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1. Introduction

We consider the n-th order delay equations
@ x™(8) + p() f(x(2), x(0(2)))=0,
(2 () + p(2) g(x(8(¢))) =0,

where p(¢) is continuous and eventually positive on R,=[0, o) and d(¢) is
continuous on R, with §(¢:)<¢, lim §(t)=cc. (These assumptions on p(z) and
t—oo0

0(t) will be assumed without further mention.) We restrict attention to
solutions of (1) or (2) which exist on some positive half-line. A nontrivial
solution x(¢) is called oscillatory if there exists a sequence {¢;};-; such that
lim t,=o0 and x(¢;,)=0 for all k. Otherwise, a solution is called nonoscilla-

koo

tory. A nonoscillatory solution is said to be strongly monotone if it tends
monotonically to zero as ¢ — oo together with its first n—1 derivatives.

In [2] we established an oscillation theorem for (2) under the assumption
that the retarded argument 4(¢) is continuously differentiable and nondecreas-
ing on R,. The purpose here is to give oscillation criteria for (1) and (2) by
avoiding this assumption and requiring that 6(¢) has a continuously differenti-
able and nondecreasing minorant ¢,(z). The use of a differentiable minorant
was suggested by Travis [4]. This will allow our theorems to be applied to
delay equations of the form x™(¢)+p(¢) g(x(t —7(2)))=0, 0 < (¢:) < M, where
7(¢) is not assumed differentiable.

2. Main Theorems

We now state our major results.

Tueorem 1. With regard to equation (1) assume that:
(i) there exists a continuously differentiable and nondecreasing function
on R, 04(t), such that 04(t) < 0(¢) and lim 04(t) =oo;
t oo

(ii) f(x, y) is continuous on Rx R, R=(— oo, o), is nondecreasing in Yy,



264 Takadi Kusano and Hiroshi ONoSE

and has the sign of x and y when they have the same sign;
(iii) there exist positive numbers M and a=~1 such that

liminfM>0 if |x|=M
FIENEY

Then if
®) ("o pydi=co, a*=min (@ 1),
every solution of (1) is oscillatory in the case n is even, and every solution is
either oscillatory or strongly monotone in the case n 1s odd.
TueoreM 2. With regard to equation (2) assume that:

(i) there exists a continuously differentiable and nondecreasing function
on R, 04x(2), such that 04(t) <0(t) and lim §,4(t)=oo0;
100
(ii) g(x) s continuous and nondecreasing on R, xg(x)>0 for x=+0;
(iii) for some >0

* dx ™ dx
Se g(x) <eo and S—e g(x) < oo

Let

@ ("o pordi=eo.

Then if n s even, every solution of (2) is oscillatory, and if n is odd, every
solution s either oscillatory or strongly monotone.

TueoreMm 3. Let equation (2) be subject to (i), (ii) of Theorem 2 and
(iii") there exist positive mumbers M, A,, «<1 such that for 1= 2,

glx)=Mi*g(x) if x>0 and g(Ax)=Mi%g(x) of x<O0.
Then if
®) [ a1 p di=eo,

the conclusion of Theorem 2 holds.

Remark 1. If, in Theorem 1, §(¢) is of the form §(¢8)=t—¢(2), 0 (t) < M,
then we can take 0,(t)=¢t— M, and condition (3) is equivalent to the following

Swta*(n—-l)-p(t)dtz oo, a* :min (a, 1).

The same remark also applies to Theorems 2 and 3.
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Remark 2. Theorem 1 is an extension of our previous result [2, Theorem
1] and includes as special cases (sufficiency parts of) the theorems of
Gollwitzer [1]. Theorems 2 and 3 also extends Gollwitzer’s Theorems 1
and 2, respectively.

8. Proofs of Theorems

The following lemma is neeeded (see Ryder and Wend [ 37]).

Lemma. If x(t) € C"[a, ), x(t) =0 and x™(t) <0 on [a, =), then exactly
one of the following cases occurs:

(1) %'(t),---, x*D(t) tend monotonically to zero as t— oo;

(II) there exists an odd integer k, 1 <k<n—1, such that

lim x®D()=0 for 1<j<k—1, hm 2" B() =0, Ilm 2™ FD(1) >0,

oo

and x(t), x'(t), -, x"*2(¢) tend to oo as t—> oo.

Proor or TueoreM 1. The proof is patterned on that contained in our
previous paper [2]. Let x(¢) be a nonoscillatory solution of (1). We may
assume that x(¢) >0 for large :. The case x(¢)<0 can be treated similarly.
Since lim §,(¢)= oo, there exists a T such that x(64(:))>0 for t =7. In view

100

of (1),

(6) xP() = —p()f(x(8), x(0(2)))<0, t = T.

Therefore, x™~(¢) decreases to a nonnegative limit as ¢ increases to co.
Integrationg (6) from  to oo, we obtain

50700 = | plu)fa), x0(w)du.
Since x™~1(¢) is decreasing and 04(1)<t, we have
@ #0030 = || pa)faw), x@(w))du, 1= T.
Suppose case (I) of Lemma holds. Multiply both sides of (7) by ¢4(¢),

integrate from ¢ to s with T'<t<s, and then let s tend to oo in the resultmg
inequality. Then we have for t =T

D () = Sj[a*(u)—6*(z)jp(u)f(x(u), x(0(u)))du.

Repeating the above procedure we have
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® (— 1y’ 0y 2 L0 ) patu), 20w du.

Let n be even. Then, from (8), we see that x'(¢)=0 for : > T, i.e., x(¢)
is nondecreasing for = T. It follows that

©) G R O ORI CRONE

since 04(¢)<0(z) and f(x, y) is nondecreasing in y. Multiplying both sides
of (9) by 0.(¢) and integrating from T to z, T<t, we have

20z [ L= 0D ) fatu), 5(0(w)du

(10)
n—1
+ LD papfCatu), #(@u(u))du
If a>1, from (10) with the second term on the right side removed, we
have

an  Cx@uende= {f; =0T b faw, x@uw)duf

Multiplication of both sides of (11) by Ea*(t() 6%']‘ ) p(t)f (x(t), 2(04(1)))

and integration from ¢, to t;, T <t;<t,, give

R e R OV ORI ROV ECHON

12)

l-a|t;

1 f(* [0s(u)—04(T)]* !
R R ey T OV C O CRONE T,
Since the right side remains finite for all ¢,>¢,, the integral on the left
converges as t;—oo. There are two possible cases: Either lim x(¢)=c (finite)

100

1

or lim x(t)=oc. In the former case we can choose a > T such that

100

@), 2@OON[AOLD) ] = 5 fle, ) for t=7.
Then from (12) we obtain

[ oo —ouyT-pteyde

*f( )g L0x(6) =04(T) " p(e)f ((2), 2(85()))L2(0(£)) ] dt.

But this is in contradiction to (3). In the latter case, by (iii), there exists a
positive constant K such that
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F(x@), 2@0x(ONx0x()] “=K for t=r,

provided r is sufficiently large. Consequently, from (12) we conclude that

[ oxo—0u(DT @ dr< o0

which again contradicts (3).

If <1, from (10) with the second term on the right removed we have

pw)f (x(w), x(05(w)))
(n—1)! : d”}

Multiplying both sides of (13) by p(¢)f (x(2), x(0x(2)))/(n—1)! and integrating
from ¢, to t;, T<t;<t,, we obtain

(18) [x@x) I ToxO—0u (DI <{(”

[ D200 LI pf aw), 5@ uONLx@NT e

(14)

t;

= l-« 1’

1 {S P(u)f(x((nu),;;'@*(u))) }1-“

from which we can derive the contradiction

[ 00w —02(T) 10 Vp(o)ds < 00
exactly as in the case a>1.

Let n be odd. Then (8) reduces to

@) —x@unz | LGOI u)r (o), 0@))du,

and this implies that x(¢) is nonincreasing for : = T7T. Let 11m x(t)=L. We
shall prove that L=0. Suppose L>0. We take T so large that f (x(2), x(0(2)))
== f (L, L) for t =T. Integration of (8) multiplied by ¢64(¢) from T to ¢ yields

2O T) = 2(03(@) 2§ LIHI=0LDTT puyf(atu), 20w du

e {7 purf ew), =0 du.

Letting ¢t — oo, we have the following contradiction:

20T > 20x(0)~ L[ LOHI=LDIT ) r(atu), s0@))du

= e 0w =TT pw) du
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Therefore, if n is odd, a nonoscillatory solution of (1) must be strongly
monotone.

Suppose now case (II) of Lemma holds. We observe that there exists a
to= T such that x?(6,(t)) >0 for t=>1¢,, j=0, 1,..., n—k—1. Proceeding as
in case (I), we obtain

20 00u(0) 2 [T IT pu)paw), #Gu@))du

Multiplying both sides of the above inequality by 0(¢) and integrating from
to to ¢,

2040030 = DO DT (%) £ (a(), 2(0())

Repeating the above procedure we otain

O R WO CORICR AN

from which we can easily deribve the following inequality analogous to (10):

20Uz |, L =0LI ) f(x(u), 2@uu))du
15)

0x(2)—04(t =
+ PO () o), (0
The proof now proceeds exactly as in case (I). The proof is therefore
complete.

Proor or TueoreM 2. Let x(¢) be a nonoscillatory solution of (2) which
may be assumed positive for large z.

Let case (I) of Lemma hold and let » be even. Then, proceeding as in
the proof of Theorem 1, we obtain an inequality corresponding to (10) which
yields

x(ue) = [ LI=0LDI ) g aastupan

Since g(x) is nondecreasing,

a8)  g@uen)/ g [ OO ) gaasdn |z 1

Following [37], we multiply both sides of (16) by [04(t)—8(T)1"'p(¢)/(n—1)!,
integrate from ¢, to t,, T<t;<t,, to obtain

2 [04(6)—0x(T)]"} ”’
an S,, R CESY] P(‘)d‘<gx, FOR
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where

x,~=g: [5*(uzn—_6>i()!T):|"—1 p(w)g(x(@x(w))du, i=1,2.

If x,>=¢ for some ¢; = T, then, in view of condition (iii), (17) gives a contra-
diction to (4). If x,<e for all ;> T, then

1 [04(u)—04(T)]" !
e> 12 g(a(@u(T)) | L= 0 DI puyau
which again contradicts (4).
If n is odd, then, as in the proof of Theorem 1, we are led to the contra-

diction : S”[a*(z)j"—lp(t)dt < oo

When case (II) of Lemma holds, an inequality corresponding to (15)
enables us to preceed entirely as in case (I). This completes the proof.

Proor or THEOREM 3. Let x(¢) be a nonoscillatory solution of (2) which
is positive for large t.
Suppose case (I) of Lemma holds. If n is even, from the inequality

100 = KO0 (% ) g (a0 du

which follows from an inequality corresponding to (10), we obtain

([ EOOZ 0TI ) g el

1, (n—1)!
a® 1 = p(u) g(x(0x(w))) el
u x u z
é__l—af {St £ fn—l?! du} I

which corresponds to (14), where t,>¢,> T. In view of (iii’), the integral on
the left side of (18) exceeds

Mg(1) S: [6*(t)zn6i(17)11)]a(n—1) po)d.

But this contradicts (5), since the right side remains bounded as ¢, — co. Let
n be odd and assume the existence of a nonoscillatory solution x(¢). If lim x(t)
100

—L>0, then it is not hard to show that S"[a*(t)]"-l p(£)di < oo, and a fortiori

Smlzﬁ*(t):]“("_l)p(t) dt < oo, in contradiction to (5).

When case (II) of Lemma occurs, we can derive a contradiction on the
basis of an inequality corresponding to (15). The proof is thus complete.
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