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It is well known, in the theory of abelian groups, that the ring of endo-
morphisms of the /?-torsion part of Q/Z is the p-adic integers in modern lan-
guage, the p-torsion part of Q/Z is nothing but the injective envelope of the
additive group Z/p. The aim of this paper is to study the ring of endomor-
phisms of indecomposable in jective modules over Prϋfer rings, which genera-
lizes the above fact.

In §1, we shall deal with a basic theory of indecomposable in jective
modules over commutative rings and this enables us to reduce the problem to
the case where valuation rings act as operators. The notion of pseudo-
convergence plays an essential role in our discussions it is originally due to
Ostrowsky and by employing it, I. Kaplansky succeeded in proving the
uniqueness of a maximal immediate extension under some conditions. In §2,
the relationship between the module structure and the breadth of a pseudo-
cenvergent set is cleared up. In §5, it is shown that the ring of endomorphisms
of an indecomposable injective module over a Prϋfer ring is, rather unexpec-
tedly, not commutative and the structure of its center is determined.

Throughout this paper a ring R will always be understood to be commu-
tative, to have a unit and a module over R to be unitary.

§ 1. Preliminaries

We say that an i?-module M is co-irreducible if M is not zero and has no
non-zero submodules iVi(ί = l, 2) such that NιΓ\N2=0. A submodule iVof an
i?-module M is irreducible in M if the quotient module M/N is co-irreducible
this is equivalent to saying that JV is properly contained in M and if N is the
intersection of submodules Nλ and iV2, then Nι = Nor N2 = N. It is clear that
non-zero submodules and essential extensions of a co-irreducible module are
co-irreducible. Therefore we see immediately that the injective envelope E(M)
of a co-irreducible module M is co-irreducible and the order ideal 0(x) of
every non-zero element x of E(M) is an irreducible ideal of R.

We denote by Σ the set of irreducible ideals in R. Let J be a member of

1) 0(x) means the ideal annihilating the element x.
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2. Then the injective envelope E(R/I) is co-irreducible. We introduce an

equivalence relation in Σ as follows: I**~J if and only if E(R/I) ~E(R/J).
Since an injective module E is indecomposable if and only if E is co-irreducible,
the set 2 / ~ of classes modulo the relation — can be identified with that of
isomorphism classes of indecomposable injective modules over R.

PROPOSITION 1.2) J ~ / if and only if (I: r) = (J\ s) for some r e R — I and
saR-J.

PROOF. We put E=E(R/I). First we suppose that E(R/I)~E(R/J);
then we can find elements x, y in E such that 0(x)=I and 0(y)=J. Since E
is co-irreducible, there is a non-zero element z in RxίΛRγ; then z—rx and
z=sy for some r, s in R. Therefore both (I: r) and (/: s) coincide with 0(z).
Conversely the assumption (/: r) = (J: s) implies that there are elements z e R/I
and zf e R/J such that the order ideal of z in R/I is equal to that of z/ in R/J.
It is easy to see that the isomorphism Rz —• Rzf can be extended to one of
E(R/Γ) onto E(R/ΐ).

PROPOSITION 2. Let 3ΐ be a class modulo ~ and E the indecomposable
injective module determined by 9ΐ. Then the following statements concerning
an element s of R are equivalent:

( i ) The homothety s: E 9 x^sx 6 E is an automorphism.
(ii) (/: s)=I for every ideal I belonging to the class 9ΐ.
(Hi) (I: s)=I for some ideal I belonging to the class 3t.

PROOF. It is clear that (i) implies (ii) and (ii) implies (iii). We prove
that (iii) implies (i). We take an element x of E such that 0(x)=L Then we
see that the homothety s induces a monomorphism on Rx. Since E is co-
irreducible and RxφO, the homothety s is a monomorphism. Every monomo-
rphism ofEtoE must be surjective, because E is indecomposable, and the
proof is completed.

When an element s of R has the properties mentioned in Proposition 2,
we say that 5 is an 3ΐ-unit. The set 5 of 3ΐ-units is multiplicatively closed
and we can readily see that the complementary set P of 5 in R is a prime
ideal. We call P the prime ideal associated to 9ΐ or to E.

PROPOSITION 3. The notation being as above, we have P= \J I and Io= f\I
/eat lem

is the annihilator of E; moreover every element of Io is a zero-divisor.

PROOF. Except the last assertion the proof follows readily from the
definitions. Now let r be a non-zero divisor in R then, since E is divisible,

2) (/: r) means the ideal {x^R; xr^I} and R—I means the complementary set of / in R.
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the homothety r is a surjective map and this implies that r can not be an
element of Jo.

COROLLARY. If R is a domain, then R operates faithfully on E.

Now S being the set of 3ΐ-units as above, we consider the localization Rs

(or Rp) of R by S. It is easy to see that the kernel of the canonical map:
R-+Rs is contained in the ideal 70 Therefore we know that E becomes natu-
rally an J?5-module and E is an indecomposable injective module over Rs.
Moreover, every endomorphism of the i?-module E is naturally i?5-linear.
Thus we have the following

PROPOSITION 4. Let E be an indecomposable injective module over R. Then
E has naturally an RP-module structure and ΈnάR(E) can be identified with
ΈnάRp(E), where P is the associated prime ideal to E.

EXAMPLES. 1) Let R be a noetherian ring. Then an irreducible ideal
is an irreducible primary ideal. It is well known that every irreducible
primary ideal is equivalent to the associated prime ideal in our sense.
Therefore 2 / ~ is the set of prime ideals in R.
2) Let R be a valuation ring with the value group Γ. Every ideal of R is
irreducible and, for ideals / and /, J ~ / if and only if I=rJ or rl=j for some
r e R. When Γ is the additive group R of reals, then Σ/^ = {0, 1, 2}, where
0 means the zero ideal, 1 the class of principal ideals and 2 the class of not
principal ideals when Γ is the additive group Q of rationale, then Σ = {R/Q,
1,2}.

Finally we give one more notion which will be used later.

DEFINITION 1. Let E be an indecomposable injective module. An endomo-
rphism f of E is called a local homothety if, for every x e E, f(χ)=rxx for some
rxe R which may depend on x.

PROPOSITION 5. Let E be an indecomposable injective module determined
by the class 9t. Then the following statements are equivalent:

( i ) Every endomorphim of E is a local homothety.
( ϋ ) // 0(x) is contained in 0(j), then y 6 Rx.
(Hi) For every irreducible ideal I belonging to 3ΐ, the submodule annihi-

lated by I is cyclic.

The proof is easy and is omitted.

§ 2. Immediate extensions

Let v be a valuation in a field and R its valuation ring. An extension of
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v, or its valuarion ring Ty is said to be immediate, if the value group and the
residue class field coincide with those of υ respectively. The extension of v
will be also written by the same symbol v. We denote by Σ and Σr the set of
irreducible indeals in R and T respectively. It is easy to show that ITr\R=I
for every Ie Σ and conversely, (ΓίλR)- T=Γ for every Γ e Σ'. This implies
that we can set up an one to one correspondence between Σ and Σr by the
map: I-+Γ = IT. Moreover, J ~ / i n Σ if and only if Γ ~ / in Σ'\ in fact I=aJ
implies Γ=af and conversely, since every element a' of T is of the form
a' = u'a, a€ R and υ! a unit of Γ, I=T Γ\R=ar f Γ\R=aJf Γ\R=aJ. Furthermore,
let P be the associated prime ideal of /. Then it is easy to see that, by using
Proposition 3, the associated prime ideal of ΐ is Pf. Thus we can identify the
set of classes 2"/~ with 2"/—.

We put E=E(R/I) and Ef=E(T/I'\ where Γ is the ideal obtained by
lifting / to Γ and E(T/ΐ) is the injective envelope of the Γ-module T/Γ. In
order to investigate connections between E and E\ we need some definitions.
First we borrow from I. Kaplansky |ΊΓ] the following two definitions.

DEFINITION 2. A well-ordered set {ap} of elements in R, without a last
term, is said to be pseudo-convergent if and only if v(aσ — ap)<v(aτ — aσ) for
all ρ<σ<r.

If {ap} is pseudo-convergent, then v(aσ—ap) = υ(ap+ι—ap) for all p<(T;
therefore, for fixed p, v{aσ — ap) is independent on the ohoice of (T>p (Ĉ H,
Lemma 2). We denote it by γp; {γp} is a monotone increasing set of elements
in the value group Γ.

DEFINITION 3. An element x' of T is a limit of the pseudo-convergent set
{ap} in R if and only if v(x'—ap) = γp for every p.

We now give the notion of breadth in a slightly modified from.

DEFINITION 4. Let T be an immediate extension of R. Let a' be an element
in T but not in R then the ideal B(a') = {/ e T; v(rf) > v(a'—a) for every a € R}
is called the breadth of a'. For an element a of R the breadth B(a) of a is zero.

REMARK 1. We also employ the notion of breadth of a pseudo-convergent
set {ap} in R, which is given in [3] as the ideal in R cosisting of elements a
of R such that v(a)>γp for every p (cf. Def. 3). For an element a1 in T but
not in R, T being an immediate extension of R, our definition of the breadth
B(a') coincides with the above one in the following sense. We can find a
pseudo-convergent set {ap} in R, which has a! as a limit but no limits in R ([β~],
Theorem 1); then B(a') is equal to the breadth of {ap}

3\ In fact, it is clear
that B(ar) is contained in the breadth of {ap} and conversely, if there is an

3) We say that an ideal Γ in Γ i s equal to an ideal / i n R if Γ= IT or equivalently Γ f\R = I. In

what follows we shall often use this convension.
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element r in the breadth of {ap} but not in J?(α'), then v(r)<υ(a' — a) for some
α e R and v(a — ap) = v(a — a' + a' — ap) = v(a' — ap), which implies that a is a limit
of {ap}.

PROPOSITION 6. Let r' and s/ be elements of T. Then
(1) / / B(sr)=0, then B(r' + /) = B(/) in particular, B(rr + s) = B(r')

for se R.
(2) B(sr') = sB(r

These relations can be obtained easily from definitions.

Now let I be an ideal in R whose associated prime ideal is maximal let Γ
be the corresponding ideal in T (namely Γ=IT). Then the associated prime
ideal of Γ is also maximal. We put E=E(R/Γ) and Ef=E(T/T). We are now
giong to prove that E is isomorphic to E' as .R-modules.

PROPOSITION 7. Let x be a non-zero element in E1, and / an element in T.
We denote by Rx the R-submodule, generated by x, of the R-module Ef. Then
r'x e Rx if and only if B(r')<^0(x).

PROOF. Suppose first r'x e Rx. Then rrx=aχ for some at R and therefore
r'—a e 0(x). Since every element a' in B(r') satisfies the relation v(a')>v(rf — α),
we have B(/)ξ=0(χ). Conversely, if B(rf) is properly contained in 0(x), then
we can find an element a' in 0(x) but not in B(r'). From the definition of
B(r'), v(af) <iυ(r'— a) for some a e R. Therefore r' — a e 0(x) and /x=ax e Rx.

PROPOSITION 8. The notation being as above, we suppose y=r'x $ Rx,
namely B(r')^§(x). Let {ap} be a pseudo-convergent set, having rf as a limit
but no limits in R; we put bp=ap+ι — ap (the value of bp is γp, see Definition 2).
We denote by 0(j) the order ideal of y mod Rx, i.e. 0(y) = {r e R; ry 6 Rx}.
Then we have

PROOF. Let r be a non-zero element of 0(y); then rr'xeRx, whence
B(r/)=rB(r')^0(x) by Proposition 6 and Proposition 7. Therefore, r^OO)
^B(rf) and, since B(r') coincides with the breadth of {ap}, r~λ0(x) contains
bp for some p, namely r belongs to b^Oζx). Conversely, since B(r') is equal
to the breadth of {ap}, it is clear that όp10(Λ;) i5(r/)C0(Λ;) for every p. If
bp

10(x)-B(/) = 0(x), then b^O^-Bir') is also equal to 0(#) for σ>p; this
implies that b'p~

1bσΌ(x) = 0(x), which contradicts to the assumption that the
associated prime ideal is maximal. Therefore, b^O^ Bir') is properly
contained in 0(x). Now let r be any element in b^Oίx); we take an element
s e 0(x) which is not in rB(rr) = B(rrr). Then v(s)<v(rr/—a) for some element
a in R. Hence, rrr—a e. 0(x) and r/x=aχ, which completes the proof.
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REMARK 2. Let I be an ideal in R. When I is a principal ideal: I=(a),
then we denote by 1° the ideal {r e R; v(r)>v(ά)} and otherwise we put I° = L
Then we can show that the ideal 0(y) is also equal to (0(x) B(r'))° in a similar
way.

COROLLARY. 0(y) ^ 0(χ).

Now we can state the following

THEOREM 1. The notation being as above, E and E are isomorphic to each
other as R-modules.

PROOF. It is easy to see that, since T is i?-flat, every injective Γ-module
is also R-injective in particular, E' is i?-injective. Therefore, it suffices to
prove that Ef is co-irreducible as an i?-module. Let x and y be non-zero
elements in E'. Since E' is co-irreducible as a Γ-module, we can find £x (j —1> 2)
in T so that t{x = t/

2yφ0. We put £ = ̂  r; for i = l, 2, where i^(ί = l, 2) are
units in Γ and r, (i = l, 2) elements in i?; then ^ " ^ ( - n ^ ^ ^ y ^ C Applying
the above Corollary to the unit ur

2~
ιu[ and the non-zero element πx, we see

that RxίΛRγφO.

Theorem 1 means the the ring T is naturally embedded in the ring
of endomorphisms of the i?-module E.

§ 3. Pre-maximal valuation rings

A valuation ring R is said to be maximal if it admits no proper immediate
extensions; R is maximal if and only if every pseudo-convergent set in R has
a limit in R ([3], Theorem 4). It is also well known that maximality is equi-
valent to the linear compactness4) of R (Zelinsky Q4J), and that a valuation
ring admits at least one maximal immediate extension. We introduce here a
weaker condition as follows:

DEFINITION 5. A valuation ring R is said to be premaximal if every
pseudo-convergent set in R, whose breadth is not zero, has a limit in R.

For instance, a discrete valuation ring of rank 1 is always pre-maximal.
Let T be a proper immediate extension of a pre-maximal valuation ring R
and a' be an element in T but not in R then the breadth B(af) of ar must be
zero. It is not so difficult to see that a valuation ring R is pre-maximal if
and only if R is linearly pre-compact5) however we do not need this fact.

Now, as in the preceding §, we put E=E(R/I), where we assume that the

4), 5) For the definitions of linear compactness and of linear pre-compactness, see [2].
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associated prime ideal of / is maximal in R (R may not be pre-maximal). Let
x and y be non-zero elements in E such that 0(x) = 0(y). Suppose now that
y ί Rχ; we denote by 0(y) the order of y mod Rx, i.e. 0(y) = {r e R ry e i?Λ;}.
Then 0(y) is a proper ideal in R and, since E is co-irreducible, 0(x) is properly
contained in 0(y). For every r in 0(y) but not in OO), ry=sχ=/=0 for some
s e R; this equality implies r~10(x)=s~10(x) and therefore, by the maximality
of the associated prime ideal, we can obtain s=ru, u a unit in R. If 0(y) is
finitely generated, then 0(j) is principal, namely 0(y) = (r), r $ 0(x); the above
discussion shows that 0(y)=0(y— ux) and this implies that RxΓ\R(y— ux) = 0,
which contradicts to co-irreducibility of E. Hence 0( y) is not finitely generat-
ed and, for every r in 0(y) but not in OO), we can find a unit u in R so that

Thus we can obtain a well-ordered set {up} of units in R so that 0(y) =
\J0(y— upx\ O(y—upx)^0(y—uσx)ΐoτρ<σ. The {up} is a pseudo-convergent

P

set without a limit in R. To show this, for p<σ<r, we choose an element rσ

in 0(y—uσx) but not in 0(y— upx); then rtry=rσuσx==rσuτx whence

uτ = uσ (mod r^OO));

on the other hand, if uσ^up(moά rϊι0(x)\ then rσuσ.χ = rσupx, which implies
rσy=rσupxy a contradiction; therefore

uσΞ^up (mod Γσ1O(Λ;))

and this implies v(uσ—up)<v(uτ — uσ). It is clear, from the construction of
{up}, that {z^} has not a last term. It remains to show that {up} has no
limits in R; if {up} had a limit u in i£, then the relation (uσ— uτ)rσx=0 would
yield the relation (uσ— u)rσx=0, which implies rσy=rσuσx=rσux and 0(y) =
0(y—ux), a contradiction. It is also clear that uτ^uσ(mod 0(x))9 for other-
wise 0(y—uσx) = 0(y—uτx), which contradicts to the assumption; this implies
that the breadth of {up} contains 0(x) and, therefore, is not zero.

Now suppose that R is pre-maximal. Then, the above discussions show
that, for non-zero elements x, y in E with the same order ideals, Rχ = Ry;
more generally, if 0(x) is contained in 0(y), then O(x)=rO(y) for some r in R
and Rx^)Ry. Therefore, if R is a pre-maximal valuation ring, then E satis-
fies the condition (2) of Proposition 5 and every endomorphism of E is a local
homothety.

Next, we determine the ring End*CE) of endomorphisms of E under the
same condition that R is pre-maximal. Let / be a non-zero endomorphism of
E which is not a homothety. We show that we can construct a pseudo-
convergent set attached to/. First choose a non-zero element χλ in E\ then,
since / is a local homothety, f(χι)=rλxι for n in R, and if we put Mx = {x e E;
f(χ)=rιx}, then Mi is a submodule containing xλ. By the assumption that /
is not a homothety, Mλ is a proper submodule; we can choose an element x2
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of E, which does not belong to Ml9 and obtain an element r2 of R and a submo-
dule M2 in a similar manner. Continuing this process, we can obtain rp, χp

and Mp for each ordinal p so that E=\J Mp; it should be observed that the
p

sequence of M'ps is monotonously increasing, namely Mp^Mσ for p<0\ There-
fore, for p<σ<τ, we have f(χp)=rpxp=r(rxp; hence rσ = rp (mod0(>,,)) and
similarly rτ=rσ (modOOO). Since 0(xp)^0(xσ) and rσ^rp (mod0(;0), we
have υ(rσ — rp)<v(rτ — rσ). Again from the assumption that / is not a homo-
thety, the set {rp} can not have a last term; thus the set {rp} is a pseudo-
convergent set, whose breadth is clearly zero.

It is well known that any valuation ring has at least one maximal imme-
diate extension which we denote by R. The pseudo-convergent set {rp} has
a limit f in R, which is uniquely determined since the breadth is zero, and it
should be observed that the limit f can not be an element in i?, for otherwise
/ would become a homothety. As we discussed at the end of § 2, the ring R
can be embedded naturally in ΈndR(E); in this sense we know that f=f.
Now we can state the following

PROPOSITION 9. If R is a pre-maximal valuation ring, then ΈndR(E) = R.

Generally a maximal immediate extension of a valuation ring need not
be unique however the above proposition implies that it is unique for a pre-
maximal valuation ring.

We add here one more corollary. Let R be a valution ring (not necessarily
pre-maximal) and R be its maximal immediate extension. As before, we may
consider R as a subring of ΈndR(E). We denote by V(R) the subalgebra of
EndR(E) consisting of endomorphisms which commute with every element in
R. Then, Proposition 9, combining with discussions in §2, leads to the
following

COROLLARY.

§ 4. General valuation rings

We consider a valuation ring with a value group Γ generally the rank
of Γ, i. e. the cardinality of the set of isolated subgroups of Γ9 may not be
finite. Such one is never artificial but could appear in natural objects for
instance K. Aoyama treated the case of rank 2%1 in the course of studying
the ring of entire funitions (see [1J). As in §3, let E be an indecomposable
injective module over i?, whose associated prime ideal is maximal, and let R
be a maximal immediate extension of R then E has naturally an ^-module
structure.

We can choose a well-ordered set {7̂ } of ideals in R, belonging to the
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class determined by E, such that Ip^Iσ for ρ<σ s,ndΓ\ϊp = 0. We are going
p

to construct a transίinite set {xp} of points of E and a set {tp>σ; p<<J} of ele-
ments of R with the following properties:

(i) 0(xp)=Ip, where Ip is the ideal in R corresponding to ϊp, i.e. IP = ΊPΓ\R
and Rxp^Rxσ for p<σ;

(ii) χp = tp>σxσ and tP)T = tp>σtσίT for ρ<σ<τ.

For Λ I, we choose any point of E with the order ideal /i, and for ίi)2, we choose
any element of R such that h = tιt2lι, and so on. Suppose, for an ordinal Λ, xp

and ί^ have been chosen for all p, 6<λ so as to satisfy the above conditions.
First when λ is not a limit ordinal, then *λ_i is given; we choose an element
ίλ_i)λ of R so that /λ = ίλ_i>λ/λ_i and choose a point #λ in E such that #λ_i =
ίλ-ifλ*λ For p<λ, xp = tp>x-.ίxx-1 = tp>x-1tx-.1>xxx; therefore, if we put tp,x =
tp>x_ιtx_lfX, then tPfXs clearly satisfy the condition (ii). Now we proceed to
the case when λ is a limit ordinal. Let ί i jλ be an element of R such that Ix =
tί)XIι and y be a point of E such that xx — t1)Xy. For any p< λ9 there is a point

yr of Esuch that 3 ^ = — ^ - / . Since the order ideals of y and yr are Jλ, we

have 5 / = ̂ / ; this implies that y' = uPy for some unit ΐίp in 5, namely t h e r e

is a unit up such that #p=—ϊA-g^y for every p<λ. For p<σ, Λ;ff = —^- uσy

and hence χp = tp>σχσ=
 p'σ 1>λ uσy=-^L-ΐίσy; therefore uσ = ύp(modϊp). T h u s

we have a system of congruence equations:

(*) Ξ = ϊίp(modϊp),

which is finitely solvable. Since R is linearly compact, (*) has the unique
solution u (the uniqueness comes from the fact that f\Ip = 0.) Clearly

p

——ϊίy for every p<λ; we put xx = uy and tPtX=—^- . The tp>xs and Λ;λ
l,P l.P

satisfy the conditions (i) and (ii).
We are going to determine the ring End^CE) of endomorphisms of the

i?-module E. Let φ be an endomorphism of E. Since the order ideal of <p(χp)
contains that of xp, namely Ip, we see that φ(Rχp) is a submodule of Rχp.
Therefore, for any but fixed element f of R, φ{rxp)=fpxp, fp e R. For p<σ,
multiplying tp>σ to both sides of the equatity φ(rχσ)=rσxσ, we have φ{fXp) =
fσxp\ therefore rσ=rp(mod Ip) for p<6. Similarly as the construchion of the
set {xp}, the system of congruence equations : Ξ = rp(mod Ip) has the unique
solution, which we denote by φ(f); the map <ρ: R B r-+φ(r) € R is chatacterized
by the formula:

(**) φ{rχp) = φ{f)xp for every p.

By (**) we see immediately that φ is an endomorphism of the i?-module R.
We then obtain the map θ: End^CE) B φ -> φ e Endi?(,R). Again, by virtue of
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(**), it is easy to see that θ is an algebra homomorphism over R, namely
θ(φ + φ) = θ(φ) + θ(φ\ θ(ψφ) = θ(ψ)θ(φ)ΐorφ, φ 6 End^CE) and θ(rφ) = rθ(<p) for
r e R, ψ eEndflCE'). Now let φ be an endomorphism of E belonging to the
kernel of θ; this implies that φ(rxp) = φ(f)xp = 0 for every re R and p and,
since \J Rxp=E, <p(E)=0. Thus θ is a monomorphism. Finally we show that

P

θ is an epimorphism. Let ξ be an endomorphism of the i?-module R. Since
every element f of R is of the form: f=ru9 r e i?, u a unit of 5, we see that
ξ(ϊp)CΪP for all p. We define a map <p: E->E by putting φ(?xp) = ξ(r)xp\ if
ΓΛ ̂ SΛV for p<(T, then fxp=ftPt<Γxσ9 whence rtPιtΓ=s (mod ϊσ), which implies
that ξ(s)xσ = ξ(r)-tp>σxσ = ξ(?)xp. Thus the map is well-defined. The same
technique can be applied to show that φ is an endomorphism of the /^-module
E.

We can now state the following

THEOREM 2. The notation being as above, θ is an isomorphism of the
R-algebra End#(.E) onto the R-algebra

The above theorem tells us that, although there are many indecomposable
injective modules, not isomorphic to each other, whose associated prime ideals
are maximal, their rings of endomorphisms are the same on ther hand R, a
maximal immediate extension of R, is not necessarily unique, but the algebra
EndieC.R) does not depend on the choice of R.

A domain R is called Prϋfer if every localization RP, P being a prime
ideal, becomes a valuation ring. Combining Theorem 2 with discussions in §1,
we can obtain our main theorem.

THEOREM 3. Let Rbea prύfer domain and E an indecomposable injective
module over R with the associated prime ideal P. Let RP be a maximal
immediate extension of RP. Then the ring EndR(E) of endomorphisms of E

is isomorphic to the ring EndRp(RP) of endomorphisms of the RP-module RP.

In case when R is the ring Z of rational integers, E is the p-component

of the additive group Q/Z for some prime p and Z(/)) is the ring of jo-adic

integers. It is easy to see that EndZ{p)(ZiP)) is isomorphic to Z{p) itself;

therefore EndCE) is isomorphic to Z(/>); this is a well-known theorem in the
theory of abelian groups.

§ 5. Local homotheties

Let R be a valuation ring and R be a maximal immediate extension of
R let E be an indecomposable injective module over R, whose associated prime
ideal is maximal.
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We consider an endomorphism φ of the i?-module E and denote by φ the
corresponding one of the .R-module 5, which is defined in the preceding §.
Let f be a non-zreo element of R; then r=ru, where r e R and u a unit of R.

We then have ^-^- =^-^- and this implies that ^-^- is an element of R.
f u fu

PROPOSITION 10. For an endomorphism φ of E, the following statements
are equivalent:

( i ) φ is a local homothety.

(ii) B(-^P-J==0 for every non-zero element f of R.

(Hi) i?( ^ Wo for every unit u e R.

PROOF. Suppose first that φ is a local homothety. Then, the notation
being as in §5, we have φ(fx p) = φif)x p=r p-?x p for some rpe R and therefore
φ(f)=rpf (mod ϊp), which leads to the assertion (ii).

Conversely suppose that the breadth B( -¥-&-) of - ^ ^ is zero for every
\ f / f

f e R. We can take an element rp of R so that <p(r)=rpr (mod Ίp) for each p.
Then φ(fxp) = φ(f)xp — rpfxp. This completes the proof.

COROLLARY. An element f of Ris a local homothety if and only if B(f) = Q.

THEOREM 4. A local homothety is an element of R whose breadth is zero.

PROOF. Let φ be a local homothety. Then, Proposition 10 shows that
φ(f) = άf, where a is an element of R whose breadth is zero. We have to show
that a does not depend on the choice of f 6 R.

Let b be an element of R whose breadth is zero and ξ be any endomo-
rphism of the i?-module R. Then, for every p, we can find an element bp of R
such that b = bp (mod Ip). Since ξ(ϊp) is contained in ϊp, ξ(hr) = bpξ(r) (mod/,,)
therefore ζ(br) = bζ(r) (mod 7̂ )) for every p and this implies that b commute
with any endomorphism ξ.

Let s be an element of R; then φ(s) = bs and φ(τ+s) = c(f + s), where b and
c are elements of R whose breadths are zero. Since φ is linear, we see that
(ά-c)r + (b-c)s = 0; here we should note that B(ά-c) = B(b-c) = 0. By what
we have shown above, φ commutes with ά — c and b — c; hence (a — c)άr +
(b — c)bs = 0. From these two relations we can easily show that ά = b. Thus
we can conclude that the set of local homotheties coincide with that of
elements of R whose breadths are zero.

We are now going to determine the center C of the algebra End^i?). By
Corollary at the end of § 3, we see that C is contained in R, and also, by the
proof of Theorem 4, every element of R whose breadth is zero belongs to the
center C.
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Let ΐί be a unit of R such that B(ϊί) is not zero. We choose a point x of
E so that 0(x)^B(ΐι). Then Proposition 7 shows that ux f ifo. We define an
i?-homomorphism of the submodule Rx + Rΐix, generated by x and ux, into
£by putting that φ(x) = x, φ(uχ) = ux + \x and ^ + 5uA;) = r ^ ) + 5^(ii%),
where r, s e R and λ is any fixed element in 5(2) but not in O(A ). We note
that φ is well-defined; in fact, if rx + sUχ=rfx + s'uχ, then (r—rf)x = (sr — s)ΐίχ
and / — 5 belongs to the order ideal O(ϊiχ) of ux modulo Rx; by Proposition 8,
(s — s')\e 0(χ), whence s\x = s'\x. Since E is an injective module, φ can be
extended to an endomorphism of E, which we denote by the same symbol φ.
From the definition of φ, φ(ϊix) = ux + \x and uφ(χ) = ϊίχ; since XxφO,
φ(ux)Φuφ(χ). This means that φ does not commute with 2, namely u ί C
Now, let f be an element of £ such that B(f) φ 0. We can write f in the form
r=rw, r 6 R and 2 a unit in R. We take an endomorphism φ so that φuφuφ.
Then φf—fφ — r{φu — ΐίφ) and, noting that the homothety r is surjective, we
have φrφrφ. Thus we have shown that the set of elements of R whose
breadths are zero coincide with the center C. It is easy to see that C is an
immediate extension of R contained in R. We can now state the following

THEOREM 5. Let Rbe a valuation ring and E an indecomposable injective
module whose associated prime is maximal. Then the center C of End#(20
coincides with the set of elements in R whose breadths are zero moreover C is
a valuation ring which is immediate over R and also C coincides with the set
of local homotheties.

If we call the immediate extension, consisting of elements of R whose
breadths are zero, the π-completion of R, then Theorem 5 shows that the
^-completion of R is unique and is realized as the center of

COROLLARY. The notation being as above, the following statements are
equivalent:

( i ) R is pre-maximal
( n ) EndR(E) = R
(iii) Endi?(.E) is commutative
(iv) the π-completion of R coincides with a maximal immediate extension.
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