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1. The space PD(R) was initially investigated by Royden [10] and Nakai
], with more recent contributions also by Nakai [8, 9] and Glasner-Nakai

[2Γ\. It was shown in [2] that the set AP of P-energy nondensity points
determines the space PD(R) in some sense. In this note we give further
evidence along these lines.

2. Let R be an open Riemann surface and P > 0 , P^O a density on R.
Denote by PD(R) the space of Dirichlet-finite C2 solutions on R of the equa-
tion Ju = Pu. Let M(R) be the class of all Dirichlet-finite Tonelli functions
on R, and MΔ(R) the set of functions f e M(R) such that f=0 on the Royden
harmonic boundary J, of the Royden compactification i?*. Since PD(R) C $(R),
the orthogonal decomposition of M(R) (cf. eg. Sario-Nakai PL1U) yields a vector
space isomorphism T: PD(R)-+HD(R) which preserves the sup norm. The
distribution of PD (R) \ A in HD (R) \ Δ is still an important subject for
investigation (cf. Singer [12]).

We shall make essential use of the operator TΩ given by

where Ω is an open subset of R having a smooth relative boundary and GΩ( , z)
is the harmonic Green's function on Ω, dv{z) = dxdy. It is known that the
Dirichlet integral of TΩu for u e PD(R) is given by

Ω-X.Ω
Ω{z, w)u(z)u(w)P(z)P(w)dv(z)dv(w).

For a comprehensive discussion of the operator TΩ see Nakai [9]. A P-energy
nondensity point z* is a point of i?* with the property that there exists an
open neighborhood Z7* of z* in R* such that

(1) [ Gu(z, w)P(z)P(w)dv(z) dv(w) < oo5

* Similar results have been obtained independently by Professor Wellington H. Ow, "PD-minimal
solutions of Ju=Pu on open Riemann surfaces", to appear in the Proc. Amer. Math. Soc.
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where U=U*ίΛR.

3. We observe that the following maximum principle holds for PD-
functions (Glasner-Nakai [2]):

THEOREM 1. Ifue PD(R), then sup | u | =sup | u |. Moreover, u

implies u^O on R.

PROOF. For u e PD(R)CM(R\ we have u= Tu + g, where Tu e HD(R)
and g IΔ = 0. Since PD \ Δ — ΔP= 0, the ffl)-maximum principle implies

sup I u I =sup I Tu I =sup | Tu \ =sup | u \ =sup | u \.
i? i? J J Δp

Furthermore, from Glasner-Katz [1], u^d on Δ gives u>0 on R for ι* e PD(R).

COROLLARY. If pe ΔP is isolated, then for any u e PD(R), u(p) Φ ± oo.

PROOF. Since u 6 PD(R) has the decomposition u = ux — u2, uuu2e PD(R),
uhu2^>0 (Nakai [7]), it suffices to consider u^>0. Suppose u(p) = °o. From
the proof of the next theorem, there exists a function v e PBD(R) such that
v(p) = l, v\ ΔP— {p} = 0. Then for each n, u — nv^>0onΔP, and by the maximum
principle, u — nv~^>0 on R. This leads to the contradiction u(z) = °o, z e R.

As a result we have the following characterization of PD(R), which is
analogous to that for HD-ίunctions (Kusunoki-Mori [3]) and for PE-ίunctions
(Kwon-Sario-Schiff [4]).

THEOREM 2. dim PD(R) = n if and only if ΔP consists of exactly n points.

PROOF. Assume ΔP = {zf, zf,•••, **}. We can find neighborhoods Uf of
zf with smooth relative boundary such that UfίλUf=φ for iφj and (1) is
valid for Uh i = l, 2, , n. Construct a function h{ e HBD(Ui) such that h^dUi
= 0, 0^hi<l on Uh and A, ( f̂) = l. Then the Fredholm equation (/- Tϋt)ui = hi
has a solution ẑ  on ί7f such that u{€ PBD(Ui), Ui\dUi = 0, O^^X ^AX < 1 on
Ui, and M, (2rf) = l. Extending u{ such that Uj\R—Ui = 0> the extended func-
tion, again denoted by uh is a bounded Dirichlet-finite subsolution, and
Ui\JP-U? = 0.

Let {î w}«=i be a regular exhaustion of i?, and let P®.n be a solution on
Ωn such that Pf»\dΩn = Ui\dΩH. Then P ^ ^ O and the function

f P& -m on Ωn
vή = {

{ 0 on R-Ωm

by the weak Dirichlet principle satisfies D(wf) <,ADUt(ui)<oo. Therefore,
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exists, where λPUi is the canonical extension of ui (cf. Nakai (Ί)]). Since w*l e
MΔ(R), the potential subalgebra (cf. eg. Sario-Nakai [lΐj)9 w{ e MΔ(R), i.e. v{ =
λpUi = Ui on Δ, and V{ e PBD(R), ί = l, 2, , n. Hence Vi(zf) = δij. At this stage
it is not difficult to see that the functions {vh v2,- , vn} forma basis for
PD(R). Conversely, if dim PD(R) = n, similarly as in the case of HD(R) and
PE(R), one shows that ΔP consists of exactly n points.

As an immediate consequence we have:

COROLLARY. // ΔP consists of n points, dim PBD(R) = dim PD(R) = n.

A positive function u e PD(R) is a PD-minimal function if for υ e PD{R),
0<><Cz£, there exists a constant cv such that v = cvu. Our next result also
has an analog for iJD-minimal functions (Nakai [jSJ) and for PE-minimal
functions (Kwon-Sario-Schiίf [5]).

THEOREM 3. If u is a PD-minimal function, then there exists an isolated
point p e ΔP such that 0<u(p)<oo and u \ ΔP— {p} = 0. Conversely, if p e ΔP is
isolated in ΔP, then there exists a PD-minimal function u such that u(p) = l
and u IΔP— {p} = 0.

PROOF. Let u be a PD-minimal function on R. Then ΔPΦφ and u ^ O o n
Δp. Thus there is a point p e ΔP such that u(p)>0. Assume there exists an-
other point q e ΔP such that u(q) >0. Choose disjoint neighborhoods Up, Uq

such that u>d>0 on Up, and construct a function h e HBD(UP) with h\dUp=
0,0 <h<ld on Up, and h(p)=δ. As before, there exists a function w e PBD(UP)
such that 0 <̂  w <, h < d on Up, and tί;(p) = d. Extending w to w \ R — Up = 0, the
canonical extension v = λpw belongs to PBD(R), with v\Δ=w\Δ. Therefore
v(q) = 0. However, ( ) < > < £ < u on ΐ?/,, whence 0<#<;& on Jp, and by the
maximum principle O^v^Cu on R. Thus there exists a constant cv with # =
cy^, and v(q)>0, a contradiction. Then u|Jp— {p} = 0 implies p is isolated.

On the other hand, suppose p is isolated in ΔP. As above, there exists a
function u e PBD(R), 0 < u <, 1 on R, u(p) = 1, and u | J P - {p} = 0. If v 6
is a function satisfying 0 < > < ; ^ onR, then z;| JP—{p} = 0 and 0 ^
Thus there is a constant cv such that v = cvu on JP, with the equality holding
on R by the maximum principle. This proves the theorem.

Denote by °lιPτ> the class of Riemann surfaces on which there exists a
PD-minimal function.

COROLLARY. R 6 <%PD if and only if there exists an isolated point of ΔP.
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