Нікозніма Матн. J. 3 (1973), 25–36

Characterizations of Radicals of Infinite Dimensional Lie Algebras

Dedicated to Professor Tôzirô Ogasawara on the occasion of his retirement

> Shigeaki TôGô (Received January 17, 1973)

Introduction

Recently investigations have been made on the Lie algebras of infinite dimension. As the Lie analogues of the infinite group theory, B. Hartley [1] has considered the notions of subideals and ascendant subalgebras and studied the locally nilpotent radicals which reduce to the nilpotent radical in finite-dimensional case. In [4, 5] we have introduced and studied the locally solvable radicals which reduce to the solvable radical in finite-dimensional case. If \mathfrak{X} is a coalescent (resp. an ascendantly coalescent) class of Lie algebras, for an arbitrary Lie algebra L we there defined the radical $\operatorname{Rad}_{\mathfrak{X}-\operatorname{si}}(L)$ (resp. $\operatorname{Rad}_{\mathfrak{X}-\operatorname{asc}}(L)$) as the subalgebra generated by all the \mathfrak{X} subideals (resp. all the ascendant \mathfrak{X} subalgebras) of L. In particular, if the basic field is of characteristic 0, $\operatorname{Rad}_{\mathfrak{X}\cap\mathfrak{F}-\operatorname{si}}(L)$ and $\operatorname{Rad}_{\mathfrak{R}\cap\mathfrak{F}-\operatorname{asc}}(L)$ are respectively the Baer radical $\beta(L)$ and the Gruenberg radical $\gamma(L)$ which are locally nilpotent [1], and $\operatorname{Rad}_{\mathfrak{G}\cap\mathfrak{F}-\operatorname{si}}(L)$ and $\operatorname{Rad}_{\mathfrak{G}\circ\mathfrak{F}-\operatorname{asc}}(L)$ are locally solvable radicals [4, 5], where \mathfrak{N} , \mathfrak{S} and \mathfrak{F} denote respectively the classes of nilpotent, solvable and finite-dimensional Lie algebras.

The purpose of this paper is to investigate the radicals of Lie algebras, especially to present certain characterizations of $\operatorname{Rad}_{\mathfrak{X}-si}(L)$ and $\operatorname{Rad}_{\mathfrak{X}-asc}(L)$ and to study two new radicals.

For a class \mathfrak{X} of Lie algebras, we denoted by \mathfrak{LX} the collection of Lie algebras L such that any finite subset of L lies inside an \mathfrak{X} subalgebra of L [4]. In Section 2, in connection with \mathfrak{LX} we define \mathfrak{MX} (resp. \mathfrak{MX}) as the class of Lie algebras L such that any finite subset of L lies inside an \mathfrak{X} subideal (resp. an ascendant \mathfrak{X} subalgebra) of L and study their properties. In Section 3 we show that if \mathfrak{X} is coalescent (resp. \mathfrak{MX}) ideal (Theorem 3.2) and $\operatorname{Rad}_{\mathfrak{X}-\operatorname{si}}(L)$ (resp. $\operatorname{Rad}_{\mathfrak{X}-\operatorname{asc}}(L)$) is the subalgebra generated by all the \mathfrak{MX} subideals (resp. all the ascendant \mathfrak{MX} subalgebras) of L and belongs to \mathfrak{MX} (resp. \mathfrak{MX}) (Theorem 3.5). Hence if furthermore $\operatorname{Rad}_{\mathfrak{X}-\operatorname{si}}(L)$ (resp. $\operatorname{Rad}_{\mathfrak{X}-\operatorname{asc}}(L)$) is an ideal of L then it is the unique

maximal \mathfrak{MX} (resp. \mathfrak{MX}) ideal of L (Theorem 3.6). In Section 4 we apply these results to $\beta(L)$, $\gamma(L)$, Rad $\mathfrak{S} \cap \mathfrak{F} - \mathfrak{si}(L)$ and $\operatorname{Rad}_{\mathfrak{S} \cap \mathfrak{F} - \mathfrak{asc}}(L)$ to get their characterizations. E.g., $\beta(L)$ is the unique maximal $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ ideal and the unique maximal $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ subideal of L (Theorem 4.1). In Section 5 we study the two new radicals $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})}(L)$ and $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})}(L)$. We show that each of them is an ideal but not necessarily a characteristic ideal of L, and that if the basic field is of characteristic 0 then $\beta(L) \subseteq \operatorname{Rad}_{\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})}(L) \subseteq \gamma(L)$ and $\operatorname{Rad}_{\mathfrak{S} \cap \mathfrak{F} - \mathfrak{si}}(L) \subseteq \operatorname{Rad}_{\mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})}(L) \subseteq$ $\operatorname{Rad}_{\mathfrak{S} \cap \mathfrak{F} - \mathfrak{ssc}}(L)$ where the equalities do not hold in general (Theorems 5.1 and 5.3).

§1. Preliminaries

We shall be concerned with Lie algebras over a field Φ which are not necessarily finite-dimensional. Throughout this paper, L will be an arbitrary Lie algebra over a field Φ , and \mathfrak{X} an arbitrary class of Lie algebras, that is, an arbitrary collection of Lie algebras over a field Φ such that $(0) \in \mathfrak{X}$ and if $H \in \mathfrak{X}$ and $H \simeq K$ then $K \in \mathfrak{X}$, unless otherwise specified.

We mainly employ the terminology and notations which were used in [4, 5].

 $H \leq L$, $H \triangleleft L$, H si L and H asc L mean that H is respectively a subalgebra, an ideal, a subideal and an ascendant subalgebra of L. A Lie algebra (resp. a subalgebra, an ideal, a subideal and an ascendant subalgebra of L) belonging to \mathfrak{X} is called an \mathfrak{X} algebra (resp. an \mathfrak{X} subalgebra, an \mathfrak{X} ideal, an \mathfrak{X} subideal and an ascendant \mathfrak{X} subalgebra of L). \mathfrak{X} is coalescent (resp. ascendantly coalescent) provided H, K si L (resp. H, K asc L) and H, $K \in \mathfrak{X}$ imply $\langle H, K \rangle$ si L (resp. $\langle H, K \rangle$ asc L) and $\langle H, K \rangle \in \mathfrak{X}$. \mathfrak{F} , \mathfrak{N} , \mathfrak{S} and \mathfrak{S} denote respectively the classes of finite-dimensional, nilpotent, solvable, and finitely generated Lie algebras. Then both $\mathfrak{N} \cap \mathfrak{F}$ and $\mathfrak{S} \cap \mathfrak{F}$ are coalescent and ascendantly coalescent if the basic field Φ is of characteristic 0.

L \mathfrak{X} denotes the class of locally \mathfrak{X} algebras, that is, the class of Lie algebras L such that any finite subset of L lies inside an \mathfrak{X} subalgebra of L.

 $\mathfrak{N}\mathfrak{X}$ (resp. $\mathfrak{N}\mathfrak{X}$) denotes the class of Lie algebras generated by \mathfrak{X} subideals (resp. ascendant \mathfrak{X} subalgebras). \mathfrak{X} is said to be \mathfrak{N}_0 -closed provided the sum of any two \mathfrak{X} ideals of any Lie algebra always belongs to \mathfrak{X} .

For a coalescent (resp. an ascendantly coalescent) class \mathfrak{X} , the radical $\operatorname{Rad}_{\mathfrak{X}-\operatorname{si}}(L)$ (resp. $\operatorname{Rad}_{\mathfrak{X}-\operatorname{asc}}(L)$) of L is the subalgebra generated by all the \mathfrak{X} subideals (resp. all the ascendant \mathfrak{X} subalgebras) of L. For an N₀-closed class \mathfrak{X} , the radical $\operatorname{Rad}_{\mathfrak{X}}(L)$ of L is the sum of all the \mathfrak{X} ideals of L. These three radicals belong to $\mathfrak{L}\mathfrak{X}$. $\operatorname{Rad}_{\mathfrak{LR}}(L)$ is the Hirsch-Plotkin radical $\rho(L)$. If the basic field Φ is of characteristic 0, then $\operatorname{Rad}_{\mathfrak{R}\cap\mathfrak{F}-\operatorname{si}}(L)$ is the Baer radical $\beta(L)$, and $\operatorname{Rad}_{\mathfrak{R}\cap\mathfrak{F}-\operatorname{asc}}(L)$ is the Gruenberg radical $\gamma(L)$. These reduce to the nilpotent radical in finitedimensional case. Corresponding to these radicals, $\operatorname{Rad}_{\mathfrak{L}(\mathfrak{S}\cap\mathfrak{F})}(L)$, $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{asc}}(L)$, and $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{asc}}(L)$ have been investigated in [4, 5]. These reduce to the solvable radical in finite-dimensional case.

§2. Operations M, \dot{M}_1 and \dot{M}_1

We begin with introducing new closure operations M, M_1 and M_1 which are intimately connected with the operation L.

DEFINITION 2.1. For any class \mathfrak{X} of Lie algebras, we denote by $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$) the class of Lie algebras L such that any finite subset of L lies inside an \mathfrak{X} subideal (resp. an ascendant \mathfrak{X} subalgebra) of L and by $\mathfrak{M}_1\mathfrak{X}$ (resp. $\mathfrak{M}_1\mathfrak{X}$) the class of Lie algebras L such that any element of L lies inside an \mathfrak{X} subideal (resp. an ascendant \mathfrak{X} subalgebra) of L.

Then these classes and $L\mathfrak{X}$ are related to each other as in the following diagram:

$$\begin{array}{ccc} \mathfrak{X} \subseteq \mathfrak{M} \mathfrak{X} \subseteq \mathfrak{M} \mathfrak{X} \subseteq \mathfrak{L} \mathfrak{X} \\ & \cap & \cap \\ \mathfrak{M}_1 \mathfrak{X} \subseteq \mathfrak{M}_1 \mathfrak{X} \end{array}$$

Generally these six classes are different from each other. This fact will be shown by examples in Section 6.

LEMMA 2.2. If \mathfrak{X} is a coalescent (resp. an ascendantly coalescent) class of Lie algebras, then

$$\mathbf{M}\mathfrak{X} = \mathbf{M}_{1}\mathfrak{X} = \mathbf{N}\mathfrak{X} \qquad (\text{resp. } \acute{\mathbf{M}}\mathfrak{X} = \acute{\mathbf{M}}_{1}\mathfrak{X} = \acute{\mathbf{N}}\mathfrak{X}).$$

PROOF. For any class \mathfrak{X} it is evident that

$$\mathfrak{MX} \subseteq \mathfrak{M}_1 \mathfrak{X} \subseteq \mathfrak{NX} \quad \text{and} \quad \mathfrak{MX} \subseteq \mathfrak{M}_1 \mathfrak{X} \subseteq \mathfrak{NX}.$$

Now let \mathfrak{X} be coalescent (resp. ascendantly coalescent) and assume that $L \in \mathfrak{N}\mathfrak{X}$ (resp. $\mathfrak{N}\mathfrak{X}$). Let $\{x_1, ..., x_n\}$ be any finite subset of L. Then for each *i* there exist H_{ii} 's such that

$$x_i \in \langle H_{i1}, \dots, H_{im_i} \rangle$$
, H_{ii} si L (resp. H_{ii} as L) and $H_{ii} \in \mathfrak{X}$.

Denote the join of all the H_{ij} by H. Since \mathfrak{X} is coalescent (resp. ascendantly coalescent),

 $H \text{ si } L(\text{resp. } H \text{ asc } L) \text{ and } H \in \mathfrak{X}.$

Hence $L \in \mathfrak{MX}$ (resp. \mathfrak{MX}). Therefore

 $N\mathfrak{X} \subseteq M\mathfrak{X}$ (resp. $\acute{N}\mathfrak{X} \subseteq \acute{M}\mathfrak{X}$),

which establishes the lemma.

Shigeaki Tôgô

LEMMA 2.3. (1) $\mathfrak{M}\mathfrak{N} = \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ (resp. $\mathfrak{M}\mathfrak{N} = \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$) and these classes are equal to the collection of $L \in \mathfrak{L}\mathfrak{N}$ such that $H \leq L$ and $H \in \mathfrak{F}$ imply H si L (resp. H as c L).

(2) $M_1 \mathfrak{N} = M_1(\mathfrak{N} \cap \mathfrak{F})$ and $\dot{M}_1 \mathfrak{N} = \dot{M}_1(\mathfrak{N} \cap \mathfrak{F})$.

- (3) $\mathbb{N}\mathfrak{N}=\mathbb{N}(\mathfrak{N}\cap\mathfrak{F})$ and $\mathbb{N}\mathfrak{N}=\mathbb{N}(\mathfrak{N}\cap\mathfrak{F})$.
- (4) If the basic field Φ is of characteristic 0, then

$$\mathfrak{M}\mathfrak{N} = \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F}) = \mathfrak{M}_1\mathfrak{N} = \mathfrak{M}_1(\mathfrak{N} \cap \mathfrak{F}) = \mathfrak{N}\mathfrak{N} = \mathfrak{N}(\mathfrak{N} \cap \mathfrak{F}),$$

$$\acute{\mathbf{M}}\mathfrak{N} = \acute{\mathbf{M}}(\mathfrak{N} \cap \mathfrak{F}) = \acute{\mathbf{M}}_{1}\mathfrak{N} = \acute{\mathbf{M}}_{1}(\mathfrak{N} \cap \mathfrak{F}) = \acute{\mathbf{N}}\mathfrak{N} = \acute{\mathbf{N}}(\mathfrak{N} \cap \mathfrak{F}).$$

PROOF. (1) Assume $L \in \mathfrak{M}\mathfrak{N}$ (resp. $\mathfrak{M}\mathfrak{N}$). Let K be any finite subset of L. Then there exists H such that

 $K \subseteq H$, H si L (resp. H asc L) and $H \in \mathfrak{N}$.

Since $H \in \mathfrak{N}$, $\langle K \rangle$ si H and therefore $\langle K \rangle$ si L (resp. $\langle K \rangle$ asc L). Taking account of the fact that $\mathfrak{N} \cap \mathfrak{G} \subseteq \mathfrak{F}$, we have $\langle K \rangle \in \mathfrak{N} \cap \mathfrak{F}$. Hence $L \in \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ (resp. $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$). Consequently

$$\mathfrak{M}\mathfrak{N}\subseteq \mathfrak{M}(\mathfrak{N}\cap\mathfrak{F})$$
 (resp. $\mathfrak{M}\mathfrak{N}\subseteq \mathfrak{M}(\mathfrak{N}\cap\mathfrak{F})$).

Since the converse inclusion is evident, we have the first statement of (1).

Assume $L \in \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ (resp. $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$). Evidently $L \in \mathfrak{L}\mathfrak{N}$. Let H be an \mathfrak{F} subalgebra of L. Then $H = (x_1, ..., x_n)$. By assumption, there exists K such that

$$\{x_1, ..., x_n\} \subseteq K, K \text{ si } L(\text{resp. } K \text{ asc } L) \text{ and } K \in \mathfrak{N} \cap \mathfrak{F}.$$

Since $K \in \mathfrak{N}$, H si K and therefore H si L (resp. H asc L). Conversely, assume that $L \in \mathfrak{L}\mathfrak{N}$ and any \mathfrak{F} subalgebra of L is a subideal (resp. an ascendant subalgebra). Let K be any finite subset of L. Since $\mathfrak{L}\mathfrak{N} = \mathfrak{L}(\mathfrak{N} \cap \mathfrak{F})$ by Lemma 4.1 in [5], there exists H such that

$$K \subseteq H, H \leq L$$
 and $H \in \mathfrak{N} \cap \mathfrak{F}$.

Hence, by assumption, H si L (resp. H asc L). This shows that $L \in \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ (resp. $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$).

The statement in (2) can be proved in the same way as the first part of (1).

(3) Assume $L \in \mathbb{N}\mathfrak{N}$ (resp. $\mathfrak{N}\mathfrak{N}$). Let H be any one of \mathfrak{N} subideals (resp. ascendant \mathfrak{N} subalgebras) generating L. For any $x \in H$, (x) si H since $H \in \mathfrak{N}$. It follows that

(x) si
$$L$$
 (resp. (x) asc L).

Hence H is a union of $\mathfrak{N} \cap \mathfrak{F}$ subideals (resp. ascendant $\mathfrak{N} \cap \mathfrak{F}$ subalgebras)

Characterizations of Radicals of Infinite Dimensional Lie Algebras

of L. Therefore $L \in \mathbb{N}(\mathfrak{N} \cap \mathfrak{F})$ (resp. $\mathfrak{N}(\mathfrak{N} \cap \mathfrak{F})$). Consequently

$$\mathfrak{NN} \subseteq \mathfrak{N}(\mathfrak{N} \cap \mathfrak{F})$$
 (resp. $\mathfrak{NN} \subseteq \mathfrak{N}(\mathfrak{N} \cap \mathfrak{F})$).

Since the converse inclusion is evident, we have the statement of (3).

(4) If Φ is of characteristic 0, then $\mathfrak{N} \cap \mathfrak{F}$ is coalescent and ascendantly coalescent. Hence the statement is immediate from (1)-(3) and Lemma 2.2.

The proof is complete.

§3. Characterizations of $\operatorname{Rad}_{\mathfrak{X}-\operatorname{si}}(L)$ and $\operatorname{Rad}_{\mathfrak{X}-\operatorname{asc}}(L)$

In this section, for any coalescent (resp. ascendantly coalescent) class \mathfrak{X} we shall show the existence of a unique maximal $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$) ideal of L and use it to give characterizations of the radical $\operatorname{Rad}_{\mathfrak{X}-\operatorname{si}}(L)$ (resp. $\operatorname{Rad}_{\mathfrak{X}-\operatorname{ase}}(L)$).

LEMMA 3.1. If \mathfrak{X} is coalescent (resp. ascendantly coalescent), then the sum of any collection of $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$) ideals of L belongs to $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$). In particular $\mathfrak{M}\mathfrak{X}$ and $\mathfrak{M}\mathfrak{X}$ are N_0 -closed.

PROOF. Let \mathfrak{C} be any collection of $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$) ideals of L and R be the sum of ideals in \mathfrak{C} . Suppose $\{x_1, ..., x_n\}$ is any finite subset of R. Then

$$x_i = \sum_{j=1}^{m_i} x_{ij}, \qquad x_{ij} \in N_{ij} \in \mathfrak{C}.$$

Since $N_{ij} \in \mathfrak{MX}$ (resp. \mathfrak{MX}), there exist H_{ij} 's such that

$$x_{ij} \in H_{ij}$$
, H_{ij} si N_{ij} (resp. H_{ij} asc N_{ij}), $H_{ij} \in \mathfrak{X}$.

It follows that

$$H_{ij}$$
 si L (resp. H_{ij} asc L).

Denote the join of all the H_{ij} by H. Then coalescency (resp. ascendant coalescency) of \mathfrak{X} tells us that

H si L (resp. H asc L),
$$H \in \mathfrak{X}$$
.

Taking account of the fact that $H \subseteq R$, we have

$$H \text{ si } R$$
 (resp. $H \text{ asc } R$).

Since $H \supseteq \{x_1, ..., x_n\}$, R belongs to \mathfrak{MX} (resp. \mathfrak{MX}), and this completes the proof.

THEOREM 3.2. If \mathfrak{X} is coalescent (resp. ascendantly coalescent), then $\operatorname{Rad}_{\mathfrak{M}\mathfrak{X}}(L)$ (resp. $\operatorname{Rad}_{\mathfrak{M}\mathfrak{X}}(L)$) is the unique maximal $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$) ideal of L.

PROOF. Since $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$) is N_0 -closed by Lemma 3.1, $\operatorname{Rad}_{\mathfrak{M}\mathfrak{X}}(L)$ (resp.

 $\operatorname{Rad}_{M\mathfrak{X}}(L)$) can be defined. By Lemma 3.1 it belongs to $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$). Therefore it is the unique maximal $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$) ideal of L.

LEMMA 3.3. Every $\mathfrak{M}\mathfrak{X}$ subideal (resp. ascendant $\mathfrak{M}\mathfrak{X}$ subalgebra) of L is a union of \mathfrak{X} subideals (resp. ascendant \mathfrak{X} subalgebras) of L.

PROOF. Let H be an \mathfrak{MX} subideal (resp. an ascendant \mathfrak{MX} subalgebra) of L. For any $x \in H$, there exists an \mathfrak{X} subideal (resp. an ascendant \mathfrak{X} subalgebra) of H containing x. It is then an \mathfrak{X} subideal (resp. an ascendant \mathfrak{X} subalgebra) of L. Therefore H is a union of \mathfrak{X} subideals (resp. ascendant \mathfrak{X} subalgebras) of L.

LEMMA 3.4. If \mathfrak{X} is coalescent (resp. ascendantly coalescent), the subalgebra generated by any collection of \mathfrak{X} subideals (resp. ascendant \mathfrak{X} subalgebras) of L belongs to $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$).

PROOF. Let \mathfrak{C} be any collection of \mathfrak{X} subideals (resp. ascendant \mathfrak{X} subalgebras) of L and R be the subalgebra generated by all the subalgebras in \mathfrak{C} . Suppose $\{x_1, ..., x_n\}$ is any finite subset of R. Then for each *i* there exist H_{ij} 's such that

$$x_i \in \langle x_{i1}, ..., x_{im_i} \rangle, \quad x_{ij} \in H_{ij} \in \mathfrak{C}.$$

Denote the join of all the H_{ij} by H. Since \mathfrak{X} is coalescent (resp. ascendantly coalescent),

H si L (resp. H asc L), $H \in \mathfrak{X}$.

Taking account of the fact that $H \subseteq R$, we have

H si R (resp. H asc R).

Since $H \supseteq \{x_1, ..., x_n\}$, R belongs to $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$), and this completes the proof.

THEOREM 3.5. If \mathfrak{X} is coalescent (resp. ascendantly coalescent), $\operatorname{Rad}_{\mathfrak{X}-\operatorname{si}}(L)$ (resp. $\operatorname{Rad}_{\mathfrak{X}-\operatorname{asc}}(L)$) is the subalgebra generated by all the $\mathfrak{M}\mathfrak{X}$ subideals (resp. ascendant $\mathfrak{M}\mathfrak{X}$ subalgebras) of L and belongs to $\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$).

PROOF. Let R be the subalgebra generated by all the \mathfrak{MX} subideals (resp. all the ascendant \mathfrak{MX} subalgebras) of L. Then by Lemma 3.3

 $R \subseteq \operatorname{Rad}_{\mathfrak{X}-\operatorname{si}}(L)$ (resp. $R \subseteq \operatorname{Rad}_{\mathfrak{X}-\operatorname{asc}}(L)$).

The converse inclusion is immediate from the fact that $\mathfrak{X} \subseteq \mathfrak{M}\mathfrak{X}$. Therefore

$$R = \operatorname{Rad}_{\mathfrak{X} - \operatorname{si}}(L)$$
 (resp. $R = \operatorname{Rad}_{\mathfrak{X} - \operatorname{asc}}(L)$)

The other part of the statement follows from Lemma 3.4.

THEOREM 3.6. Let \mathfrak{X} be coalescent (resp. ascendantly coalescent). If Rad_{$\mathfrak{X}-si}(L) (resp. Rad_{\mathfrak{X}-asc}(L)) is a subideal (resp. an ascendant subalgebra)$ $of L, then it is the unique maximal <math>\mathfrak{M}\mathfrak{X}$ subideal (resp. ascendant $\mathfrak{M}\mathfrak{X}$ subalgebra) of L. If Rad_{$\mathfrak{X}-si$}(L) (resp. Rad_{$\mathfrak{X}-asc}(L)) is an ideal of L, then it is the$ $unique maximal <math>\mathfrak{M}\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$) ideal of L.</sub></sub>

PROOF. This is an immediate consequence of Theorems 3.2 and 3.5.

It is finally to be noted that by Lemma 2.2 the theorems and lemmas in this section are valid with $M\mathfrak{X}$ (resp. $\mathfrak{M}\mathfrak{X}$) replaced by each of $\mathfrak{M}_1\mathfrak{X}$, $\mathfrak{N}\mathfrak{X}$ (resp. $\mathfrak{M}_1\mathfrak{X}$, $\mathfrak{K}\mathfrak{X}$).

§4. Characterizations of $\beta(L)$, $\gamma(L)$, $\operatorname{Rad}_{\mathfrak{S} \cap \mathfrak{F}-si}(L)$ and $\operatorname{Rad}_{\mathfrak{S} \cap \mathfrak{F}-asc}(L)$

In this section we assume that the basic field Φ is of characteristic 0. We shall apply the results of the preceding section for $\beta(L)$, $\gamma(L)$, $\operatorname{Rad}_{\otimes \cap_{\mathfrak{F}-si}}(L)$ and $\operatorname{Rad}_{\otimes \cap_{\mathfrak{F}-asc}}(L)$ to obtain their characterizations.

The Baer radical $\beta(L)$ of L is equal to the subalgebra generated by all the \mathfrak{N} (resp. all the one-dimensional) subideals of L and to the set of $x \in L$ such that (x) si L [2, Theorem 10.4]. We have further characterizations of $\beta(L)$ in the following

THEOREM 4.1. The Baer radical $\beta(L)$ of L is the unique maximal $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ ideal, the unique maximal $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ subideal and the unique maximal characteristic $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ ideal of L.

PROOF. It is shown in Corollary to Theorem 3 of [1] that $\beta(L)$ is a characteristic ideal of L. Hence the statement follows from Theorem 3.6.

L is called [2] a Baer algebra if $L = \beta(L)$. We call an ideal of L which is itself a Baer algebra a Baer ideal of L. Then the $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ ideals of L are the Baer ideals of L, since $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F}) = \mathfrak{N}(\mathfrak{N} \cap \mathfrak{F})$ by Lemma 2.2. Therefore a part of the theorem may be expressed as in the following

COROLLARY 4.2. The Baer radical of L is the sum of all the Baer ideals of L and is the unique maximal Baer ideal of L.

The Gruenberg radical $\gamma(L)$ of L is equal to the subalgebra generated by all the ascendant \mathfrak{N} (resp. one-dimensional) subalgebras of L and to the set of $x \in L$ such that (x) asc L. The proof may be carried out in the same way as that of the corresponding characterizations of $\beta(L)$ given in [2]. We have further characterizations of $\gamma(L)$ in the following statements.

THEOREM 4.3. The Gruenberg radical $\gamma(L)$ of L is the subalgebra generated by the ascendant $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ subalgebras of L and belongs to $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$. **PROOF.** This follows from Theorem 3.5.

COROLLARY 4.4. The Gruenberg radical of L is the subalgebra generated by all the ascendant $M(\mathfrak{N} \cap \mathfrak{F})$ subalgebras of L.

PROOF. This follows from Theorem 4.3 and the fact that

 $\mathfrak{N} \cap \mathfrak{F} \subseteq \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F}) \subseteq \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F}).$

THEOREM 4.5. The radical $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-si}(L)$ of L is the unique maximal $\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})$ ideal, the unique maximal $\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})$ subideal and the unique maximal characteristic $\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})$ ideal of L.

PROOF. It is shown in Theorem 8.3 of [4] that $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-si}(L)$ is a characteristic ideal of L. Hence the statement follows from Theorem 3.6.

THEOREM 4.6. The radical $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{asc}}(L)$ of L is the subalgebra generated by all the ascendant $\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})$ subalgebras of L and belongs to $\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})$.

PROOF. This follows from Theorem 3.5.

COROLLARY 4.7. The radical $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{asc}}(L)$ of L is the subalgebra generated by all the ascendant $\operatorname{M}(\mathfrak{S}\cap\mathfrak{F})$ subalgebras of L.

PROOF. This follows from Theorem 4.6 and the fact that

 $\mathfrak{S} \cap \mathfrak{F} \subseteq \mathbf{M}(\mathfrak{S} \cap \mathfrak{F}) \subseteq \acute{\mathbf{M}}(\mathfrak{S} \cap \mathfrak{F}).$

It is to be noted that, by Lemma 2.3, Theorems 4.1, 4.3 and Corollary 4.4 are valid with $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ (resp. $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$) replaced by each of $\mathfrak{M}\mathfrak{N}, \mathfrak{M}_1\mathfrak{N}, \mathfrak{M}_1(\mathfrak{N} \cap \mathfrak{F})$, $\mathfrak{N}\mathfrak{N}, \mathfrak{N}(\mathfrak{N} \cap \mathfrak{F})$) and, by Lemma 2.2, Theorems 4.5, 4.6 and Corollary 4.7 are valid with $\mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})$ (resp. $\mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})$) replaced by each of $\mathfrak{M}_1(\mathfrak{S} \cap \mathfrak{F})$, $\mathfrak{N}(\mathfrak{S} \cap \mathfrak{F})$) (resp. $\mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})$).

§5. $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{N}\cap\mathfrak{F})}(L)$ and $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})}(L)$

 $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{N}\cap\mathfrak{F})}(L)$ and $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})}(L)$ are respectively locally nilpotent and locally solvable radicals of L whose existence was shown in Theorem 3.2. This section is devoted to investigation of the properties of these two new radicals. We first show the following

THEOREM 5.1. (1) $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{N}\cap\mathfrak{F})}(L)$ is not necessarily a characteristic ideal of L and

$$\operatorname{Rad}_{\widehat{M}(\mathfrak{N}\cap\mathfrak{F})}(L) \subseteq \rho(L).$$

(2) If the basic field Φ is of characteristic 0, then

$$\beta(L) \subseteq \operatorname{Rad}_{\hat{\mathbf{M}}(\mathfrak{R} \cap \mathfrak{F})}(L) \subseteq \gamma(L)$$

and these are generally different from each other.

PROOF. Since $\dot{M}(\mathfrak{N} \cap \mathfrak{F}) \subseteq L\mathfrak{N}$, we have $\operatorname{Rad}_{\dot{M}(\mathfrak{R} \cap \mathfrak{F})}(L) \subseteq \rho(L)$. Assume that the basic field Φ is of characteristic 0. Then by Theorem 4.1 $\beta(L)$ is an $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ ideal of L and therefore an $\dot{\mathfrak{M}}(\mathfrak{N} \cap \mathfrak{F})$ ideal of L. Hence $\beta(L) \subseteq \operatorname{Rad}_{\dot{\mathfrak{M}}(\mathfrak{R} \cap \mathfrak{F})}(L)$. By Theorem 4.3, $\gamma(L)$ is the subalgebra generated by all the ascendant $\dot{\mathfrak{M}}(\mathfrak{N} \cap \mathfrak{F})$ subalgebras of L. Hence $\operatorname{Rad}_{\dot{\mathfrak{M}}(\mathfrak{R} \cap \mathfrak{F})}(L) \subseteq \gamma(L)$. $\beta(L)$ is a characteristic ideal of L and $\gamma(L)$ is not necessarily an ideal of L. Since $\operatorname{Rad}_{\dot{\mathfrak{M}}(\mathfrak{R} \cap \mathfrak{F})}(L)$ is an ideal of L, it only remains to show that it is not necessarily a characteristic ideal of L.

Let L be the Lie algebra in Example C in [4]. That is, L is the semi-direct sum of an infinite-dimensional abelian Lie algebra $A = (e_0, e_1, e_2, ...)$ and a nilpotent Lie algebra (x, y, z) of derivations of A with [x, y] = z, [x, z] = [y, z] = 0, where

$$\begin{aligned} x \colon e_i \to e_{i+1} & (i \ge 0), \\ y \colon e_0 \to 0, & e_i \to i e_{i-1} & (i \ge 1), \\ z \colon e_i \to e_i & (i \ge 0). \end{aligned}$$

Let $L_1 = A + (y, z)$. Then the $\mathfrak{N} \cap \mathfrak{F}$ subalgebras of L_1 containing z are (z) and (y, z). The idealizers of (z) and (y, z) in L_1 are (y, z). Hence neither (z) nor (y, z) is an ascendant subalgebra of L_1 . This shows that $L_1 \notin \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$. On the other hand, any finite subset of A + (y) lies inside some ascendant $\mathfrak{N} \cap \mathfrak{F}$ subalgebra $A_n + (y)$ where $A_n = (e_0, e_1, ..., e_n)$. Hence A + (y) is an $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ ideal of L_1 . Therefore $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{R} \cap \mathfrak{F})}(L_1) = A + (y)$. $\operatorname{ad}_L x$ induces the derivation D of L_1 sending y to -z. Hence A + (y) is not invariant under D. Thus $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{R} \cap \mathfrak{F})}(L_1)$ is not a characteristic ideal of L_1 .

The proof is completed.

By imposing certain conditions on L we have the following

PROPOSITION 5.2. Let L be a Lie algebra of countable dimension. Then $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{R}\cap\mathfrak{F})}(L) = \rho(L)$. If furthermore the basic field Φ is of characteristic 0 and $L \in \mathfrak{L}\mathfrak{F}$, then $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{R}\cap\mathfrak{F})}(L) = \rho(L) = \gamma(L)$.

PROOF. Let H be any LN ideal of L and K be any finite subset of H. If $\{e_1, e_2, ...\}$ denotes a basis of H, $K \subseteq H_n = \langle e_1, e_2, ..., e_n \rangle$ for some n. Since $H \in L\mathfrak{N}, H_k \in \mathfrak{N} \cap \mathfrak{F}$ and therefore H_k si H_{k+1} for any k. It follows that H_n asc H. Hence $H \in \mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$. Thus the LN ideals of L are the $\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})$ ideals of L. Therefore $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{R} \cap \mathfrak{F})}(L) = \rho(L)$. If Φ is of characteristic 0 and $L \in L\mathfrak{F}$, it is shown in Corollary 3.9 of [3] that $\gamma(L) \subseteq \rho(L)$. Hence $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{R} \cap \mathfrak{F})}(L) \subseteq \gamma(L) \subseteq$

 $\rho(L)$ and therefore $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{N} \cap \mathfrak{F})}(L) = \gamma(L) = \rho(L)$.

THEOREM 5.3. (1) Rad_{$\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})$}(L) is not necessarily a characteristic ideal of L,

$$\operatorname{Rad}_{\mathbf{M}(\mathfrak{S} \cap \mathfrak{F})}(L) \subseteq \operatorname{Rad}_{\mathcal{L}(\mathfrak{S} \cap \mathfrak{F})}(L)$$

and these are generally different.

(2) If the basic field Φ is of characteristic 0, then

$$\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\mathfrak{s}\mathfrak{i}}(L) \subseteq \operatorname{Rad}_{\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})}(L) \subseteq \operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\mathfrak{asc}}(L)$$

and these are generally different from each other.

PROOF. Since $\dot{M}(\mathfrak{S}\cap\mathfrak{F})\subseteq L(\mathfrak{S}\cap\mathfrak{F})$, we have $\operatorname{Rad}_{\dot{M}(\mathfrak{S}\cap\mathfrak{F})}(L)\subseteq \operatorname{Rad}_{L(\mathfrak{S}\cap\mathfrak{F})}(L)$. Assume that the basic field Φ is of characteristic 0. Then by Theorem 4.5 $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-si}(L)$ is an $\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})$ ideal of L and therefore an $\dot{\mathfrak{M}}(\mathfrak{S}\cap\mathfrak{F})$ ideal of L. Hence $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-si}(L)\subseteq\operatorname{Rad}_{\dot{\mathfrak{M}}(\mathfrak{S}\cap\mathfrak{F})}(L)$. By Theorem 3.2 $\operatorname{Rad}_{\dot{\mathfrak{M}}(\mathfrak{S}\cap\mathfrak{F})}(L)$ is the unique maximal $\dot{\mathfrak{M}}(\mathfrak{S}\cap\mathfrak{F})$ ideal of L and by Theorem 4.6 $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-asc}(L)$ is the subalgebra generated by all the ascendant $\dot{\mathfrak{M}}(\mathfrak{S}\cap\mathfrak{F})$ subalgebras of L. Hence $\operatorname{Rad}_{\dot{\mathfrak{M}}(\mathfrak{S}\cap\mathfrak{F})}(L)\subseteq\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-asc}(L)$.

By Theorem 8.3 in [4] $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{si}}(L)$ is a characteristic ideal of L and by Theorem 4.2 in [5] $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{asc}}(L)$ is not necessarily an ideal of L. To show that $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{si}}(L)$, $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})}(L)$ and $\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{asc}}(L)$ are generally different from each other, it therefore suffices to show that $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})}(L)$ is not necessarily a characteristic ideal of L.

Let L_1 be the Lie algebra as in the proof of Theorem 5.1. The $\mathfrak{S} \cap \mathfrak{F}$ subalgebras of L_1 containing z are

(z),
$$(y, z)$$
, $B+(z)$, $A_n+(y, z)$

where B is any \mathfrak{F} subalgebra of A. The idealizer of (z) is (y, z) and that of B+(z) is either B+(z) or $A_n+(y, z)$. (y, z) and $A_n+(y, z)$ are equal to their idealizers in L_1 . Hence any $\mathfrak{S} \cap \mathfrak{F}$ subalgebra of L_1 containing z is not an ascendant subalgebra of L_1 . Thus $L_1 \notin \mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})$. On the other hand any finite subset of A+(y) lies inside some ascendant $\mathfrak{S} \cap \mathfrak{F}$ subalgebra $A_n+(y)$ of A+(y). Hence A+(y) is an $\mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})$ ideal of L_1 . Therefore $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})}(L_1) = A+(y)$. It is not characteristic since it is not invariant under the derivation of L_1 induced by $\operatorname{ad}_L x$.

Thus it only remains to show that $\operatorname{Rad}_{\mathfrak{M}(\mathfrak{S}\cap\mathfrak{F})}(L)$ and $\operatorname{Rad}_{L(\mathfrak{S}\cap\mathfrak{F})}(L)$ are different in general. Let L be the Lie algebra as in the proof of Theorem 5.1. Then it is shown in the proofs of Theorems 4.2 and 4.3 in [5] that

$$\operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{asc}}(L) = A + (y) \text{ and } \operatorname{Rad}_{L(\mathfrak{S}\cap\mathfrak{F})}(L) = A + (y, z).$$

34

Since $\operatorname{Rad}_{M(\mathfrak{S}\cap\mathfrak{F})}(L) \subseteq \operatorname{Rad}_{\mathfrak{S}\cap\mathfrak{F}-\operatorname{asc}}(L)$, it follows that $\operatorname{Rad}_{M(\mathfrak{S}\cap\mathfrak{F})}(L) \neq \operatorname{Rad}_{L(\mathfrak{S}\cap\mathfrak{F})}(L)$. This completes the proof.

§6. Examples

This section is devoted to showing by examples that the six classes \mathfrak{X} , $\mathfrak{M}\mathfrak{X}$, $\mathfrak{M}_1\mathfrak{X}$, $\mathfrak{M}_1\mathfrak{X}$, $\mathfrak{M}_1\mathfrak{X}$ and $\mathfrak{L}\mathfrak{X}$ are generally different from each other as announced in Section 2.

EXAMPLE 6.1. $\mathfrak{X} \neq \mathfrak{M}\mathfrak{X}$ generally. Take $\mathfrak{X} = \mathfrak{N}$ and let L be the Lie algebra over a field of characteristic 0 in Theorem 12.1 in [2]. Then it is known that $L \notin \mathfrak{N}$ and $L = \beta(L)$. Hence $L \in \mathfrak{N}(\mathfrak{N} \cap \mathfrak{F})$ and therefore by Lemms 2.3 $L \in \mathfrak{M}\mathfrak{N}$.

EXAMPLE 6.2. $\mathfrak{MX} \neq \mathfrak{MX}$ and $\mathfrak{M}_1 \mathfrak{X} \neq \mathfrak{M}_1 \mathfrak{X}$ generally. Take $\mathfrak{X} = \mathfrak{N}$ and let L = A + (y) be a subalgebra of the Lie algebra A + (x, y, z) in the proof of Theorem 5.1. Suppose that there exists an \mathfrak{N} subideal H of L containing y. Then $H \neq L$ and $H \neq (y)$. Therefore H contains

$$u = \sum_{i=0}^{k} a_i e_i + by, \qquad a_k \neq 0.$$

But

$$u(ad y)^k = k!a_ke_0.$$

Hence $e_0 \in H$. Considering $u - a_0 e_0$ and $(\text{ad } y)^{k-1}$ instead of u and $(\text{ad } y)^k$, we obtain $e_1 \in H$. By induction we see that $H \supseteq A_k + (y)$. It follows that $H = A_n + (y)$ for some n and H is not a subideal of L. Thus no \mathfrak{N} subideals of L contain y. Hence $L \notin \mathfrak{M}_1 \mathfrak{N}$ and therefore $L \notin \mathfrak{M} \mathfrak{N}$. On the other hand, any finite subset of L is obviously contained in a subalgebra $A_n + (y)$ for some n which is an ascendant \mathfrak{N} subalgebra of L. Hence $L \in \mathfrak{M} \mathfrak{N}$ and therefore $L_1 \in \mathfrak{M} \mathfrak{N}$.

EXAMPLE 6.3. $\mathfrak{M}\mathfrak{X} \neq \mathfrak{L}\mathfrak{X}$, $\mathfrak{M}_1\mathfrak{X} \neq \mathfrak{L}\mathfrak{X}$ and $\mathfrak{M}_1\mathfrak{X} \neq \mathfrak{L}\mathfrak{X}$ generally. Take $\mathfrak{X} = \mathfrak{S} \cap \mathfrak{F}$ and let L = A + (z) be a subalgebra of the Lie algebra in the proof of Theorem 5.1. Suppose that H is an ascendant $\mathfrak{S} \cap \mathfrak{F}$ subalgebra of L containing z. Then $H \neq L$, $H \neq A$ and $H \neq (z)$. It follows that H is the sum of (z) and a subalgebra of A. But H is then its own idealizer in L, which contradicts our supposition on H. Thus there exist no ascendant $\mathfrak{S} \cap \mathfrak{F}$ subalgebras of L containing z. Hence $L \notin \mathfrak{M}_1(\mathfrak{S} \cap \mathfrak{F})$. It follows that $L \notin \mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})$ and $L \notin \mathfrak{M}_1(\mathfrak{S} \cap \mathfrak{F})$. On the other hand, any finite subset of L obviously lies inside some $A_n + (z)$. Hence $L \in \mathfrak{L}(\mathfrak{S} \cap \mathfrak{F})$. Thus we conclude that each of $\mathfrak{M}(\mathfrak{S} \cap \mathfrak{F})$, $\mathfrak{M}_1(\mathfrak{S} \cap \mathfrak{F})$ and $\mathfrak{M}_1(\mathfrak{S} \cap \mathfrak{F})$ is different from $\mathfrak{L}(\mathfrak{S} \cap \mathfrak{F})$.

Shigeaki Tôgô

EXAMPLE 6.4. $\mathfrak{MX} \neq \mathfrak{M}_1 \mathfrak{X}$ generally. Take $\mathfrak{X} = \mathfrak{A}$ and let L = (x, y, z) be a subalgebra of the Lie algebra in the proof of Theorem 5.1. For any element u = ax + by + cz of L,

$$(u) \triangleleft (ax+by, z) \triangleleft L$$

Hence (u) is an \mathfrak{A} subideal of L. Therefore $L \in \mathfrak{M}_1 \mathfrak{A}$. However $L \notin \mathfrak{M} \mathfrak{A}$, since the subalgebra containing $\{x, y\}$ is not abelian.

EXAMPLE 6.5. $\mathfrak{M}\mathfrak{X} \neq \mathfrak{M}_1\mathfrak{X}$ generally. Take $\mathfrak{X} = \mathfrak{A}$ and let L be a subalgebra A + (y) of the Lie algebra in the proof of Theorem 5.1. Let u be any non-zero element of L. If u = ay, (u) asc L. Otherwise we have

$$u = \sum_{i=0}^{n} a_i e_i + by, \qquad a_n \neq 0.$$

Then

$$(u) \triangleleft (e_0, \sum_{i=1}^n a_i e_i + b_i y) \triangleleft (e_0, e_1, \sum_{i=2}^n a_i e_i + b_i y) \triangleleft \ldots \triangleleft A_n + (y).$$

Since $A_n + (y)$ asc L, it follows that (u) asc L. Therefore $L \in \mathfrak{M}_1 \mathfrak{A}$. It is however obvious that $L \notin \mathfrak{M} \mathfrak{A}$.

References

- B. Hartley, Locally nilpotent ideals of a Lie algebra, Proc. Cambridge Philos. Soc., 63 (1967), 257-272.
- [2] I. Stewart, Lie Algebras, Lecture Notes in Mathematics No. 127, Springer, Berlin-Heidelberg-New York, 1970.
- [3] I. Stewart, Structure theorems for a class of locally finite Lie algebras, Proc. London Math. Soc., 24 (1972), 79-100.
- [4] S. Tôgô, Radicals of infinite dimensional Lie algebras, Hiroshima Math. J., 2 (1972), 179–203.
- [5] S. Tôgô and N. Kawamoto, Ascendantly coalescent classes and radicals of Lie algebras, Hiroshima Math. J., 2 (1972), 253-261.

Department of Mathematics, Faculty of Science, Hiroshima University