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Introduction

The classical theory on Dirichlet problem shows that certain classes of
harmonic functions on the unit disc are given by the Poisson integral (cf. [1]).
Recently S. Helgason proved in [5] that any eigenfunction of the Laplace-Beltrami
operator corresponding to the Poincare metric can be given as the Poisson trans-
form of a hyperfunction. On the contrary, it was proved in [3] that, on the eu-
clidean space, one should consider the space which properly contains the hyper-
functions on the sphere to obtain arbitrary eigenfunctions of the laplacian.

The present paper shows that the harmonic functions of the Laplace-Beltrami
operator on the hermitian hyperbolic spaces are given as the Poisson transforms
of the hyperfunctions on the boundary (Theorem 4.5 in §4). For the case of real
hyperbolic spaces we shall discuss in [11].

The construction of this paper is as follows.
In §1, we show that on a compact riemannian manifold, there exists an

isomorphism of the space of hyperfunctions onto the space of Fourier coefficients
of hyperfunctions with respect to the Laplace-Beltrami operator. In §2, we
show that any harmonic function can be expanded in an absolutely convergent
series of K-finite harmonic functions, and in §3 we determine the K-finite harmonic
functions by solving differential equations. In the final section we define the Pois-
son transform of hyperfunctions which is a natural generalization of Poisson
integral. Then, making use of an isomorphism in §1, we prove Theorem 4.5.

§1. Hyperfunctions on compact real analytic riemannian manifolds

We shall show in this section that the hyperfunctions on a compact real
analytic riemannian manifold can be characterized by the eigenvalues of the
Laplace-Beltrami operator on the manifold.

Let M be a compact real analytic riemannian manifold, g a riemannian
metric on M and A the Laplace-Beltrami operator corresponding to g.

Let L2(M) be the space of square integrable functions on M with respect to
the measure dμ corresponding to g, ( , ) its unitary inner product and || || its norm.
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We denote by jtf(M) the space of analytic functions on M equipped with the
usual topology.

As is well-known, the eigenvalues of A are non-negative and we can choose
analytic functions φn(n^N) so that they form a complete orthonormal base of
L2(M) and the corresponding eigenvalues λn satisfy

LEMMA 1.1. For seC with Re(s)>-i-dimM, the series

n=l

is convergent and holomorphic in s.

For the proof of the lemma, see [10].

LEMMA 1.2. For ί>0, the series

π=l

is convergent.

PROOF. TakeanseJR such that s>γ dim M. Then there exists a real

number w>0 satisfying

for any n ̂  1. Therefore

n-l n-1

which is convergent by Lemma 1.1.
Let C°°(M) be the set of indefinitely differentiable functions on M. It is

well-known that any φeC°°(M) has an absolutely and uniformly convergent
expansion

n=l

where an = (φ9 φn\ Since Δφ— Σ anλnφn9 the series
Λ=l

Σ ann=l



Harmonic Functions on Hermitian Hyperbolic Spaces 83

is also absolutely and uniformly convergent and defines an element of C°°(M).
We denote it by A1/2φ. It is easy to show

LEMMA 1.3. For f and h in C°°(M),

(Ji/V,Λ)=(/^ 1 / 2Λ)

Analogously, for any ί^O, we can define a mapping exρ(— tΔί/2) by

for φ = f; anφn in C°°(M). Then we have

LEMMA 1.4. For f and h in C°°(M),

/, /ι)=(/,

We introduce two systems of semi-norms | \H(H>0) and || \\h(h>G) on
C°°(M) defined by

and

where Z+ denotes the set of non-negative integers. For H>0 and A>0, we
define

and

Then we have

LEMMA!. 5. For φeC°°(M), we ftαt e the following two inequalities.

(i) W H ^ I

(ϋ) \\Φ\\k

PROOF, (i) Taking the supremum of the equality

(2k)lHk" y"

we obtain the required inequality
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(ii) In case of m = 2/ where / is a non-negative integer,

Taking the supremum of the last term, we have

m\hm J Ψ\\—\Ψ\h2

In case of m=2/ + l,

Using Lemma 1.3 and Schwarz's inequality, we have

, Δlφ)

IM I + 14»II \\Alφ\\ (2(7 + 1)}! (27)1
{2(/+l)}!(A2)'-( 1 ' (2/)!(A2)' ' (2/+1)! ' (21 +1)1

As 0< 2/ί i — ̂ ' ta^in8 the supremum, we have

Therefore, we get
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(1.1) together with (1.2) gives

for n e Z + . Taking the supremum of the above inequality, we obtain the required
inequality

which finishes the proof.

Lemma 1.5. implies that the inductive limit of J^O,H(^)J denoted by
liπj j/o H(M) and that of sέh(M\ denoted by liπj <sέh(M) are identical with their

ff->oo ' λ-»o°
topologies. On the other hand, j/(M) = liπj ja/0 H(M) with its topology (see [9]).

H-*oo

Therefore we have the following proposition which will be useful for our purpose.

PROPOSITION 1.6. j2/(M) = Ijnj jaf Λ(M).
Λ-+OO

Now, we define a subset & ' a of CN by

«^ = {(<a^ikeC, Σ \aΛ\e*sπ«χ> for some ί>0}
n=l

and a mapping Φ of ĵ (M) into CN by

where φ^jtf(M) and an = (φ9 φn). &a is a vector space over C and Φ is a
C-linear mapping of jtf(M) into CN.

PROPOSITION 1.7. Φ zs 0w isomorphism of jtf(M) onto ̂ a.
PROOF. At first we prove that the image of Φ is contained in &a. Take

and fix an arbitrary element φ in <tf(M) and put an = (φ, φn). Then φ has an
expansion

Φ=Σ<*nΦn
n=l

which converges absolutely and uniformly in M. On the other hand, Proposi-
tion 1.6 implies that there exists an ft>0 such that J/Λ(M) contains φ. There-
fore

sup — 1

meZ+ Ή

and
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for any meZ + . Hence, for any meZ+ and any weΛΓ,

Multiplying 2~m and summing the above inequality with respect to m, we have

e^»\an\^2\\φ\\h (1.3)

for neJV. Putting here ί=l/4/ι, we obtain

Σ l
M=l

n=l

n=l

which is finite by Lemma 1.2. This means that Φ(φ) lies in « "̂β.
Next, we show the surjectivity of Φ. Take and fix an arbitrary (an)n^1 in

« β̂. There exists a ί>0 such that

w=l

On the other hand, for any neΛΓ, φn^jtf(M) and

Hence, we obtain

N+l N+l

N+l

which implies that the sequence
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N
Σ «nΦn

n=l

is a Cauchy sequence in the Banach space Therefore there exists a

Inunique element φ in sέ(M) such that φ = Σ anφn in the topology of
π=l

particular, f] αnφn converges to φ absolutely and uniformly in M. So, we have
n=l

(αn)n£i> which means the surjectivity of Φ.
Finally, we prove the injectivity of Φ. Assume Φ(φ) = 0 for φ e ja^(M). Then

(φ? φπ) = 0 for neΛΓ. On the other hand, φ has an expansion

00

Φ= Σ(Φ> Φn)Φn
w=l

which is absolutely and uniformly convergent. So we have </> = 0. This com-
pletes the proof.

, the series

Σ(Φ,Φn)Φn
71=1

COROLLARY 1. For

converges to φ in the topology of

PROOF. We have shown in the proof of the above proposition.

COROLLARY 2. For φ^j/h(M) and t such that l/2ft>f^0, the series

w=l
(Φ,

converges in the topology of jtf(M) and defines an element of cS/(M), which we
denote by exp(tAl/2)φ. In addition,

PROOF. From (1.3) in the proof of Proposition 1.7,

for n^l and . So, taking an s such that 0<s<l/2/ι-ί, we have

\(Φ, φnn=l

n=ί

n=ί
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Since t + s - l/2h< 0, Lemma 1 .2 implies that ((φ,
tion 1.7, we deduce that the series

n^ t <Ξ &a. By Proposi-

(Φ,

converges in 30(M) and defines an element exp of as jtf(M) is
_

complete. Since exp (tA ί/2)φ=Σ (Φ> Φn)et^λnΦn *s convergent absolutely and
w=l

uniformly in M9

00

m=0

m=o

which finishes the proof.
Let ^ = ̂ (M) be the space of all continuous linear functionals of

into C. M being compact, ^ is identical with the space of Sato's hyperfunc-
tionsons on M (for detail, see [12]), and henceforth we call the elements of ̂
hyperfunctions on M.

We define a subset ^b of CN by

for any

and a mapping ίP of (̂M) into CN by

where Γe^(M) and an=T(φn), φ denoting the complex conjugate of $.
is a vector space over C and !F is a C-linear mapping of (̂M) into CN.

We can now state the theorem characterizing the hyperfunctions on M.

THEOREM 1.8. Ψ is an isomorphism of & onto ̂ b.

PROOF. At first we prove that the image of Ψ is contained in
enough to show that for every ί>0

b. It is



Harmonic Functions on Hermitian Hyperbolic Spaces 89

where an=T(φn) and Te^(M). Take an h0>Q such that l/h0<t. As φn<=
j/A(M) for every h>Q and T is continuous on ja/Λ(M), there exists a constant
c such that

Hence,

π=l

n=l

11=1

Since l//ι0-f<0, by Lemma 1.2, we have

^c 2M=l

<00.

Next, take and fix an arbitrary (an)n^l in J^ and an arbitrary h>0. Then

by Corollary 2 to Proposition 1.7, exp^/d1/2^ e j3f(M) for

Using Lemma 1.4, we have
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Therefore, we have

Σ \an\ \(Φn, Φ}\

71=1

«=1
(1.4)

which means that the series

Σ <*n(Φn, 0)
n=l

is absolutely convergent. We put

n=l

It is clear that Γis a C-linear mapping of jtf(M) into C and T(φn) = an. Further-
more (1.4) shows that Γis continuous on jtfh(M). Since h is arbitrary, Tis con-
tinuous on ĵ (M), which proves the surjectivity of Ψ.

Finally we prove the injectivity of Ψ. Assume that Ψ(T) = Q for Γe^.

That is, T(φn) = Q for n^ 1. Since Σ (φ, φn)φn converges to φ in the topology
n=l

of j/(M) for any φ in j/(M) (Corollary 1 to Proposition 1.7),

= 0,

which means that Γ=0. This completes the proof of the theorem.

REMARK. The following two conditions are equivalent.

for any f>0.(0 Σ \an
n=l

Σ \an\
2e~s^< oo

w=l
for any s>0.

oo _

In fact, assume that (i) is satisfied. Since Σ \an\e~s^λn/2 < oo, there exists
n=l

an integer N such that for n^N,
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Then, for such n, we have

\an\
2e-s^»<\an\e-s^2

00 _

which implies that Σ \an\
2e~s^λn<oo.

n=l

Conversely, using the Schwarz's inequality,

Σ \an\e-'^=Σ(\an\e-'tt2)e
n=l »=1

^(Σla^e-'^ΠΣ
«=1 n=ί

which is finite by Lemma 1.2.

Therefore, &b={(an\^\anSΞC, Σ \an\
2e-^ for any ί>0}.

§2. Poisson transforms of K-finite functions

In this section we assume that G is a connected real semisimple Lie group
with finite center and of real rank one. Let g0 be the Lie algebra of G, g0 =
ΪO + PO a Cartan decomposition, Θ the corresponding Cartan involution and g
the complexification of g0 Let αp o be a maximal abelian subspace of p0 and
extend α^ to a Cartan subalgebra α0 of g0. Then α0 = α f o + dp0 where α f o =
α0 Π Ϊ0 On account of our assumption on G, αp o is one-dimensional. Com-
plexify f0, PO, α0, αp o and α f o to f, p, α, α^, and α? in g respectively and introduce

compatible orders in the spaces of real-valued linear functions on a^0+^/~ίato

and dj,0. Let P be the set of positive roots of (g, α) under this ordering. For
a root α, let gα denote the root subspace of α. Put P+ be the set of α e P with

α°0^α, n= Σ gα, n0 = n n g 0 and p=-y Σ α Then G = KAN is an Iwasawa
αeP+ ^ αeP+

decomposition, where K, A and N are the analytic subgroups of G with Lie alge
bras Ϊ0, αpo and n0 respectively. For xeG, let H(x) be the unique element
such that x e K (exp H(x))N. Let Jί = G/K and B = K/M, where M is the centra-
lizer of A in JC. We define a real analytic function P(xK, kM) on the manifold
XxBby

We denote by #κ the set of equivalence classes of irreducible unitary represen-
tation of K and by ίfg the subset of & κ which consists of the representation of class
one with respect to M. For each y e #κ, we take and fix a representative (τv, Wy)
ey and choose an orthonormal base {wj, ..., Wd e g y} of Wγ so that w^ is an Af-
fixed vector when y e<f £, where deg y is the dimension of Wγ. Since rank (G/X)
= 1, wj[ is unique up to a scalar for ye«ί£. Put τJJ (fc) = (τv(/c)w}, wj) and φjy =
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Λ/degy τ}j for y^#κ and φ^φli for ye<f£, ( , ) denoting the unitary inner
product of Wγ. We denote by Vy the space of elements in C°°(K) which trans-
form according to γ by the left regular representation π(k) of K. It is easy to
see that

degy

for ye<?x and fceX, and

for γ e <f £, fc e K and m e M. Hence for y e #κ, φy

u e Fy and for y e «f £, we can
regard Vy as a subspace of C°°(£). As is well-known, {φv

ij\ί^ι9 j ^ degy} is
an orthonormal base of Vγ for y e ̂ κ.

Let g be the G-invariant riemannian metric on X induced by the Killing form
of g0 and A be the Laplace-Beltrami operator corresponding to g. We identify
the functions on X with those on G which are right K-invariant. Let 23 be the
universal enveloping algebra of g. We regard elements of 23 as left G-invariant
differential operators on G. Then, as is well-known, A can be identified with the
Casimir operator Ω on G by

for xeG.

We put

jr = {/6=C«(X)|J/=0}

and

« ŷ = {/e^f |/ transforms according to y}.

Now, we define the Poisson transform & φ of φ e C°°(B). Put

, fcM) φ(£) dk,

where xeG, /ceX and dk is the normalized Haar measure on K. On this
mapping ^>, the following results hold.

PROPOSITION 2.1. (1) The image of C™(B) by & is contained in ̂  and
for y^#κ> ^e restriction of 0> on Vy is an isomorphism onto 3?τ

(2)

For the proof of the above proposition, see Lemma 1.2 and Theorem 1.4
in Chap. IV in [5].



Harmonic Functions on Hermitian Hyperbolic Spaces 93

We put f ] = &φ\. Then we have

PROPOSITION 2.2. (1) For /e«Pf, there exists a unique complex number
a] for every ye<f£ and l^ϊ^degy such that

)= Σ

which is absolutely convergent for any z in X.
(2) Put φ j(k)=f(kz). Then

degγ

which is absolutely and uniformly convergent in K.

1 deg y degy

(3) \\φ}\\*- Σ0 -( Σ. |αΠ2)( Σ l/].
γe<fκ ^σ / i— »

| denotes the norm of L2(K).

PROOF. By the theory of Fourier expansion of smooth functions on compact
Lie groups (see [14]),

Φz

f= Σ ΣVjbWj, (2.1)
γe#κ i,j

where the series converges absolutely and uniformly in K and

Since

b]j lies in « r̂ Putting fc= identity in (2.1), we have an absolutely convergent
series

degy
If 2 fcπ^O, it follows from Proposition 2.1 that ye^g and

i=l

_ deg y deg y

Vde8V .Σ &Γι= .Σ βJ/T (2-3)
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for some a}. Since z is arbitrary, replacing z by kz in (2.3), we have

i, /

and

, k0M)φl(k0 )dk0
K

= ΣX P(z,k-1k0M)φl(k0)dkQ
i J K

As <£?j are linearly independent,

Putting i = / in the above equality, we obtain from (2.2) an absolutely convergent
series

/(Z)= Σ
ye<f

which proves (1).
Next, from (1) and (2.4) we have

which proves (2) and (3) immediately. This completes the proof.

Now we transform the Casimir operator Ω. For λeα*, the dual space of
α, let λ denote the restriction of λ on α^. Let P+ denote the set of αeP such
that α^O. For each root α, select -X^eg* and normalize it in such a way that
<Xa, X-a> =1 where < , > is the Killing form of g. Then [Xα, X_α] = ίfα

where #α is the element in α such that <H, HΛ> =α(H) for any Heα. Choose
bases H^ and H2, ..., Hm for αp and α{ respectively so that <Hi, Hj> =δy for
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l^i, j^m. Then Hl9 ..., Hm together with XΛ9 X-Λ (αeP) form a base for
g. It is easy to see that w/=0 on X for we95ϊ and /eC°°(X). Hence we can
transform Ω modulo 331.

It is clear that

αeP

= Hl+ Σ (XΛX-Λ+X-ΛXΛΪ mod 81, (2.5)
αeP +

since Xβ) X_a and H( lie in k for αe P- P+ and i> 1. For αe P+, let Xβ=Zβ+ ya

where Z^eί and F«ep and put X%=Ad(a)X% where α=expH and Heo'po =
αpo-{0}. Then

On the other hand

and we have

Za

Λ + Y°a = e«wZa+e"W Y,. (2.6)

Since θ(Za

x + Ya^=Za

x'
ί -Y*~l, we have also

ZΓ'-y -'-e WZ.-β wy,. (2.7)

In (2.6), replacing H by — H, we have

Z ' + FΓ1 =e-ίl(H)Z01+e~α(H)y« (2.8)

(2.8) together with (2.7) gives

yα = (coth α(H))Zβ - (sinh α(#))- » Zf ' . (2.9)

By the way, since

=(za+yjy_α,

we get from (2.9) that

XΛX.Λ s {(1 + coth α(H))Za - (sinh α(H))- iZf '} Y-x
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= (1+ coth α(ff)) [Z., y_J + (1 + coth α(#))y_aZα

Ξ(l+cothα(H)) [Zα, y.J-ίsinhαCH))-^ -'F-.. (2.10)

Hence we have

Replacing H by — H, we find that

Therefore,

θ(X.aXx) = - (1 + coth α(H)) [Z_α, yj

+ (sinhα(fl))-1Zϊ.y., (2.11)

since [Z_a, yjep. From (2.10) and (2.11), we have

Since

[zα, y_

= l{

We have

Ξ(+cothα(H))H--(sinhα(H))-1(ZS-'y_a+Z °-'yα). (2.12)

It is easy to see 0Ω=Ω. Therefore from (2.5) and (2.12)

Σ
αeP +
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= H? + 4 Σ {(l+cothα(fl))HI-(sinhα(ίO)-1(ZΓ1y_β-Zi;Iyj
^ αeP +

+ (i - coth α(H))//_5 + (sinh «(fl))" '(zi; ' y« - z - ' y_«)}.
Noticing #-5= — Hs, we get

Ω=Hf + Σ {(coth α(H))Hδ + (sinh αί/OrHZ Cy.-Zf'y...)}.
αeP +

Since Ya= (coth α(H))Zα- (sinh αίfOΓ'Z;'1 from (2.9), we find that

ΩsH\+ Σ (cothα(H))Hs- Σ
αeP + αeP+

Let Lx(X^g) be the differential of the left regular representation of G and
extend it to the representation of S. Then

for x e G, / e C°°(G) and X e g. Hence

Let μ0 be the restricted root such that ^-μ0 is not a restricted root. Let

Pμo (resp. P2μ0) ^
e ̂ e set °̂  Positive root α such that α: is equal to μ0 (resp.

2μ0) Let p and # denote the number of roots in Pμo and P2μo respectively.

We normalize H0 in αpo so that μ0(H0) = l. Then </ίθ5 ^o> =2(jP + 4^f) ancl
^1=(2p + 8^)-1/2H0. Put Λ^expίHo for t<=R. Then ί can be regarded as
the coordinate function on the one-dimensional Lie group A. It is evident
that H = (2p + &q)~lH0 and

dt

d

~Li(sinhnhί)2

(8inh2ί)2 α.

Therefore, we have

PROPOSITION 2.3. Forf<=C°°(X),
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(Ωf)(at) = Df(at)\ j / \ r/ j v »/

1

-{(sinh2f)2

where at = exp tH09

= Σ (ZαZ_β+Z_αZβ)
αeP +

and

§3. Hermitian hyperbolic spaces

From now on, we deal with the case that X = G/K is a hermitian hyperbolic
space. That is, we deal with the case of G=SU(n, 1). We compute ω{ and ω2

defined in section 2. At first we review the structure of the Lie algebra g0 =
sιι(n, 1). Put

Z€=u(n),zeu(l)l

Tr(Z) + z = 0 J

and

0

Then g0 = lo + Po is a Cartan decomposition and negative conjugate transpose
is the corresponding Cartan involution. Lie algebra Ϊ = ΪQ and p = pδ in
g = gg = sl(n + 1, C) are given as follows:

Z n x n complex matrix,
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Let l)0 be the set of diagonal elements of Ϊ0. Then ί)0 is a Cartan subalgebra

of g0 and ί) = f)o which consists of the diagonal elements of I is a Cartan sub-
algebra of g and I. Let βj(l g j 5Ξ n + 1) be the linear functional on I) whose value

on a diagonal matrix is the j'-th diagonal entry. Then roots of (g, f)) are the

differences ei — ej(\^i9 j^n + l). Choose an order so that the positive roots

are ei — ej(\^i<j^n-\-\). Let Q9 Qk and Qn be the sets of positive, compact
positive and non-compact positive roots respectively. Then, putting /?y = eΛ — ej

and

The root subspace $βij of βu is equal to CEtj where Etj(l <LiJ<^n + 1) is the matrix
unit. Hence we have the following decompositions :

9=ί>+ Σ Q",
±βeQ

!=!)+ Σ 9",
±βeQk

P= Σ 9".
±βeQn

The Killing form < , > in cj is given by

<X9 Y> =2(n + l)Tr(X7), X and

where Tr denotes the trace of the matrix of order n + 1 . For λ e ί)*, let Hλ be the

element in ί) such that <Hλ9 H> =λ(H) for H^. If λ, μeί)*, put <λ9 μ>

= <Hλ9 Hμ>. For simplicity, we write β0 for βι>n+ί.
Put ί)+=V^XR^0and l). = {H^l)0\<Hβo9 H> =Q}. Then I)0 = t)++I)_

(direct sum). Put E'βo = E^in+ί and £i^0 = £w+lί l. Then^<£^0, E'-βo>=2<βθ9

β0>-*9 E'βo-ELβoζ=J-tt0and J-l(E'βo + ELβt)*Ξj=ϊp0. Put α>0=R(E'βo

+ E'.βo)9 α f o=t)>, α0 = α f o + αί3o, α = α& and w = exp^(£^0-£^0). Then ^d(w) is

the identity on α fo, Ad(u) αί)0=λ/ — II) + , ^4d(w)α = I) and α0 is a 0-stable Cartan
subalgebra of g0 ([7], [13]). It is easy to see that α^, α0 and α f o satisfy the con-

ditions in section 2. Hence we can take the above subalgebras as those defined
in section 2. We can assume that P, the set of positive roots of (9, α) defined

in section 2, is Άd(u)Q. It is easy to see that μ0 is equal to the half of the
restriction of oc0 =

 tAd(u)β0 on αpo. Putting ocij =
 tAd(u)βίj9 we have
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P+ ={α0 = α l ίM+1, α l f (

Pμo = {<Xli>

and

Put EβiJ = (2n + 2)- * /2Eίy and Xβ|J = Ad(tr O^O ̂  i, j ̂  n + 1). Since EβtJ e
g^ and <EAfJ,JS.^>=l, Xβf/eββ" and <Xβ|J, X_β u> =1. Therefore for
calculation of ω± and ω2, we have only to see the ϊ-component Zα of Xa for
any root α. Practising the above calculation, we have

LEMMA 3.1.

Let m be the Lie algebra of M which is the centralizer of A in K. Then

m= Σ 9α= Σ 6βiJ,
±αeP-P+ Ki,j<w+l

because Ad(u) is the identity on α f o. Let 901 be the subalgebra of 23 generated
by m. By Lemma 3.1, we have that

(ZαZ_α+Z_αZα)

and

ω1= Σ (ZαZ_β+Z_αZα)
αeP +

=ω2+ Σ (ZβZ_a+Z_ΛZα)
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Let v be the negative of the restriction of < , > on f 0. Then v is an Ad(K)~
invariant inner product of f0. Let ω be the Laplace-Beltrami operator cor-
responding to the riemannian metric induced by v. Since <Eβ, E_β> =1 for
β<=Qk9 <!)+, ί)_>=0 and <^/n + lHβo, ^/n + lHβo>=l, we have

Therefore ω^ = ωκ mod SOI and ω2

As M normalizes A, f(a expί7)=/((expί7)α) for a&A, t^R and
Therefore we have

(Lu/)(α) = 0 (3.1)

for ue9Jί and /eC°°(G/if). Let Zc=(n + l)-H Σ £ii-n^B+i,n+1) and Zm=

(n + l)-1{(π-l)£ίi+(n-l)£B+1,n+1-2Σ £„}. Then Zc lies in the center of ϊ,

Zm lies in m and Hβo = (2n+T)-1(2Zc+ZJ, as /ί/ίo=(
Hence

=(4n+4)-i(4Lz^ +4LmLZc + LZ*J.

By (3.1), we conclude that

(Lωιf) (a) = (Lωκf) (a) (3.2)

and

(LωJ) (α)=(n + l)-'(LZc>/) (α).

Let Lbe the set of dominant integral form of (ϊ, ί)). Then

where l^l^ί^ri) are integers such that I^l2^ ^ln. As is easily seen, for
G = SU(n, 1), there exists a bijection y<-»/ly of gκ onto L. Let L° denote the
image of #% by this bijection. Since Λy(^#$) vanishes on ί)_, we have

From now on, we identify L° with Z+ and write τz, Fz, «#* /5 φί,/j and deg(/)
instead of τy, Fr ^y, ΦJ, f\ and degy. Put ρk=2~1 Σ β Then, as is well-

βeQk
known, for / e &Ί we have
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Lωκf=<Λl+2Pκ,Λl>f (3.4)κ

and

PutH (=HΛl. ΊtenHl=l(2n + 2r1(Eίl-En+ί>n+ί). Since 2p=
l

we have

<2pk, Λl>=2pk(Hl)

and

<Λl,Λl>=Λl(Hl)

Hence, we have

<Λl+2pk, /t(>=(

On the other hand, since Zc=(n + l)"1( 2 £„-«£„+! n+1), we have

= /.

Therefore, from (3.2), (3.3), (3.4) and (3.5) we have

LEMMA 3.2. Forfi^j^Ί, the following equations hold.

(Lωίf> (α)=(2n+2)-'{2/2 + (n-

The above lemma together with Proposition 2.3 gives

(3.5)

PROPOSITION 3.3. Let /eL°, f^J^Ί and F be the restriction of f on A.
Then F satisfies the following differential equation

where
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D = - - 4- 2{(n - l)coth t + coth 2t }-

Γ4l* + 2(n-l)l /2| 1 ___ 1 11
L (sinhO2 I(sinh02 (sinh 2f)2 ί J'

PROOF. Since Ωf = 0 and p = 2(n — 1), q = 1 in case of SU(n, 1), we have this
proposition immediately from Proposition 2.3 and Lemma 3.2. This completes
the proof.

We introduce a new parameter z. Put z = (tanhί)2. Then the differential
equation in Proposition 3.3 turns into

dz

A fundamental system of solutions of the above differential equation is given by

z'/2

where F( — (n — 1), —l — (n — 1), — / — n + 2; z) is the hypergeometric function.
Since F(z) must be a C°° -function in ί, there exists a complex number c such that
F(z) = czl/2 . Thus we have

LEMMA 3.4. For f^J^h there exists a complex number c such that for

/(<*,) = c(tanhί)'.

By Lemma 3.4, there exists a complex number c\ for ίeL° and l^i^
deg(ί) such that

On the other hand, A. W. Knapp proved ([6], Theorem 1.1) that in case of rankpf)
= 1

at) = φ(k) a.e. k <Ξ K
ί-»c»

where φ is an integrable function on B = K/M. Therefore we have

ct = limc^tanh t)1 = φ\(e)

Thus we obtain
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PROPOSITION 3.5. For /eL°,

/K<0=V<

§4. Poisson transforms of hyperfunctions

In this section we keep to the notation in the previous sections. Let

* »={(β{)ί i&d.,<i)|βίeC, Σ Σ |βi|β-'^«χ> for any ί>0},
IG L I

where λj = <At + 2pk, At> =(2n + 2)~1{2/2+(n-l)/}. By an easy computation,
we have the following

LEMMA 4.1. For every non-negative integer /,

For s>0, put

We assume that z = katK^Us and consider the series 5= 2 Σ \al\ I/KZ)I

Us for (α|) e &b. Since /j(fcαf) = Σ/i faW/fc) and |τj/fc)| , we have

Using Proposition 3.5, we have

( 0 ' , (4.1)

where r=|tanhί|.
Since deg(/) is a polynomial function in / (WeyΓs dimension formula),

lim(deg(/))1/2/ = l. Therefore there exists an integer /0 such that

for any /> /0. Then from (4.1) we have
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+ fJ:+lΣ>ί{<leg(/)1/2lr}'

Σ Σkl
1=0 i

+ Σ Σlβik-",
l=lo+ί i

for ze Us. On the other hand, from Lemma 4.1, l^^fλΊ. Therefore, we obtain
an inequality

S^ Σ Σkk/dig(0+ Σ Σ\a\\e~^'
1=0 i ί=/o+l i

for ze Us and (α{)e^b. This implies that the series

degO)

o Σ

converges absolutely and uniformly in l/5. Since /z

ίeί5r = e/f(X) (ίeL°, l^i
and every compact subset is contained in Us for some s>0, it follows

that Σ Σαί/10) lies in jf7. Thus we have
ZeL° i

LEMMA 4.2. For (αDe^Ί,, ίftβ sm'es Σ Σ«ί/i(^)
ZeL° i

converges absolutely and uniformly in every compact set of X and defines a
harmonic function on X.

Conversely, if /e Jf , by Proposition 2.2, we have an expansion

and obtain

LEMMA 4.3. The sequence (aty in the above expansion lies in

PROOF. From Proposition 2.2 in §2, we have

Putting z = 0r and using Proposition 3.5, we have



106 Michihiko HASHIZUME, Katsuhiro MINEMURA and Kiyosato OKAMOTO

where r= |tanhί|. Since 0<r<l and l^^n + l^/λl (Lemma 4.1), we have

IIW^i Σ Σ\<*\\2(r2^)^ (4.2)
/eL° i

For an arbitrary s>0, choose a t^R so that r2^n+ί = e~s. Then from (4.2) we

obtain

I I W 2: Σ Σ\a\\2e~^
ίeL° i

which means, by the remark following Theorem 1.8 in §1, that (a1-) lies in ̂ b.
This completes the proof.

Now we define the Poisson transform of a hyperfunction on B. Let Te^.
Since P(z9 b) is a real analytic function in b, we can operate T on P(z, b)
and T(P(z, ft)) is a function on X. We denote this function by ^(T) and call
it the Poisson transform of T. By Theorem 1.8, there exists an isomorphism

Ψ of & onto J^j,. Then we have

LEMMA 4.4. Let T(Ξ& and (ali)=Ψ(T). Then, for any

/eL° i

PROOF. Fix an arbitrary z in X. Then from Corollary 1 to Proposition

1.7, P(z, b) has an expansion

= Σ
(4'3)

which converges in j/(β). Since P(z, b) is real-valued and /i(z) =

\ P(z, kM)φ\(k)dk, taking complex conjugate of (4.3), we have
JK

leL°

which also converges in ĵ (β). Therefore

T(P(Z, fr»=

From the definition of !F(Γ), αf = Γ(^J), which finishes the proof.
Now we are in position to state the main

THEOREM 4.5. Poisson transform 0> is an isomorphism of &(B) onto
, where X is a hermitίan hyperbolic space.

PROOF. Lemma 4.2 together with Lemma 4.4 implies that the image of @>
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is contained in ./f7. Lemma 4.3 implies the surjectivity of &. Let T satisfy

= 0. Then putting Ψ(T) = (a$9 we have

leL° i

for any z&X. Replacing z by kat, we have from (2.4) and Proposition 3.5,

ίeL°

for k&K. Since φ\ are linearly independent, we can deduce that 0 = 0 for
/ e L° and 1 ̂  i ̂  deg(/). Hence T = 0. This completes the proof of the theorem.

REMARK. We can identify a C°°-function φ on B with the hyperfunction
defined by

j/(£)e^-»\ \l/(k)φ(k)dk.
JK

Then the Poisson transform of a hyperfunction φ coincides with the Poisson
transform of a C°°-function φ defined in § 2.

Added in proof.

Theorem 4.5 is valid although one needs two parameters of integers to
characterize «f £, which contains L° properly. The proof in general case in-
volves some technical skill and will be found in the forthcoming paper of the
second author.
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