A Note on the Space of Dirichlet-Finite Solutions of $\Delta u = Pu$ on a Riemann Surface^{*}

Joel L. Schiff

(Received March 15, 1972)

1. The space PD(R) was initially investigated by Royden [10] and Nakai [7], with more recent contributions also by Nakai [8, 9] and Glasner-Nakai [2]. It was shown in [2] that the set Δ_P of *P*-energy nondensity points determines the space PD(R) in some sense. In this note we give further evidence along these lines.

2. Let R be an open Riemann surface and $P \ge 0$, $P \not\equiv 0$ a density on R. Denote by PD(R) the space of Dirichlet-finite C^2 solutions on R of the equation $\Delta u = Pu$. Let $\tilde{M}(R)$ be the class of all Dirichlet-finite Tonelli functions on R, and $\tilde{M}_d(R)$ the set of functions $f \in \tilde{M}(R)$ such that f=0 on the Royden harmonic boundary Δ , of the Royden compactification R^* . Since $PD(R) \subset \tilde{M}(R)$, the orthogonal decomposition of $\tilde{M}(R)$ (cf. eg. Sario-Nakai [11]) yields a vector space isomorphism $T: PD(R) \to HD(R)$ which preserves the sup norm. The distribution of $PD(R) | \Delta$ in $HD(R) | \Delta$ is still an important subject for investigation (cf. Singer [12]).

We shall make essential use of the operator $T_{\mathcal{Q}}$ given by

$$T_{\mathcal{Q}}\phi = \frac{1}{2\pi} \int_{\mathcal{Q}} G_{\mathcal{Q}}(\cdot, z) \ \phi(z) P(z) dv(z),$$

where Ω is an open subset of R having a smooth relative boundary and $G_{\Omega}(\cdot, z)$ is the harmonic Green's function on Ω , dv(z) = dx dy. It is known that the Dirichlet integral of $T_{\Omega}u$ for $u \in PD(R)$ is given by

$$D_{\mathcal{Q}}(T_{\mathcal{Q}}u) = \frac{1}{2\pi} \int_{\mathcal{Q} \times \mathcal{Q}} G_{\mathcal{Q}}(z, w) u(z) u(w) P(z) P(w) dv(z) dv(w).$$

For a comprehensive discussion of the operator T_g see Nakai [9]. A *P*-energy nondensity point z^* is a point of R^* with the property that there exists an open neighborhood U^* of z^* in R^* such that

(1)
$$\int_{U \times U} G_U(z, w) P(z) P(w) dv(z) dv(w) < \infty,$$

^{*} Similar results have been obtained independently by Professor Wellington H. Ow, "PD-minimal solutions of $\Delta u = Pu$ on open Riemann surfaces", to appear in the Proc. Amer. Math. Soc.

where $U = U^* \cap R$.

3. We observe that the following maximum principle holds for PD-functions (Glasner-Nakai [2]):

THEOREM 1. If $u \in PD(R)$, then $\sup_{R} |u| = \sup_{d_P} |u|$. Moreover, $u |d_P \ge 0$ implies $u \ge 0$ on R.

PROOF. For $u \in PD(R) \subset \tilde{M}(R)$, we have u = Tu + g, where $Tu \in HD(R)$ and $g \mid \Delta = 0$. Since $PD \mid \Delta - \Delta_P = 0$, the *HD*-maximum principle implies

$$\sup_{R} |u| = \sup_{R} |Tu| = \sup_{A} |Tu| = \sup_{A} |u| = \sup_{A} |u| = \sup_{A} |u|.$$

Furthermore, from Glasner-Katz [1], $u \ge 0$ on Δ gives $u \ge 0$ on R for $u \in PD(R)$.

COROLLARY. If $p \in \Delta_P$ is isolated, then for any $u \in PD(R)$, $u(p) \neq \pm \infty$.

PROOF. Since $u \in PD(R)$ has the decomposition $u = u_1 - u_2$, $u_1, u_2 \in PD(R)$, $u_1, u_2 \ge 0$ (Nakai [7]), it suffices to consider $u \ge 0$. Suppose $u(p) = \infty$. From the proof of the next theorem, there exists a function $v \in PBD(R)$ such that $v(p)=1, v | \Delta_P - \{p\} = 0$. Then for each $n, u - nv \ge 0$ on Δ_P , and by the maximum principle, $u - nv \ge 0$ on R. This leads to the contradiction $u(z) = \infty, z \in R$.

As a result we have the following characterization of PD(R), which is analogous to that for *HD*-functions (Kusunoki-Mori [3]) and for *PE*-functions (Kwon-Sario-Schiff [4]).

THEOREM 2. dim PD(R) = n if and only if Δ_P consists of exactly n points.

PROOF. Assume $\Delta_P = \{z_1^*, z_2^*, \dots, z_n^*\}$. We can find neighborhoods U_i^* of z_i^* with smooth relative boundary such that $U_i^* \cap U_j^* = \phi$ for $i \neq j$ and (1) is valid for U_i , $i=1, 2, \dots, n$. Construct a function $h_i \in HBD(U_i)$ such that $h_i | \partial U_i = 0, 0 \leq h_i \leq 1$ on U_i , and $h_i(z_i^*) = 1$. Then the Fredholm equation $(I - T_{U_i})u_i = h_i$ has a solution u_i on U_i such that $u_i \in PBD(U_i), u_i | \partial U_i = 0, 0 \leq u_i \leq h_i \leq 1$ on \overline{U}_i , and $u_i(z_i^*) = 1$. Extending u_i such that $u_i | R - U_i = 0$, the extended function, again denoted by u_i , is a bounded Dirichlet-finite subsolution, and $u_i | \Delta_P - U_i^* = 0$.

Let $\{\mathcal{Q}_n\}_{n=1}^{\infty}$ be a regular exhaustion of R, and let $P_{u_i}^{\mathcal{Q}_n}$ be a solution on \mathcal{Q}_n such that $P_{u_i}^{\mathcal{Q}_n} | \partial \mathcal{Q}_n = u_i | \partial \mathcal{Q}_n$. Then $P_{u_i}^{\mathcal{Q}_n} \ge 0$ and the function

$$w_i^n = \begin{cases} P_{u_i}^{\mathcal{Q}_n} - u_i & \text{on } \mathcal{Q}_n \\ 0 & \text{on } R - \mathcal{Q}_n, \end{cases}$$

by the weak Dirichlet principle satisfies $D(w_i^n) \leq 4D_{U_i}(u_i) < \infty$. Therefore,

$$w_i = \lim_{n \to \infty} w_i^n = \lambda_P u_i - u_i$$

240

exists, where λ_{Pu_i} is the canonical extension of u_i (cf. Nakai [9]). Since $w_i^n \in \tilde{M}_d(R)$, the potential subalgebra (cf. eg. Sario-Nakai [11]), $w_i \in \tilde{M}_d(R)$, i.e. $v_i = \lambda_{Pu_i} = u_i$ on Δ , and $v_i \in PBD(R)$, $i=1, 2, \cdots, n$. Hence $v_i(z_j^*) = \delta_{ij}$. At this stage it is not difficult to see that the functions $\{v_1, v_2, \cdots, v_n\}$ form a basis for PD(R). Conversely, if dim PD(R) = n, similarly as in the case of HD(R) and PE(R), one shows that Δ_P consists of exactly n points.

As an immediate consequence we have:

COROLLARY. If Δ_P consists of *n* points, dim $PBD(R) = \dim PD(R) = n$.

A positive function $u \in PD(R)$ is a *PD-minimal* function if for $v \in PD(R)$, $0 \le v \le u$, there exists a constant c_v such that $v = c_v u$. Our next result also has an analog for *HD*-minimal functions (Nakai [6]) and for *PE*-minimal functions (Kwon-Sario-Schiff [5]).

THEOREM 3. If u is a PD-minimal function, then there exists an isolated point $p \in \Delta_P$ such that $0 < u(p) < \infty$ and $u \mid \Delta_P - \{p\} = 0$. Conversely, if $p \in \Delta_P$ is isolated in Δ_P , then there exists a PD-minimal function u such that u(p)=1and $u \mid \Delta_P - \{p\} = 0$.

PROOF. Let u be a PD-minimal function on R. Then $\Delta_P \neq \phi$ and $u \ge 0$ on Δ_P . Thus there is a point $p \in \Delta_P$ such that u(p) > 0. Assume there exists another point $q \in \Delta_P$ such that u(q) > 0. Choose disjoint neighborhoods U_p , U_q such that $u > \delta > 0$ on U_p , and construct a function $h \in HBD(U_p)$ with $h | \partial U_p = 0, 0 \le h \le \delta$ on U_p , and $h(p) = \delta$. As before, there exists a function $w \in PBD(U_p)$ such that $0 \le w \le h \le \delta$ on \overline{U}_p , and $w(p) = \delta$. Extending w to $w | R - U_p = 0$, the canonical extension $v = \lambda_p w$ belongs to PBD(R), with $v | \Delta = w | \Delta$. Therefore v(q) = 0. However, $0 \le v \le \delta < u$ on \overline{U}_p , whence $0 \le v \le u$ on Δ_P , and by the maximum principle $0 \le v \le u$ on R. Thus there exists a constant c_v with $v = c_v u$, and v(q) > 0, a contradiction. Then $u | \Delta_P - \{p\} = 0$ implies p is isolated.

On the other hand, suppose p is isolated in Δ_P . As above, there exists a function $u \in PBD(R)$, $0 \le u \le 1$ on R, u(p)=1, and $u \mid \Delta_P - \{p\}=0$. If $v \in PD(R)$ is a function satisfying $0 \le v \le u$ on R, then $v \mid \Delta_P - \{p\}=0$ and $0 \le v(p) \le 1$. Thus there is a constant c_v such that $v = c_v u$ on Δ_P , with the equality holding on R by the maximum principle. This proves the theorem.

Denote by \mathscr{U}_{PD} the class of Riemann surfaces on which there exists a *PD*-minimal function.

COROLLARY. $R \in \mathscr{U}_{PD}$ if and only if there exists an isolated point of Δ_P .

Joel L. Schiff

References

- [1] M. Glasner-R. Katz, On the behavior of solutions of $\Delta u = Pu$ at the Royden boundary, J. d'Analyse Math. 22 (1969), 345-354.
- M. Glasner-M. Nakai, Riemannian manifolds with discontinuous metrics and the Dirichlet integral, Nagoya Math. J. 46 (1972), 1–48.
- [3] Y. Kusunoki-S. Mori, On the harmonic boundary of an open Riemann surface. I. Japan J. Math. 29 (1959), 52-56.
- Y. K. Kwon-L. Sario-J. Schiff, Bounded energy-finite solutions of *Au=Pu* on a Riemannian manifold, Nagoya Math. J. 42 (1971) 95-108.
- [5] ——, The P-harmonic boundary and energy-finite solutions of $\Delta u = Pu$ on a Riemannian manifold, Nagoya Math. J. 42 (1971), 31–41.
- [6] M. Nakai, A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J. 17 (1960), 181–218.
- [7] —, The space of Dirichlet-finite solutions of the equation $\Delta u = Pu$ on a Riemann surface, Ibid. 18 (1961), 111–131.
- [8] _____, Dirichlet finite solutions of $\Delta u = Pu$, and classification of Riemann surfaces, Bull. Amer. Math. Soc. **77** (1971), 381–385.
- [9] ——, Dirichlet finite solutions of Δu=Pu on open Riemann surfaces, Ködai Math. Sem. Rep. 23 (1971), 385-397.
- [10] H. L. Royden, The equation Δu=Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A. I. 271 (1959), 27 pp.
- [11] L. Sario-M. Nakai, Classification Theory of riemann Surfaces, Springer-Verlag 1970, 446 pp.
- [12] I. Singer, Image set of reduction operator for Dirichlet finite solutions of $\Delta u = Pu$, Proc. Amer. Math. Soc. **32** (1972), 464-468.

Department of Mathematics, University of Auckland, Auckland, New Zealand