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Introduction

Recently the Lie algebras of infinite dimension have been investigated
by several mathematicians in the papers [1]-[117. By making use of the
concepts of subideals, ascendant subalgebras, coalescency and ascendant
coalescency, B. Hartley [1] and I. Stewart [7] have defined and studied
locally nilpotent radicals of a Lie algebra as the Lie analogues of radicals in
the infinite group theory. In [117] the senior author of the present paper has
obtained more classes of coalescency and has mainly investigated locally
solvable radicals of a Lie algebra which correspond to the solvable radical in
finite-dimensional case. However, he there restricted himself to the radicals
connected with ideals, subideals and coalescency, and he did not take up the
radicals which may be defined in connection with ascendant subalgebras and
ascendant coalescency.

The purpose of this paper is to study the ascendantly coalescent classes
of Lie algebras and to add to the radicals in [117] two locally solvable radicals
of a Lie algebra L, which reduce to the solvable radical in finite-dimensional
case, corresponding to the two locally nilpotent radicals of L in [1], the
Gruenberg radical (L) and the Hirsch-Plotkin radical o(L).

In Section 2, we first remark that if H is a finite-dimensional ascendant
subalgebra of a Lie algebra L then H* and H® are characteristic ideals of L
(Lemma 2.1) and show the results on ascendantly coalescent classes of Lie
algebras corresponding to Theorems 4.1, 4.2 and 4.3 in [117], especially the
ascendant coalescency of the class &@N\G of finite-dimensional solvable Lie
algebras and of the class N, N\F of finite-dimensional Lie algebras K such
that K/K are nilpotent (Theorem 2.2 and Corollary 2.83). Furthermore by
making use of a result in [107], we shall obtain several new coalescent and
ascendantly coalescent classes of Lie algebras (Theorems 2.4 and 25). In
Section 3, we define the radical Radz(L) of L for an no-closed class %, that is,
a class % such that the sum of any two X ideals of any Lie algebra belongs to
X (Definition 3.1), and the radical Rad;_,sc(L) (resp. Radz_s(L)) of L for an
ascendantly coalescent (resp. a coalescent) class ¥ (Definition 8.8). In Section
4, observing that y(L) can be written as Radyn~g_.;c(L) by our notation, we
consider the locally solvable radical Radeng_.sc(L). 0(L) can be expressed as



254 Shigeaki T6c6 and Naoki Kawamoro

Rad;»(L) by our notation, but it is not known whether L& is ~,-closed or not.
However o(L) can be shown to be written as Radynng) (L) (Lemma 4.1) and
L(&Ng) is No-closed. Thus we consider Radyengy (L) as the locally solvable
radical corresponding to o(L). It is known [1] that (L) is not necessarily an
ideal of L and that the ideal o(L) is not necessarily a characteristic ideal of
L. We show that Radeng-_asc(L) and Radyeng)(L) have respectively the anal-
ogous properties (Theorems 4.2 and 4.3). Finally we show that these two
radicals and the seven locally solvable radicals obtained in [11] are different
from each other in general (Theorem 4.4).

§1. Preliminaries

We shall be concerned with Lie algebras over a field & which are not
necessarily finite-dimensional. Throughout this paper, the basic field @ will
be of arbitrary characteristic and L will be an arbitrary Lie algebra over a
field @, unless otherwise specified.

We mainly employ the terminology and notations used in [117].

By H<L, H{L and H si L we mean respectively that H is a subalgebra,
an ideal and a subideal of L. H is an ascendant subalgebra of L provided that
there exists an ascending series {H,: « <1} of subalgebras of L, indexed by
the ordinals <4, such that Hy,=H, H,<|H,., for all «<a, H,=\J H, for all

aZp

limit ordinals # <4, and H,=L. We then write H asc L, more precisely H
A-asc L. Then the following fact is easily seen [17].

Lemma 1.1. (1) If H 2-asc L and K<L, then HN\K Z-asc K.

(2) If H 2-asc L and K<L, then H+K i-asc L.

(8) Let {H,: <2} be a tower of subalgebras of L, indexed by the ordinals
a<A, with H, <<H,, fora<l,H,= \jH for limit ordinals 1 <2, and H,=L.

Suppose H, asc H,. ., for each a<A. Then H, asc L.
(4) Let f be a homomorphism of L onto a Lie algebra L. If H asc L, then
f(H)asc L. If Hasc L, then f~*(H) asc L.

By a class ¥ of Lie algebras we always mean a collection of Lie algebras
over @ such that (0)e X and if He¥ and H~K then K€ %. A Lie algebra
(resp. a subalgebra, a subideal of L) belonging to %X is called an % algebra
(resp. an X subalgebra, an X subideal of L).

A class ¥ of Lie algebras is ascendantly coalescent (resp. coalescent)
provided that H, K asc L (resp. si L) and H, K € X imply <H, K> asc L (resp.
siL)and <H, K>€X. @ N, S and & denote respectively the classes of
finite-dimensional, nilpotent, solvable, and finitely generated Lie algebras.
For a class X of Lie algebras, X, (resp. X,) is the class of Lie algebras L such

that L/L ¢ X (resp. L/L® € %), where L= [\ L™ and L= /\ L*. L% is the
class of locally % algebras.
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We shall borrow some notations from [107]. s¥ (resp. @X) is the collection
of all subalgebras (resp. all quotient algebras) of ¥ algebras. X is called
a-closed for A=s, ¢ provided ¥=a%X. Then the g-closed classes are the same
as the classes possessing the property (P) in Definition 3.1 in [11]. % is
called n¢-closed provided the sum of any two X ideals of any Lie algebra
belongs to X.

§2. Ascendantly coalescent classes

It is known [17] that if @ is of characteristic 0 #N\F and § are coalescent
and ascendantly coalescent. Furthermore SNE, Fwy For RNFw)y SN Fas
GNFwy RyNG, NNG, SNANNG, N.NO) 0y, (BNAN,NSG),y) and their
intersections are coalescent [117]. The two classes of them, NG and N, N\,
which are subclasses of ¥ can be shown to be ascendantly coalescent in a
similar way as their coalescency has been shown in [11]. We begin with
this verification.

Lemma 2.1. If HeE and H asc L, then H® and H® are characteristic
ideals of L.

Proor. If HeE and H asc L, then for any finite-dimensional subspace M
of L there exists an integer :(M)>0 such that M(ad H)Y™c H, This can be
shown by a modification of the proof of Lemma 4 in [17].

Now assume L asc K. Then Hasc K. For any x € K, let ¢ be the integer
t(M) which exists for M=(x) in K as above. Then by induction on £ we obtain

[x, H(t+k)]gH(k+1) and [x, Ht+k]ng+1
for k=0, 1, 2,.... It follows that
[x, H)Jc H® and [x, H*])c H".

Hence H and H* are ideals of K and therefore ascendantly stable in L [107].
Especially, they are characteristic ideals of L.

It is to be noted that the part on H* in Lemma 2.1 is stated in [1] as a
consequence of [47].

TuEOREM 2.2. Let @ be of characteristic 0 and let X be a Q-closed class of
Lie algebras.

(1) If % is ascendantly coalescent, so are X,,N\F and X,NF.

(2) LetXc<®h,. If X and NRNXE are ascendantly coalescent, so is SNENG.

) If X and NMNX are ascendantly coalescent, so is N ,HyNXNP.

Proor. In the proofs of Theorems 4.1, 4.2 and 4.3 in [117], replace sub-
ideals by ascendant subalgebras, and use the ascendant coalescency of ,
Lemmas 1.1 and 2.1 instead of Lemmas 1.4 and 1.6 there.



256 Shigeaki T6c6 and Naoki Kawamoro

CoroLLARY 2.3. If @ is of characteristic 0, SNF and N, NG are ascend-
antly coalescent.

Proor. Take =% in (2), (3) of Theorem 2.2. Then the ascendant coales-
cency of @N\g and N,,N\F follows from that of F and NNF.

The ascendant coalescency of &N obtained above is a special case of
the following result which has recently been shown by I. Stewart in [10,

Theorem 3.47]:

If X is no-closed, ¥\ is coalescent and ascendantly coalescent.

We shall make use of this result in order to obtain more classes of coales-
cency and of ascendant coalescency in the following two theorems.

Tueorem 2.4. Let @ be of characteristic 0 and let X, X’ and X be any
classes of Lie algebras. If X and X' are {n,, Q}-closed and X" is N,-closed, then
the classes

ENBs 2N, X NEND,
X NE'NG, ENE'NG, EyN\ENE'NG
are coalescent and ascendantly coalescent.
Proor. Since F< F) S Fo, it is evident that
ENFNF=ENF and ENFPNF=E.NG.

Therefore by Theorem 2.2 (1) ¥.,,N\% and X,N\g are ascendantly coalescent.
They are also coalescent, since (X)) and (X¥NF), are coalescent by Theorem
4.1 in [117] and § is coalescent. The other classes are coalescent and ascend-
antly coalescent as the intersections of such classes.

Tueorem 2.5. Let @ be of characteristic 0 and let X and X' be any {N,,
Q}-closed classes of Lie algebras. Then the classes

ENFer ENFoy ENFNS, ENFoNSe),
ENFNG, ENFNG, ENF.NBGNS, ENF)NS@yNS,
ENFoNBayy ENFo NS0y NBa),
ENDNENFoy EFNF ) NENFNS
are coalescent.

Proor. By Theorem 4.1 in [11] (*N\g).) and (XNF), are coalescent.
NRNENF), is coalescent, since it equals RNEXNF by Lemma 3.3 in [11].
Since Fc<N,, it follows from Lemma 3.5 in [117] that

(&m%)m c mmm =mw(w) =mm-
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Therefore by Theorem 4.2 in [117] (XN\%),N\S is coalescent. Owing to Lemmas
3.2 and 3.5 in [117] we have

((%f\%)w/\@)(w) - (%ﬂ%)m(w)f\@(w) == (%f\%})a,f\@(,,,).

Therefore we use Theorem 4.1 in [117] to see that XNg).NS,, is coalescent.

Now by making use of the fact that N,NG, SN\N,NG and N, NS).,
are all coalescent (Theorem 4.4 in [117]), we see that the other classes in the
statement are coalescent as the intersections of coalescent classes. In fact,
by Lemma 3.5 in [11]

ENF0) S Roo) =N,
and therefore we obtain
ENENTRNO)=ENF) (NS,
ENENRNS)=EFENF). NS,
ENE)NGARNBG)=ENF). NSNS,
ENFoNFTNG) 0y =ENFE) NNy N Oy =ENF) NSy,
ENF)a NSy N RNB)=ENTF) NSy NG,
ENFNSyNRNG) 0y =ENF) NS () Ry NSy
=ENE NS yNG,).

Thus the proof is complete.

§8. Radicals

In [117] the Fitting radical of L was denoted by Rady(L) and the & radical
Rads(L) of L was also introduced. Observing the fact that R, & are N,-closed,
we furthermore define the radicals of L for any n~,-closed class.

DerintTioN 8.1, For any No-closed class X of Lie algebras, we denote by
Rad;(L) the sum of all the X ideals of L and call it the X radical of L.

All the classes in Lemma 6.2 in [117] are shown to be ny-closed. Further
examples are given in the following

Lemma 3.2. (1) All the classes of Lie algebras stated in Theorems 2.4 and
2.5 are No-closed.

(2) The class LX, where X is {N,, s}-closed and any subalgebra of an %X
algebra is finitely generated, is No-closed. ’
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Proor. The statement (1) follows immediately from Lemma 6.1 in [11]
and the statement (2) has been shown in Section 4.1 in [1]].

In 117, the Baer radical was denoted by Rady~5_si(L) and the radical
Rad;_ (L) was introduced for certain kind of coalescent classes X. This
leads us to the following

DerFintTiON 3.8.  If a class % is ascendantly coalescent (resp. coalescent), we
denote by Rady_,sc(L) (resp. Radz_i(L)) the subalgebra generated by all the
ascendant X subalgebras (resp. all the X subideals) of L, and call it the X-asc
(resp. the X-si) radical of L.

Now we have the following properties of the radicals which have been
shown for special cases in Theorem 6.3 in [117].

TueoreM 3.4. For any finite subset of Radi_,(L) (resp. Radz(L),
Radz_ (L)), there exists an ascendant X subalgebra (resp. an X ideal, an %
subideal) of L containing the set. FEspecially, Radz_,(L) (resp. Radx(L),
Rad;_i(L)) ts the union of all the ascendant X subalgebras (resp. all the %
ideals, all the X subideals) of L and belongs to LX.

Proor. The statement can be proved in the same way as Theorem 6.3
has been proved in [11]. So we omit the proof.

§4. Locally solvable radicals

In [117, several radicals of L, which reduce to the solvable radical if L € §,
have been studied. Namely, by making use of the fact that Ng, SN\N, NG,
SNF, (resp. &) are Ny-closed and coalescent (resp. No-closed) if @ is of charac-
teristic 0, they introduced the following locally solvable radicals Radeng(L),
Radenn,~s(L), Radeng, (L), Rade(L), Radeng-si(L), Radenn,ne-si(L),
Radeng,-si(L) and showed some of their properties. However, the locally
solvable radicals corresponding to two other known locally nilpotent radicals,
the Gruenberg radical y(L) and the Hirsch-Plotkin radical o(L), were not
considered there. In this section we shall study these two radicals.

By Corollary 2.3 &N\ is ascendantly coalescent. Hence Rade~g-_asc(L)
exists by Definition 3.3 and is locally solvable by Theorem 3.4. This corre-
sponds to the locally nilpotent radical y(L)=Radn,g—asc(L).

We know o(L)=Radrg(L). Although LN is no-closed, we do not know
whether or not L& is ny-closed. However L(&Ng) is Ny-closed by Lemma 3.2
and therefore Radysng)(L) exists by Definition 3.1 and is a unique maximal
L(GNg) ideal of L. This may be considered to correspond to the locally
nilpotent radical p(L), since p(L) can be expressed as Radisng)(L) by the

following
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Lemma 4.1, tNR=L(NNF).

Proor. Assume that L€ LR and let K be any finite subset of L. Then
K lies in an M subalgebra of L. It follows that

<K> eNRNG=NNG.

Therefore L € L(RNF). It follows that LN=L(NNF), completing the proof.
It is known [1] that y(L) is not necessarily an ideal of L. We show an
analogue of this fact for Radeng-.sc(L) in the following

Tureorem 4.2.  Radeng_asc(L) and Radg , ~g-asc(L) are mot necessarily
ideals of L.

Proor. Let L be the Lie algebra in Example C in [11] (see [1]). That
is, L is the semi-direct sum of an infinite-dimensional abelian Lie algebra
A=(ey, e1, es,---) and a nilpotent Lie algebra (x, y, z) of derivations of 4 with
[x, y]=2z, [x, 2]=[y, z]=0, where

x:ei—>ei (@=0),
y:eg—0, e;—>ie;_1 G>1),
z:ei—e;  (1>0).

Then (e;) is an SN\ subideal of L and (y) is an ascendant &Ng subalgebra
of L. Hence A+ (y)<SRadeng-_asc(L). Now assume that 4+ (y)#=Radeng-asc(L).
Then there exists ax+by+cz+ 2 die; in Radeng_asc(L)\A+(y). If a0, then

Lax+by+cz+2die;, y]l=az+Zide;

and therefore z € Rade~g_asc(L). If =0, then ¢ 0 and therefore z € Radeng
_asc(L). Consequently in any case there exists an ascendant SN\§ subalgebra
H of L containing z by Theorem 8.4. Let {H,: « <1} be an ascending series
from Hto L. That is, Hy=H, H,<lH,., if a<4i, H,L:a\<j#Ha if u# is a limit
ordinal <2, and H,=L. We assert that H,\4=HN A4 for any a«<A. Assume
this for any f<a. If « is not a limit ordinal, then a=p+1. Zd;e; € H,
implies 3d;e;=[2d;e;, z]€ Hs. Therefore H,NA=HzNA. By induction
hypothesis we have H,NA=HNA. If « is a limit ordinal, using induction
hypothesis we have

H,nA=(\J H)NA=\J (H,NA)=HNA.
<a r<la

Therefore by transfinite induction we see that H,N\A=HN A4 for «<4, as was
asserted. Now take aw=A. Then A=HNA4 and therefore 4< H, which
contradicts the fact that H € . Thus we conclude that Radgng_asc(L) =4+ (y).

By replacing & by N, in the preceding paragraph we see that
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Rady , ng-asc(L) =4+ ().

Since [x, y =z, A+(y) is not an ideal of L. Hence both Radeg_asc(L)
and Rady , ~g-.sc(L) are not ideals of L, and the theorem is proved.

It is known [17] that o(L) need not be a characteristic ideal of L. Corre-
sponding to this we show the following

TueoreM 4.3. Radyeng)(L) ts not necessarily a characteristic ideal of L.

Proor. Let L be the Lie algebra in Example C in [117] as in the proof
of the preceding theorem. Since <eo, x> ¢ F, we have L ¢ L(ENG). A+ (y, z)
is an L(@Ng) ideal of L, since any finite subset of A+(y, z) lies in an NG
subalgebra (eo, e1,---, e, ¥, z). Hence Radyeng)(L)=4+(y, 2).

Now we consider (x, x°, y, z). Then it is a nilpotent Lie algebra of
derivations of A such that

[x% 2]=0, [% yl=2v, [#% z]=0.

Let M be the semi-direct sum of 4 and («x, %%, y, z). Then L is an ideal of M
and therefore adyx? induces a derivation D of L. Radyng)(L) is not invariant
under D, since yD=—2x. Therefore Radisn~y)(L) is not a characteristic ideal
of L and the proof is complete.

We note that

Radeng-si(L) S Radeng-asc(L) and Radeng—si(L) S Radyeng)(L).

In fact, the first inclusion is evident. By Theorem 8.3 in [11] Raden~g_si(L)
is an L(GNY) ideal of L, from which the second inclusion follows.
Finally in connection with Theorem 8.5 in [117] we obtain the following

TueoreMm 4.4. If @ is of characteristic 0, the locally solvable radicals of L
Radeng(L), Radenn,~e(L), Radeng, (L), Rads(L),
Radeng-si(L), Radenn,ne-si(L), Radens,-si(L),
Radeng-asc(L), Radreng)(L)
are different from each other in general.

Proor. Let L be the Lie algebra in Example C in [117]. Then by the
proofs of Theorems 4.2 and 4.3

Radsng-.sc(L)=4+(y) and Radyeng)(L) =4+ (y, 2).
By the first part of the proof of Theorem 8.5 in [11]]
Radeng(L)=(0), Radeng-si(L) =4

and all the other radicals equal L. By taking account of the statement of
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Theorem 8.5 in [117], we conclude that these nine radicals are generally
lifferent from each other.
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