(-c)g, # ( - ! ) = - # for geG.

Then the group S(K) of self-equivalences of K is isomorphic to the
multiplicative group whose members are matrices

(* g\
x,yeZ2, geG for m = l,2,

\ 0 y )

f * g\
xcZ2, geG for m>2,

\ 0 * /

where the matrix multiplication is given as usual:

/ x g\ Ix1 g' \ _ ( **'

\ 0 y ) \ 0 / / \ 0 yy' /

and the elements xg' and gy' are given by the above action.

PROOF. The isomorphism is given by the following correspondence:

o \-σγ' + g-+{ ) , ε, e '=0 or 1 for m = l, 2,

\ 0 (-lr )

I (-i)ε g \
(-cY + g -> , ε=0orl for m>2.

\ 0 (-1)* /

q.e.d.

Now we set
(3.2)

We see easily that

(3.3) #o(K) is a normal subgroup of #(K\ and is isomorphic to the (additive)
group G by corresponding c + ge &0(K) and geG.

Consider the quotient group Γ=£(K)/£0(K). Then, we see easily

I Z2xZ2 with the generators < σ > a n d < — σ > for m = l,2,

Z2 with the generator < — c > for m > 2,

where <Θ> stands for the coset

Set
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ί {±c, ±6} for m = l 5 2,
Γ' =

[ {±c} for m>2.

Then, Γr is a subgroup of &(K) and isomorphic to Γ, and so, by (3.3), we
have a split exact sequence

{e} -+ G -> <?(K) -> Γ -+ {e}.

Thus, we obtain the following

THEOREM 3.3. Let K and G be as above Thm. 3.2. Then, if m = l, 2, the
group #(K) is the split extension

{e} -> G -> *{K) -> Z 2 X Z 2 -> {e},

where the generators of Z2 x Z2 αcί o^ G 62/ ίfee following two automorphisms of
G:

If 7π > 2, ίfee group £(K) is the split extension

where the operation of Z2 on G is given by the automorphism of G sending g£G
to -(-t)geG.

PROOF. It suffices to investigate the operation of Γf on &Q(K). This is
checked by virtue of the following equalities in

g g σ ) = c-g for πι = l , 2 ,

( — c)~1(c+g)( — c) = c — ( — c)g for arbitrary m.

Then the theorem follows. q.e.d.

COROLLARY 3.4. Suppose that ( — cn)γ=—γ holds for arbitrary element
γ e πn+k+ι(Sn). Then, the group 6(K) is isomorphic to D(G)xZ2 for m = l,2
and to G x Z2 for m>2, and the second factor Z2 is generated by —c. The group
D(G) is the split extension

where the operation of Z2 on G is given by the automorphism

Gϊg->-geG.

REMARK. The assumption of Cor.3.4 is satisfied in the following each case.

( i ) E: Kn+kiS"'1) -> πn+k+λ(Sn) is epimorphic.

(ϋ) n = 3or7.
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PROOF OF COROLLARY 3.4. By Lemma 2.1, the assumption of Cor. 3.4
implies (~c)g= — g for any ge G. So, the corollary is an easy consequence of
Thm.3.3. q.e.d.

The group D(G) of the above is a generalization of the dihedral group.
Indeed, D(Zt) is the usual dihedral group, written as Du of order 2t. In
general, we define the group D(A) for any abelian group A^ written multipli-
catively, by the split extension

where the generator of Z2 acts on A as the automorphism

A B a -> a'1 e A.

The following isomorphism is verified easily.

(3.4) D(A x Z2) ̂  D(A) x Z2.

From Thms. 1.3 and 3.3, we see that the group £(K) depends on the
compositions aΎjn+k and ( — cn)γ for γ e πn+k+ι(Sn) as well as the isomorphism
class of the group πn+k+1(Sn). We give, however, a particular case that <?(K)
does not depend on the compositions in πn+k+ι(Sn).

THEOREM 3.5. Let K=SnVSn+k+\ k>0, n^k + S. Then, the group
is isomorphic to

D(πn+k+1(Sn))xZ2,

and the second factor Z2 is generated by —c.

PROOF. The homomorphism E: πn+k(Sn~ι) —• πn+k+ι(Sn) is epimorphic by
the suspension theorem of Freudenthal, and the subgroup G of [jK, K~\ is
isomorphic to πn+k+ι(Sn) since a=0. So, the theorem for k^>l follows from
Cor. 3.4.

For the case k = 0 and a=0, the discussions in §§1-3 are done quite
similarly. Let K=SnVSn+\ i: Sn-> K and ξ: Sn+1 -> K be inclusions, and
p: K-+ Sn+1 and ΎJ\ K^ Sn be retractions. Then, similarly as Thm. 1.3, we
have

where the generators of each factor are λ = ξp, M = i-η and g= iτ/np, τ/n e 7Γw+i(5w),
which are suspensions. We have also λ + β = c, and so the multiplication of
[K, KJ is given by λ2 = λ, ju2 = /x, λju = juλ = O, λg=gβ = 0, gλ = βg=g, g2 = 0
and by the two-sided distributive law. Hence, from the similar discussions
as in Prop. 3.1 and Thm. 3.3, we have the desired result
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nVSn+1)=Z2xZ2xZ2 (generators σ=λ — ju, -σ, t+g\

where D(πn+1(Sn)) = D(Z2) = Z2x Z2 by (3.4). q.e.d.

§ 4. Examples

In the following examples, the group operation of [K, K~] (resp. #(K)) is
written additively (resp. multiplicatively). And so, the group G is written
additively as a subgroup i*p*πn+k+ι(Sn) of [X, IT], and multiplicatively as a
subgroup SΌ(K) of &(K) as in (3.2). Indexing K, we write £„ instead of K,
when ^ is (n — l)-connected.

We refer the notations and the relations of πi(Sn) to Toda's book Ell] .

EXAMPLE 1. a=ηn e πn+1(Sn\ Kn = Sn\Jae
n+2.

<?(Kn)=Z2xZ2, 7 i ^ 3 .

Generators <τ, —G.

<?(K2)=Z2.

Generator α,

Ea=G.

Since πn+2(Sn)/-ηnπn+2(Sn+1) = 0, the above holds for π,:>4 by Thm. 3.3.
The element τ?3 is not a double suspension. But £ : [_K3, ^ 3 ] —• H^4, K^\ is
isomorphic, and the above holds for n = 3. For n = 2, K2 is the complex projec-
tive plane CP(2), hence we have [K2\ ^ 2 ] = [CP(2),
and the above is established.

EXAMPLE 2. a=7]n-ηn+1e πn+2{Sn\ Kn = SnVJae
n+s

Generators of Ό12 a = c + ί*p*(vn + cίι(n)), G.

Relations in Dλ2 a12 = c, G2 = c, Ga = a~1G.

Generator of Z2 — c.

Generators δ = ί + i*p*v4, c = t + ί*p*(Ev'+a1(4)\ G, —G.

Relations C

6=G2 = (—G)2 = C, cb = bc, Gc = c~1G,

= bc~3G, (-G)b = b-\-G).
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Generators of D6 d=c + i*p*(v'+ &i(S)), G.

Relations in D6 dβ=σ2 = c, ad= d~ισ.

Generator of Z2 — c.

Ed=c.

We have Gτ^Z12 (generator ί*p*(vn + ctι(n))) for n^>5 and Gτ
(generators z*/?*v4 and i*p*(Eι>' + ctι(4:))) for n = L All elements of G are
supensions for n^>5 and the above follows from Cor. 3.4. For rc = 4, the
element i V + αi(4) is a suspension but v4 is not. In 7Γ7(54), we have

( — c4)v4= — v4 + []ί45 CA~]H{VA) (His the Hopf invariant, cf. (2.4))

4 - £ V )

by Lemma 5.4 and (5.8) of [11] and (6.1) of

So, the relation σb = bc~3σ in S{K^) is proved, and the above follows for rc = 4.
For π = 3, QK3, K{\ is abelian since E: [_K3, K3J -> [_K4, K±~} is monomorphic.
Similar discussions of Thm. 2.2 and Prop. 3.1 can be done for K3, and the
above follows from Cor. 3.4 for n = 3 since ( — c3)γ= —γ for any γ e 7ti(S3) (see
the remark after Cor. 3.4).

EXAMPLE 3. a = vn e πn+3(Sn\ Kn = Sn\Jae
n+\

Generator — c.

For τ*;>6, πn+4(Sn) = 0 and the above follows from Cor. 3.4. For n = 5,
E: [_K5, K^-^^Kβ, Kβ] is isomorphic, and the above follows.

As is well known, K± is the quaternion protective plane. So, according
t o P . J . Kahn [5],

and the generator a of £(KA) satisfies Ea = c.

EXAMPLE 4. a=0 e πn+4(Sn), Kn = SnVSn+5.

Generators σ, —σ.
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Generators of ZL a

Relations in ZL (—tf)2 = £, ( — σ)α = α~1(—<X).

Generator of Z2 σ.

Generators b = c + i*p*v5τ/8y9, #5 —0",

We put c = c + i*p*Vi7j7rj8 and d=

Generators of Z)4 c/ = cσ, σ.

Relations in D± c

n=σ2 = c, σcf =

Generator of Z2 —6.

Ec = b, Ed=c.

Generators f=c + i*p*v'7]67}7, σ, —σ.

Generators g=c + i*p*7]2v'7j6, <r, — <r.

For n^>Ί, πn+5(Sn) = 0 and the above follows from Thm. 3.5. For n = 6,
ττu(S6) = Zis generated by [>6, ί 6 ] , and we have ( — c6)[c6, c6~] = [_c&, t6~]. So, the
above follows. For n = 5, πϊ0(S5)=Eπ9(SA) = Z2 (generator vs^g), hence the
above follows from Cor. 3.4. For rc = 4, we have π9(SA) = Z2(BZ2 with the
generators ^^7TJ8 and {Ev'^yi^—Eiy'-q^T) and v±η7η% ί Imί1. By the com-
putation in Example 2, ( — £4)^7^8^^U^s + C & O ^ s . So, «fCK4) has four
generators c, c?, σ, —σ with the relations σ2 = (—σ)2 = c2 = d2 = c, σ(—α ) = (—ύ)β,
c(—σ) = (—σ)c, d(—σ) = (—σ)d,cd=dc, dσ=σd, σc = cdσ. Then the above
result is an easy consequence. For τι = 3, 7Γ8(53) = Z2 with the generator vfτjQΎj7^
and ( — Cs)^7jeV7 = ̂ VeV7' So, the above follows. For n = 2, π7(S2) = Z2 with
the generator τj2^7j6 satisfying E(y2^-η6)

z=0 and ( — c2)η2^τj6 = V2^V6 since
= ^2. Hence, the desired result follows.
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