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Introduction

Recently the Lie algebras of infinite dimension have been investigated
by several mathematicians in the papers [1]-[11]. By making use of the
concepts of subideals, ascendant subalgebras, coalescency and ascendant
coalescency, B. Hartley [1] and I. Stewart [7] have defined and studied
locally nilpotent radicals of a Lie algebra as the Lie analogues of radicals in
the infinite group theory. In [11] the senior author of the present paper has
obtained more classes of coalescency and has mainly investigated locally
solvable radicals of a Lie algebra which correspond to the solvable radical in
finite-dimensional case. However, he there restricted himself to the radicals
connected with ideals, subideals and coalescency, and he did not take up the
radicals which may be defined in connection with ascendant subalgebras and
ascendant coalescency.

The purpose of this paper is to study the ascendantly coalescent classes
of Lie algebras and to add to the radicals in [11] two locally solvable radicals
of a Lie algebra £, which reduce to the solvable radical in finite-dimensional
case, corresponding to the two locally nilpotent radicals of L in [1], the
Gruenberg radical γ(L) and the Hirsch-Plotkin radical p(L).

In Section 2, we first remark that if H is a finite-dimensional ascendant
subalgebra of a Lie algebra L then Hίω) and Hω are characteristic ideals of L
(Lemma 2.1) and show the results on ascendantly coalescent classes of Lie
algebras corresponding to Theorems 4.1, 4.2 and 4.3 in [11], especially the
ascendant coalescency of the class @Λg of finite-dimensional solvable Lie
algebras and of the class 9l(ω)Λf5 of finite-dimensional Lie algebras K such
that K/K(ω) are nilpotent (Theorem 2.2 and Corollary 2.3). Furthermore by
making use of a result in [10], we shall obtain several new coalescent and
ascendantly coalescent classes of Lie algebras (Theorems 2.4 and 2.5). In
Section 3, we define the radical Radϊ(Z) of L for an N0-closed class X, that is,
a class X such that the sum of any two £ ideals of any Lie algebra belongs to
X (Definition 3.1), and the radical Rads_asc(£) (resp. Rad2_Si(Ir)) of L for an
ascendantly coalescent (resp. a coalescent) class £ (Definition 3.3). In Section
4, observing that γ(L) can be written as Radons-asc(£) by our notation, we
consider the locally solvable radical Rad@ns-asc(i). ρ(L) can be expressed as
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(Z) by our notation, but it is not known whether L@ is N0-closed or not.
However p(£) can be shown to be written as Radi^n^Z) (Lemma 4.1) and
L(@Λg) is No-closed. Thus we consider Radons) (Z) as the locally solvable
radical corresponding to p(Z). It is known [_Y\ that γ(L) is not necessarily an
ideal of Z and that the ideal p(Z) is not necessarily a characteristic ideal of
Z. We show that Rad@ng-aSc(^) and RadL(@Λ3)(Z) have respectively the anal-
ogous properties (Theorems 4.2 and 4.3). Finally we show that these two
radicals and the seven locally solvable radicals obtained in [11] are different
from each other in general (Theorem 4.4).

§ 1. Preliminaries

We shall be concerned with Lie algebras over a field Φ which are not
necessarily finite-dimensional. Throughout this paper, the basic field Φ will
be of arbitrary characteristic and Z will be an arbitrary Lie algebra over a
field Φ, unless otherwise specified.

We mainly employ the terminology and notations used in [1Γ].
By H<^L, H<]L and ZΓsi Z we mean respectively that His a subalgebra,

an ideal and a subideal of Z. H is an ascendant subalgebra of Z provided that
there exists an ascending series {Ha: a<λ} of subalgebras of Z, indexed by
the ordinals <,λ, such that H0=H, Ha<]Ha+1 for all a<λ, Hμ= \J Ha for all

limit ordinals β<Lλ, and HX = L. We then write H asc Z, more precisely H
Λ-asc Z. Then the following fact is easily seen

LEMMA 1.1. (1) If H Λ-asc L and K<iL, then Hr\K A-asc K.
(2) // H Λ-asc L and K<]L, then H+K Λ-asc Z.
(3) Let {Ha: a<i λ} be a tower of subalgebras of L, indexed by the ordinals

a<Cλ, with Ha^Ha+1 for a<λ, H=\J Ha for limit ordinals β<^λ, and HX=L.
CL<μ

Suppose Ha asc Ha+1 for each a<λ. Then Ho asc L.
(4) Let f be a homomorphism of L onto a Lie algebra L. If H asc L, then

f(H) asc Z. // H asc Z, then f~\H) asc Z.

By a class £ of Lie algebras we always mean a collection of Lie algebras
over Φ such that (0) a I and if He 3c and H~K then K er X. A Lie algebra
(resp. a subalgebra, a subideal of Z) belonging to X is called an X algebra
(resp. an X subalgebra, an X subideal of Z).

A class X of Lie algebras is ascendantly coalescent (resp. coalescent)
provided that H, K asc Z (resp. si Z) and H, KeTί imply <H, K> asc Z (resp.
si Z) and <H, K> eX. g, 9ϊ, @ and © denote respectively the classes of
finite-dimensional, nilpotent, solvable, and finitely generated Lie algebras.
For a class X of Lie algebras, X(ω) (resp. Xω) is the class of Lie algebras Z such

that L/L(ω) 6 X (resp. L/Lω <f X), where Z ( ω )= f\ L(n) and Lω= f\ Ln. LX is the

class of locally X algebras.
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We shall borrow some notations from CIO]. s3£ (resp. Q3£) is the collection
of all subalgebras (resp. all quotient algebras) of X algebras. X is called
A-closed for A=S, Q, provided Ϊ = A X . Then the 0,-closed classes are the same
as the classes possessing the property (P) in Definition 3.1 in [11]. ^ * s

called N0-closed provided the sum of any two X ideals of any Lie algebra
belongs to £.

§ 2. Ascendantly coalescent classes

It is known [1] that if Φ is of characteristic 0 ϋftΛg and g are coalescent
and ascendantly coalescent. Furthermore @Γ\g, g(ω), gω, (9ΐng)(ω), @Λgω,
(@Πgω)(ω)5 SR(ω)Π& 9ΐωΛ@, @Λ5JίωΠ©, (9ϊωΠ@)(ω)5 (@Λ^ωΛ@)(ω) and their
intersections are coalescent [11]. The two classes of them, @πg and 5R(ω)P\g,
which are subclasses of g can be shown to be ascendantly coalescent in a
similar way as their coalescency has been shown in [11]. We begin with
this verification.

LEMMA 2.1. If He% and H asc L, then H(ω) and Hω are characteristic
ideals of L.

PROOF. If H e % and H asc Z,, then for any finite-dimensional subspace M
of L there exists an integer t(M)>0 such that M(ad # y ( M ) c # . This can be
shown by a modification of the proof of Lemma 4 in [1].

Now assume L asc K. Then H asc K. For any x e K, let t be the integer
t(M) which exists for M=(x) in Kas above. Then by induction on k we obtain

[ , ] + * ) and lx,Ht

for k=0, 1, 2,.... It follows that

O, H^ω)jΩH^ and [>, # ω ] c # ω .

Hence # ( ω ) and Hω are ideals of K and therefore ascendantly stable in L [10].
Especially, they are characteristic ideals of L.

It is to be noted that the part on Hω in Lemma 2.1 is stated in [1] as a
consequence of [4].

THEOREM 2.2. Let Φ be of characteristic 0 and let H be a ^-closed class of
Lie algebras,

(1) // X is ascendantly coalescent, so are £(ω)Γ\g and XωΛg.
(2) Let Xc 5Jίω. // £ ami 5JΪΛΪ are ascendantly coalescent, so is
(3) If Tί and 5ίlΛϊ are ascendantly coalescent, so is

PROOF. In the proofs of Theorems 4.1, 4.2 and 4.3 in [11], replace sub-
ideals by ascendant subalgebras, and use the ascendant coalescency of %
Lemmas 1.1 and 2.1 instead of Lemmas 1.4 and 1.6 there.
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COROLLARY 2.3. // Φ is of characteristic 0, @ng and 9ϊ(ω)^S a r e ascend-
antly coalescent.

PROOF. Take X=g in (2), (3) of Theorem 2.2. Then the ascendant coales-
cency of @ng and 9?(ω)ng follows from that of g and 9^Λg.

The ascendant coalescency of @Λg obtained above is a special case of
the following result which has recently been shown by I. Stewart in [10,
Theorem 3.4]:

If X is No-closed, Xng is coalescent and ascendantly coalescent.
We shall make use of this result in order to obtain more classes of coales-

cency and of ascendant coalescency in the following two theorems.

THEOREM 2.4. Let Φ be of characteristic 0 and let X, X' and X7/ be any
classes of Lie algebras. If X and X' are {N0, Q}-closed and X" is N0-closed, then
the classes

are coalescent and ascendantly coalescent.

PROOF. Since % c g(ω) c gωj it is evident that

and

Therefore by Theorem 2.2 (1) X(ω)Πg and XωΠg are ascendantly coalescent.
They are also coalescent, since ( ϊπg) ( ω ) and (3£Λg)ω are coalescent by Theorem
4.1 in [11] and g is coalescent. The other classes are coalescent and ascend-
antly coalescent as the intersections of such classes.

THEOREM 2.5. Let Φ be of characteristic 0 and let X and X7 be any {N0,

Q}-closed classes of Lie algebras. Then the classes

are coalescent.

PROOF. By Theorem 4.1 in [11] (XΓ\g)(ω) and (XAg)ω are coalescent.
$ftn(Xng)ω is coalescent, since it equals ίϋϊnXng by Lemma 3.3 in [11].
Since g^ίJiω, it follows from Lemma 3.5 in [11] that
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Therefore by Theorem 4.2 in [11] (ϊΠg)ωΠ@ is coalescent. Owing to Lemmas
3.2 and 3.5 in [11] we have

Therefore we use Theorem 4.1 in [11] to see that (XπS)ωΛ©(ω) is coalescent.
Now by making use of the fact that 9ΐωΛ®, @Λ5RωΛ© and (5Jϊωn©)(ω)

are all coalescent (Theorem 4.4 in [11])5 we see that the other classes in the
statement are coalescent as the intersections of coalescent classes. In fact,
by Lemma 3.5 in [11]

and therefore we obtain

^

Thus the proof is complete.

§ 3. Radicals

In [11] the Fitting radical of L was denoted by Rad^L) and the @ radical
Rad@(Z) of L was also introduced. Observing the fact that %l, @ are N0-closed,
we furthermore define the radicals of L for any N0-closed class.

DEFINITION 3.1. For any N0-cίosβcί class X of Lie algebras, we denote by
the sum of all the X ideals of L and call it the H radical of L.

All the classes in Lemma 6.2 in [11] are shown to be N0-closed. Further
examples are given in the following

LEMMA 3.2. (1) All the classes of Lie algebras stated in Theorems 2.4 and
2.5 are N0-closed.

(2) The class L Ϊ , where X is {N0, s}-closed and any subalgebra of an Tί
algebra is finitely generated, is NQ-closed.
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PROOF. The statement (1) follows immediately from Lemma 6.1 in [11]
and the statement (2) has been shown in Section 4.1 in [1J.

In [ΊΓ], the Baer radical was denoted by Rad^n^_Si(Z) and the radical

Si(Z) was introduced for certain kind of coalescent classes X. This
leads us to the following

DEFINITION 3.3. // a class X is ascendantly coalescent (resp. coalescent), we
denote by Rad^-ascW (?esp. Radϊ_Si(Z)) the subalgebra generated by all the
ascendant X subalgebras (resp. all the X subideals) of L, and call it the X-asc
(resp. the X-si) radical of L.

Now we have the following properties of the radicals which have been
shown for special cases in Theorem 6.3 in [ΊLΓ].

THEOREM 3.4. For any finite subset of Rad3e_asc(Z/) (resp.

si(L)), there exists an ascendant X subalgebra (resp. an X ideal, an X
subideal) of L containing the set. Especially, Rad^-ascC^) (resp. Radx(Z,),
Rad3e_si(Z)) is the union of all the ascendant X subalgebras (resp. all the X
ideals, all the X subideals) of L and belongs to LX.

PROOF. The statement can be proved in the same way as Theorem 6.3
has been proved in [1Γ]. So we omit the proof.

§ 4. Locally solvable radicals

In [ΊΓ], several radicals of L, which reduce to the solvable radical if L e %
have been studied. Namely, by making use of the fact that @Λg, @ $̂TίωΓλ@,
©Λgω (resp. @) are N0-closed and coalescent (resp. N0-closed) if Φ is of charac-
teristic 0, they introduced the following locally solvable radicals

®(ZO, Rad@ΛSιi(L), Rad@(L)5 Rad@Λδ_Si(L), R

ω s i (Z) and showed some of their properties. However, the locally
solvable radicals corresponding to two other known locally nilpotent radicals,
the Gruenberg radical γ(L) and the Hirsch-Plotkin radical ρ(L), were not
considered there. In this section we shall study these two radicals.

By Corollary 2.3 @ng is ascendantly coalescent. Hence Radons-asc(^)
exists by Definition 3.3 and is locally solvable by Theorem 3.4. This corre-
sponds to the locally nilpotent radical γ(L)=Ra,d^^^^zsc(L).

We know p(i)=RadL^(X). Although i$l is N0-closed, we do not know
whether or not L@ is N0-closed. However L(@Λg) is N0-closed by Lemma 3.2
and therefore RadL(@ΛS)(̂ ) exists by Definition 3.1 and is a unique maximal
L(@Πg) ideal of L. This may be considered to correspond to the locally
nilpotent radical p(L), since p(L) can be expressed as Radons)(£) by the
following



Ascendantly Coalescent Classes and Radicals of Lie Algebras 259

LEMMA 4.1. L?i =

PROOF. Assume that L e L.31 and let K be any finite subset of L. Then
K lies in an 5ft subalgebra of L. It follows that

Therefore L e L(9ΪΛg). It follows that LsJi=L(9ing), completing the proof.
It is known [1] that γ(L) is not necessarily an ideal of L. We show an

analogue of this fact for Rad@Λδ_asc(Z0 in the following

THEOREM 4.2. Rad@ Λ g_ a sc(£) and Radgϊ(ω)Λδ_aSc(^) α^e not necessarily
ideals of L.

PROOF. Let L be the Lie algebra in Example C in [11] ( s e e E1H) That
is, L is the semi-direct sum of an infinite-dimensional abelian Lie algebra
A = (eθ9 βi, e2, ) and a nilpotent Lie algebra (x, y, z) of derivations of A with
O, j ] = *5 [>, *] = [>, ^] = 05 where

x\ ei-+ei+1

2r: βi-^a 0*>0).

Then (e, ) is an @ n g subideal of Z and (y) is an ascendant @Λg subalgebra
of L. Hence 4̂ + (y) c Rad@nS_asc(Z). Now assume that 4̂ + (y)^Rad<sn g_a Sc(£).
Then there exists αΛ + δ y + c ^ + ̂ d/β/ in Rad@Λ δ_a s c(£)\^ + (y). If α^O, then

QαΛ; + ό j + cz + Σ diβi, y\ = az

and therefore z e Rad@nS_asc(X). If α=0, then c =£0 and therefore z e
_asc(Z). Consequently in any case there exists an ascendant @Γ\g subalgebra
Hoi L containing z by Theorem 3.4. Let {Ha\ a<iλ} be an ascending series
from Hto L. That is, H0 = H, Ha<]Ha+1 if a<λ, H = \J Ha if ju is a limit

ordinal < A, and Hx = L. We assert that HaΓ\A = Hr\ A for any α<X Assume
this for any β<a. If α is not a limit ordinal, then a = β + l. Σdiβie Ha

implies Σdiei = [_Σdieh z~]e Hβ. Therefore HaΓ\A = HβΓ\A. By induction
hypothesis we have HaΓ\A = Hr\A. If a is a limit ordinal, using induction
hypothesis we have

Har\A = ( \J HΎ)Γ\A= \J (HΎΓΛA) = Hr\A.

Therefore by transfinite induction we see that Har\A = Hr\A for α:<Λ, as was
asserted. Now take a = λ. Then A = Hr\A and therefore A^H, which
contradicts the fact that He g. Thus we conclude that Rad(Snδ_asc(JL) = A + ( j).

By replacing @ by iV(ω) in the preceding paragraph we see that
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^πg-ascCEO = A + (y).
Since [#, yj = z, A + (y) is not an ideal of L. Hence both Rad@Aδ_asc(I<)

and Radsrc(ω)Λδ_asc(Z,) are not ideals of L, and the theorem is proved.
It is known [1] that p(L) need not be a characteristic ideal of L. Corre-

sponding to this we show the following

THEOREM 4.3. RadL(@n3)(Z) is n°t necessarily a characteristic ideal of L.

PROOF. Let L be the Lie algebra in Example C in [11] as in the proof
of the preceding theorem. Since <e0, x> $ g, we have L $ L(@Γ\f$) A + (y9 z)
is an L(SΛg) ideal of L, since any finite subset of A + (y, z) lies in an @ n g
subalgebra (e0, βi, , em y, z). Hence RadL(<srλχ)(L) = Λ + (y, z).

Now we consider (#, Λ;2, J , Z). Then it is a nilpotent Lie algebra of
derivations of A such that

Let M be the semi-direct sum of A and O, x2, y, z). Then Z is an ideal of M
and therefore adMχ2 induces a derivation D of Z,. RadL(@Λ3)(£) is n ° t invariant
under i), since yD= —2x. Therefore RadL(@nf5)(̂ ) is not a characteristic ideal
of L and the proof is complete.

We note that

Rad@Λδ_si(L)cRad@ncy_asc(L) and Rad@ns-si(£)£RadL(©n3)(£)

In fact, the first inclusion is evident. By Theorem 8.3 in [IV] Radtsng-si(^)
is an L ( @ Λ ^ ) ideal of L, from which the second inclusion follows.

Finally in connection with Theorem 8.5 in [11] we obtain the following

THEOREM 4.4. // Φ is of characteristic 0, the locally solvable radicals of L

are different from each other in general.

PROOF. Let L be the Lie algebra in Example C in [11]. Then by the
proofs of Theorems 4.2 and 4.3

and

By the first part of the proof of Theorem 8.5 in [11]

Rad β Λ S (Z) = (0), Rad@ Λ S_ s i(Z) = ^

and all the other radicals equal L. By taking account of the statement of
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Theorem 8.5 in [11], we conclude that these nine radicals are generally
ϊifferent from each other.

References

[ 1 ] B. Hartley, Locally nilpotent ideals of a Lie algebra, Proc. Cambridge Philos. Soc, 63 (1967),
257-272.

[ 2 ] O. Maruo, Pseudo-coalescent classes of Lie algebras, Hiroshima Math. J., 2 (1972), 205-214.
[ 3 ] E. Schenkman, Infinite Lie algebras, Duke Math. J., 19 (1952), 529-535.
[ 4 ] L. A. Simonjan, Two radicals of Lie algebras, Dokl. Akad. Nauk SSSR, 157 (1964), 281-283

(Russian).
[ 5 ] I. Stewart, The minimal condition for subideals of Lie algebras, Math. Z., I l l (1969), 301-310.
[ 6 ] I. Stewart, A property of locally finite Lie algebras, J. London Math. Soc. (2), 3 (1971), 334-

340.
[ 7 ] I.Stewart, Lie Algebras, Lecture Notes in Mathematics 127, Springer, Berlin-Heidelberg-New

York, 1970.
[ 8 ] I. Stewart, An algebraic treatment of MaΓcev's theorems concerning nilpotent Lie groups and

their Lie algebras, Compositio Math., 22 (1970), 289-312.
[ 9 ] I. Stewart, Infinite-dimensional Lie algebras in the spirit of infinite group theory, Compositio

Math., 22 (1970), 313-331.
[10] I. Stewart, Structure theorems for a class of locally finite Lie algebras, Proc. London Math.

Soc. (3), 24 (1972), 79-100.
[11] S. Togo, Radicals of infinite dimensional Lie algebras, Hiroshima Math. J., 2 (1972), 179-203.

Department of Mathematics,
Faculty of Science,

Hiroshima University






