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Introduction

Recently investigations have been made on the Lie algebras of infinite di-
mension. As the Lie analogues of the infinite group theory, B. Hartley [1] has
considered the notions of subideals and ascendant subalgebras and studied the
locally nilpotent radicals which reduce to the nilpotent radical in finite-dimen-
sional case. In [4, 5] we have introduced and studied the locally solvable radicals
which reduce to the solvable radical in finite-dimensional case. If 3£ is a coales-
cent (resp. an ascendantly coalescent) class of Lie algebras, for an arbitrary Lie
algebra L we there defined the radical Rad£_si(L) (resp. Rads_aac(L)) as the
subalgebra generated by all the £ subideals (resp. all the ascendant 3£ subalgebras)
of L. In particular, if the basic field is of characteristic 0, Radsβng_Si(L) and

Radsβng-ascCk) are respectively the Baer radical β(L) and the Gruenberg radical
y(L) which are locally nilpotent [1], and Rad@nδ_si(L) and Rad@nδ_asc(L) are
locally solvable radicals [4, 5], where 91, © and g denote respectively the classes
of nilpotent, solvable and finite-dimensional Lie algebras.

The purpose of this paper is to investigate the radicals of Lie algebras, es-
pecially to present certain characterizations of Radx_si(L) and Radx_asc(L) and
to study two new radicals.

For a class ϊ of Lie algebras, we denoted by LΪ the collection of Lie al-
gebras L such that any finite subset of L lies inside an 3£ subalgebra of L [4]. In
Section 2, in connection with LΪ we define M£ (resp. M3E) as the class of Lie
algebras L such that any finite subset of L lies inside an 3E subideal (resp. an
ascendant X subalgebra) of L and study their properties. In Section 3 we show
that if X is coalescent (resp. ascendantly coalescent), any Lie algebra L has a
unique maximal M£ (resp. MΪ) ideal (Theorem 3.2) and Rad^^L) (resp.
Rads_asc(L)) is the subalgebra generated by all the M£ subideals (resp. all the as-
cendant M£ subalgebras) of L and belongs to MΪ (resp. M£) (Theorem 3.5). Hence
if furthermore Rad^_sί(L) (resp. Rad^_asc(L)) is an ideal of L then it is the unique
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maximal M£ (resp. M£) ideal of L (Theorem 3.6). In Section 4 we apply these
results to j8(L), y(L), Rad @ng_sί(L) and Raά^^^^L) to get their characteri-

zations. E.g., β(L) is the unique maximal M(ϊln 3) ideal and the unique maxi-
mal M(9l n 8f) subideal of L (Theorem 4.1). In Section 5 we study the two new
radicals Rad^^^L) and Rad^(@nδ)(L). We show that each of them is an ideal
but not necessarily a characteristic ideal of L, and that if the basic field is of char-
acteristic 0 then β(L)cRadύ(^n3)(L)cy(L) and Rad8nS_si(L)cRadώ(<snS)(L)c

Rad@nδ_asc(L) where the equalities do not hold in general (Theorems 5.1 and 5.3).

§ 1. Preliminaries

We shall be concerned with Lie algebras over a field Φ which are not
necessarily finite-dimensional. Throughout this paper, L will be an arbitrary
Lie algebra over a field Φ, and X an arbitrary class of Lie algebras, that is, an
arbitrary collection of Lie algebras over a field Φ such that (0) e X and if H e 3E

and H~K then .KeX, unless otherwise specified.
We mainly employ the terminology and notations which were used in [4, 5].
H<L, H<\L9 H si Land H asc Lmean that H is respectively a subalgebra,

an ideal, a subideal and an ascendant subalgebra of L. A Lie algebra (resp. a
subalgebra, an ideal, a subideal and an ascendant subalgebra of L) belonging to
3E is called an X algebra (resp. an 3E subalgebra, an ΐ ideal, an £ subideal and
an ascendant 3t subalgebra of L). X is coalescent (resp. ascendantly coalescent)
provided H, K si L(resp. H, K asc L) and H, K^X imply <H9 K> si L(resp.
<H, K> asc L) and <H, K> <ΞΪ. g, 91, © and (5 denote respectively the

classes of finite-dimensional, nilpotent, solvable, and finitely generated Lie alge-
bras. Then both 91 n δ and ® n 5 are coalescent and ascendantly coalescent
if the basic field Φ is of characteristic 0.

LΪ denotes the class of locally X algebras, that is, the class of Lie algebras

L such that any finite subset of L lies inside an 3£ subalgebra of L.
NΪ (resp. ftX) denotes the class of Lie algebras generated by 3E subideals

(resp. ascendant 3£ subalgebras). X is said to be N0-closed provided the sum of
any two X ideals of any Lie algebra always belongs to 3E.

For a coalescent (resp. an ascendantly coalescent) class 3E, the radical
Rad£_si(L) (resp. Radx_asc(L)) of L is the subalgebra generated by all the 3£ sub-
ideals (resp. all the ascendant X subalgebras) of L. For an N0-closed class 3E, the
radical Radx(L) of L is the sum of all the X ideals of L. These three radicals
belong to L£. RadL9Z(L) is the Hirsch-Plotkin radical p(L). If the basic field Φ
is of characteristic 0, then Rad^ng-siίL) is the Baer radical jβ(L), and Rad^ns_asc(L)
is the Gruenberg radical y(L). These reduce to the nilpotent radical in finite-
dimensional case. Corresponding to these radicals, RadL((3πS)(L), Rad@ns_si(L),

and Rad@Πc5_asc(L) have been investigated in [4, 5]. These reduce to the solvable



Characterizations of Radicals of Infinite Dimensional Lie Algebras 27

radical in finite-dimensional case.

§2. Operations M, M, u^ and u^

We begin with introducing new closure operations M, M, M t and Mi which
are intimately connected with the operation L.

DEFINITION 2.1. For any class £ of Lie algebras, we denote by MΪ
(resp. MΪ) the class of Lie algebras L such that any finite subset of L lies inside
an 3£ subideal (resp. an ascendant X subalgebra) of L and by M^ (resp.
M^) the class of Lie algebras L such that any element of L lies inside an 3t
subideal (resp. an ascendant X subalgebra) of L.

Then these classes and LΪ are related to each other as in the following dia-
gram:

nι ni

Generally these six classes are different from each other. This fact will be shown
by examples in Section 6.

LEMMA 2.2. // £ is a coalescent (resp. an ascendantly coalescent) class
of Lie algebras, then

N% (resp. M3£ = M13E = N3E).

PROOF. For any class 3E it is evident that

MΪCM^CNΪ and MΪCM^CNΪ.

Now let £ be coalescent (resp. ascendantly coalescent) and assume that
(resp. N£). Let {xl9 ..., xn} be any finite subset of L. Then for each i there
exist j F f f s such that

<Hiί9 ..., Him.>, Htj si L (resp. H^ asc L) and ί/^ eΐ.

Denote the join of all the Htj by H. Since 3£ is coalescent (resp. ascendantly
coalescent),

H si L (resp. H asc L) and H e ΐ.

Hence LGM£ (resp. MΪ). Therefore

which establishes the lemma,
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LEMMA 2.3. (1) M9l = M(9ln5) (resp. ώ9l = ώ(9ln 5)) and these classes
are equal to the collection of LeL9t such that H<L and ίίeg imply H si
L (resp. H asc L).

(2) M15l = M1(3ln5)β/ιrfώ15R = ώ1(9lng).
(3) κ9l = N(9l Π g) and N91 = κ(9l n δ).
(4) 7/ί/ze basic field Φ is of characteristic 0,

M9t = M(9i n 5) = M!ΪI = M^Λn 8f) = N9i = κ(9in

PROOF. (1) Assume LeM9t (resp. ώ9t). Let X be any finite subset of L.
Then there exists H such that

K^H,H siL (resp. # asc L) and He 91.

Since #e9l, <K> si # and therefore <K> si L(resp. <X> asc L). Taking

account of the fact that 91 n © c g, we have < X > e 91 Π g. Hence L e M(9l n g)

(resp. ιsί(9l Π 5)). Consequently

M91 c M(9l n S) (resp. M91 c ώ(9l n g)).

Since the converse inclusion is evident, we have the first statement of (1).

Assume LeΞM(9ln5) (resp. ώ(9lng)) Evidently LeiΛR. Let H be an
5 subalgebra of L. Then H = (xί, ..., xπ). By assumption, there exists K such

that

{*!, ..., xM}cK, K si L(resρ. K asc L) and K<=9tnS-

Since K&91, H si K and therefore // si L(resp. H asc L). Conversely, assume
that LeL9l and any 5 subalgebra of L is a subideal (resp. an ascendant subal-

gebra). Let K be any finite subset of L. Since L9l = L(9lπS) by Lemma 4.1
in [5], there exists H such that

Hence, by assumption, H si L(resp. H asc L). This shows that

(resp. M(9lΠg)).
The statement in (2) can be proved in the same way as the first part of (1).
(3) Assume LeN9l (resp. κ9l). Let H be any one of 91 subideals (resp.

ascendant 91 subalgebras) generating L. For any x^H, (x) si H since He 91.
It follows that

(x) si L (resp. (x) asc L).

Hence H is a union of 91 Π 5 subideals (resp. ascendant 91 Π δ subalgebras)
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of L. Therefore L e κ(9l Π 5) (resp. N(9l n S)). Consequently

(resp. N$R c

Since the converse inclusion is evident, we have the statement of (3).
(4) If Φ is of characteristic 0, then 91 n ft is coalescent and ascendantly

coalescent. Hence the statement is immediate from (l)-(3) and Lemma 2.2.
The proof is complete.

§3. Characterizations of Radx_si(L) and Rad$_asc(L)

In this section, for any coalescent (resp. ascendantly coalescent) class X we
shall show the existence of a unique maximal M •£ (resp. M£) ideal of L and use
it to give characterizations of the radical Rad$_si(L) (resp. Rad2_βββ(L)).

LEMMA 3.1. // X is coalescent (resp. ascendantly coalescent), then the
sum of any collection of M£ (resp. M£) ideals of L belongs to MΪ (resp. MΪ).
In particular M£ and M£ are N0-closed.

PROOF. Let (£ be any collection of MΪ (resp. M£) ideals of L and R be the
sum of ideals in (L Suppose [xί9 ..., xn} is any finite subset of #. Then

Since JViy-eM3£ (resp. MΪ), there exist H^'s such that

xtj e Hij9 EH si Ntj (resp. Htj asc NtJ\ Hy e 3E.

It follows that

HίV si L (resp. Hu asc L).

Denote the join of all the Htj by H. Then coalescency (resp. ascendant coales-
cency) of £ tells us that

H si L (resp. H asc L),

Taking account of the fact that He .R, we have

H si R (resp. H asc £).

Since #3{xι, ..., xn}, R belongs to M£ (resp. MΪ), and this completes the proof.

THEOREM 3.2. // £ ίs coalescent (resp. ascendantly coalescent), then
RadM3e(L) (resp. Radj^L)) is the unique maximal M£ (resp. M£) ideal of L.

PROOF. Since M£ (resp. M£) is N0-closed by Lemma 3.1, RadMΪ(L) (resp.
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can be defined. By Lemma 3.1 it belongs to MΪ (resp. M£). There-
fore it is the unique maximal MΪ (resp. M£) ideal of L.

LEMMA 3.3. Every uX subideal (resp. ascendant M£ subalgebra) of L
is a union of X subideals (resp. ascendant X subalgebras) of L.

PROOF. Let H be an MΪ subideal (resp. an ascendant M£ subalgebra) of
L. For any xeH, there exists an ϊ subideal (resp. an ascendant X subalgebra)
of H containing x. It is then an 3E subideal (resp. an ascendant £ subalgebra)
of L. Therefore H is a union of 3E subideals (resp. ascendant £ subalgebras)
ofL.

LEMMA 3.4. IfX is coalescent (resp. ascendantly coalescent), the subalge-
bra generated by any collection of X subideals (resp. ascendant £ subalgebras)
of L belongs to M£ (resp.

PROOF. Let (£ be any collection of X subideals (resp. ascendant 3E sub-
algebras) of L and R be the subalgebra generated by all the subalgebras in (£.
Suppose {xl5 ..., xn} is any finite subset of R. Then for each i there exist /fj/s
such that

X;<E <xil9 ..., xίmί>, XyetfyeC.

Denote the join of all the #ej. by # . Since X is coalescent (resp. ascendantly
coalescent),

H si L (resp. H asc L),

Taking account of the fact that H^R9 we have

H si K (resp. H asc K).

Since H 3 {xl5 ..., xπ}, R belongs to M£ (resp. MΪ), and this completes the proof.

THEOREM 3.5. If X is coalescent (resp. ascendantly coalescent), Rad£_si(L)
(resp. Rad£_asc(L)) is the subalgebra generated by all the MΪ subideals
(resp. ascendant MΪ subalgebras) of L and belongs to MΪ (resp. M

PROOF. Let R be the subalgebra generated by all the MΪ subideals (resp.
all the ascendant M£ subalgebras) of L. Then by Lemma 3.3

R c Rads_si(L) (resp. R c Radx_asc(L)).

The converse inclusion is immediate from the fact that 3£cMϊ. Therefore

R = Radβ_§l(L) (resp. R = Radx_asc(L)).

The other part of the statement follows from Lemma 3.4.
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THEOREM 3.6. Let £ be coalescent (resp. ascendantly coalescenf). If
Radχ_sί(L) (resp. Rads_asc(L)) is a subideal (resp. an ascendant subalgebra)
of L, then it is the unique maximal M£ subideal (resp. ascendant uX subalge-
bra) of L. If Radx_si(L) (resp. Radx_asc(L)) is an ideal of L, then it is the
unique maximal M£ (resp. isίϊ) ideal of L.

PROOF. This is an immediate consequence of Theorems 3.2 and 3.5.
It is finally to be noted that by Lemma 2.2 the theorems and lemmas in this

section are valid with MΪ (resp. M£) replaced by each of M^, NΪ (resp. ύ^,

§4. Characterizations of β(L), y(L), Rad@nS_si(£)
and Rad@nS_asc(L)

In this section we assume that the basic field Φ is of characteristic 0. We
shall apply the results of the preceding section for β(L), y(L), Rad<gnδ_si(L) and
Radgng-ascC^) to obtain their characterizations.

The Baer radical β(L) of L is equal to the subalgebra generated by all the
91 (resp. all the one-dimensional) subideals of L and to the set of x e L such that
(x) si L [2, Theorem 10.4]. We have further characterizations of β(L) in the
following

THEOREM 4.1. The Baer radical β(L) of L is the unique maximal M(9l Π S)

ideal, the unique maximal M(9lnS) subideal and the unique maximal char-
acteristic M(9l Π S) ideal of L.

PROOF. It is shown in Corollary to Theorem 3 of [1] that β(L) is a char-
acteristic ideal of L. Hence the statement follows from Theorem 3.6.

Lis called [2] a Baer algebra if L = β(L). We call an ideal of L which is
itself a Baer algebra a Baer ideal of L. Then the M(9l n 5) ideals of L are the

Baer ideals of L, since M(9tnS) = N(9lnS) by Lemma 2.2. Therefore a part
of the theorem may be expressed as in the following

COROLLARY 4.2. The Baer radical of L is the sum of all the Baer ideals
of L and is the unique maximal Baer ideal of L.

The Gruenberg radical y(L) of L is equal to the subalgebra generated by
all the ascendant 91 (resp. one-dimensional) subalgebras of L and to the set of
x e L such that (x) asc L. The proof may be carried out in the same way as that
of the corresponding characterizations of β(L) given in [2], We have further
characterizations of y(L) in the following statements.

THEOREM 4.3. The Gruenberg radical y(L) of L is the subalgebra gener-

ated by the ascendant M(ϊlπδ) subalgebras of L and belongs to M(9lπS)
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PROOF. This follows from Theorem 3.5.

COROLLARY 4.4. The Gruenberg radical of L is the subalgebra gener-
ated by all the ascendant M(9lπS) subalgebras of L.

PROOF. This follows from Theorem 4.3 and the fact that

THEOREM 4.5. The radical Rad@πs_si(L) of L is the unique maximal

M(SnS) ideal, the unique maximal M(SnS) subideal and the unique maxi-
mal characteristic M(S Π S) ideal of L.

PROOF. It is shown in Theorem 8.3 of [4] that Rad^n^-s^L) is a character-
istic ideal of L. Hence the statement follows from Theorem 3.6.

THEOREM 4.6. The radical Rad@nδ_asc(L) of L is the subalgebra generat-
ed by all the ascendant M(SnS) subalgebras of L and belongs to ώ(Sn5)

PROOF. This follows from Theorem 3.5.

COROLLARY 4.7. The radical Rad@πδ_asc(L) of L is the subalgebra
generated by all the ascendant M(© Π 8f) subalgebras of L.

PROOF. This follows from Theorem 4.6 and the fact that

It is to be noted that, by Lemma 2.3, Theorems 4.1, 4.3 and Corollary 4.4 are
valid with u(9l n g) (resp. ώ(SK Π 5)) replaced by each of M$R5 M^, M^SR Π δ),
N«, N(»ng) (resp. MΪl, MiSft, (̂91 Π&), ft«, N(9ln δ)) and, by Lemma 2.2,
Theorems 4.5, 4.6 and Corollary 4.7 are valid with M(S n 80 (resp. ώ(© n δ)) re-
placed by each of M^© n δ), N(© n S) (resp. ώ^Θ n 55), N(S n S)).

§5. Radώ(!Knδ)(L) and

^nδ)(L) and Radj6(@ng)(I<) are respectively locally nilpotent and locally
solvable radicals of L whose existence was shown in Theorem 3.2. This section
is devoted to investigation of the properties of these two new radicals. We first
show the following

THEOREM 5.1. (1) Rad^n^CL) is not necessarily a characteristic ideal
of L and
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(2) If the basic field Φ is of characteristic 0, then

and these are generally different from each other.

PROOF. Since ώ(9l n S) ̂  L$l, we have Radώ(gzng)(L)cp(L). Assume that
the basic field Φ is of characteristic 0. Then by Theorem 4.1 β(L) is an M(9l n 5)
ideal of L and therefore an ώ(9ln5) ideal of L. Hence j8(L)cRad^(sβπδ)(L).
By Theorem 4.3, y(L) is the subalgebra generated by all the ascendant ώ(9ln δ)
subalgebras of L. Hence Rad]^(^r>cϊ)(L)C'y(L). β(L) is a characteristic ideal
of Land y(L) is not necessarily an ideal of L. Since Rad^ng/L) is an ideal of
L, it only remains to show that it is not necessarily a characteristic ideal of L.

Let Lbe the Lie algebra in Example C in [4]. That is, Lis the semi-direct
sum of an infinite-dimensional abelian Lie algebra A = (e0, el9 e2, ...) and a nil-
potent Lie algebra (x, y, z) of derivations of A with [x, y] = z, [x, z] = [y, z] = 0,
where

z :*,-»*, (*>0).

Let L1=^4 + (y, z). Then the 91 n g subalgebras of Ll containing z are (z) and
(y, z). The idealizers of (z) and (y, z) in L1 are (y, z). Hence neither (z) nor
(y, z) is an ascendant subalgebra of L t. This shows that L± ^ ώ(9tn5). On
the other hand, any finite subset of A + (y) lies inside some ascendant 91 Π 5
subalgebra Λι + 00 where An = (eθ9 el9 ..., en). Hence ^4 + (j) is an M(9lnδ)
ideal of L t. Therefore Rad]^(sβπS)(L1) = ̂ 4 + (>y). adLx induces the derivation
D of L! sending y to — z. Hence A + (y) is not invariant under D. Thus

9ZnS)(L1) is not a characteristic ideal of Lx.
The proof is completed.
By imposing certain conditions on L we have the following

PROPOSITION 5.2. Let Lbe a Lie algebra of countable dimension. Then
5βnS)(L) = p(L). If furthermore the basic field Φ is of characteristic 0

and LeL$, then

PROOF. Let H be any L$l ideal of L and K be any finite subset of H. If
{el9 e29 ...} denotes a basis of H, K^Hn= <e^ e2, ..., en> for some n. Since
H e L$R, Hk e 91 Π g and therefore #fe si Hfc+ x for any fc. It follows that Hn asc H.
Hence HeM(9lnδ). Thus the L$R ideals of L are the ώ(5lng) ideals of L.
Therefore Rad,j(^πδ)(L) = p(L). If Φ is of characteristic 0 and LeLg, it is
shown in Corollary 3.9 of [3] that y(L)cp(L). Hence
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p(L) and therefore

THEOREM 5.3. (1) Radjj(@ng)CL) is not necessarily a characteristic ideal
ofL,

and these are generally different.
(2) // the basic field Φ is of characteristic 0, then

nβ)(L) e Rad@πδ_asc(L)

and these are generally different from each other.

PROOF. Since ώ(S Π δ) £ L(® Π S)> we have Radώ(@nS)(L) c RadL(@nδ)(L).
Assume that the basic field Φ is of characteristic 0. Then by Theorem 4. 5
Rad@ncy_Si(L) is an M(Snδ) ideal of L and therefore an M(SnS) ideal of L.
Hence Rad<gnδ_si(L)eRadώ(@nS)(L). By Theorem 3.2 Radjj((Sπδ)(L) is the
unique maximal ώ(6 Π 5) ideal of L and by Theorem 4.6 Rad<gng_ascCL) is tne

subalgebra generated by all the ascendant M(® n 5) subalgebras of L. Hence
Radώ(<δnS)(L) c Rad<goδ_asc(L).

By Theorem 8.3 in [4] Rad@ng_si(L) is a characteristic ideal of L and by
Theorem 4.2 in [5] Rad@ng_asc(L) is not necessarily an ideal of L. To show
that Rad,gnδ_Si(L), Rad,j((gnδ)(L) and Rad@nc5_asc(L) are generally different from
each other, it therefore suffices to show that Radjj(@nδ)(L) is not necessarily a
characteristic ideal of L.

Let L! be the Lie algebra as in the proof of Theorem 5.1. The ® Π 5 sub-
algebras of L! containing z are

(z), (y,z), B + (z), 4, + foz)

where B is any 5 subalgebra of A The idealizer of (z) is (y, z) and that of
B + (z) is either # + (z) or An + (y, z). (y, z) and An + (y, z) are equal to their ide-
alizers in L l β Hence any S Π 5 subalgebra of L1 containing z is not an ascend-
ant subalgebra of L±. Thus L^MiSnS). On the other hand any finite
subset of A + (y) lies inside some ascendant S Π 5 subalgebra An + (y) of A + (y).
Hence ^4 + (y) is an M(SnS) ideal of Lx. Therefore Rad!i((δπS)(L1) = y4 + (y).
It is not characteristic since it is not invariant under the derivation of Lί

induced by adLx.
Thus it only remains to show that Radjj((SnS)(L) and RadL((SnS)(L) are

different in general. Let L be the Lie algebra as in the proof of Theorem 5.1.
Then it is shown in the proofs of Theorems 4.2 and 4.3 in [5] that

and RadL(@πδ)(L) = ̂  + ();, z).
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Since Radώ((δnδ)(L)cRad@πg_asc(L), it follows that Radώ(@πδ)(L)^RadL(@nδ)(L).

This completes the proof.

§6. Examples

This section is devoted to showing by examples that the six classes 3£, M3E,
M£, Miϊ, Miϊ and L£ are generally different from each other as announced

in Section 2.

EXAMPLE 6.1. 3£ Φ M£ generally. Take X = 91 and let L be the Lie algebra
over a field of characteristic 0 in Theorem 12.1 in [2]. Then it is known that
Lφ 91 and L=β(L). Hence LeN(9lnJ5) and therefore by Lemms 2.3 LeivdR.

EXAMPLE 6.2. uXφύX and u^φύ^ί generally. Take 3£ = 9l and
let L = A + (y) be a subalgebra of the Lie algebra A + (x, y, z) in the proof of
Theorem 5.1. Suppose that there exists an 91 subideal H of L containing y.

Then HΦL and H ̂ = (y). Therefore H contains

i=0

But

tt(ad y)k =

Hence e0^H. Considering u — a0e0 and (ad y)k~l instead of u and (ad y)k,
we obtain eί^H. By induction we see that H^Ak + (y). It follows that H =

An + (y) for some n and H is not a subideal of L. Thus no 91 subideals of L
contain y. Hence L^M t9l and therefore L^M9l. On the other hand, any
finite subset of L is obviously contained in a subalgebra An + (y) for some n
which is an ascendant 91 subalgebra of L. Hence Leώ9l and therefore Lί^

M91.

EXAMPLE 6.3. MΪ^L Ϊ, M^^LX and ύ^XφLX generally. Take 3E =
and let L = A + (z) be a subalgebra of the Lie algebra in the proof of

Theorem 5.1. Suppose that H is an ascendant ®ΠS subalgebra of L con-
taining z. Then HφL.HφA and Hφ(z). It follows that H is the sum of
(z) and a subalgebra of A. But H is then its own idealizer in L, which con-
tradicts our supposition on H. Thus there exist no ascendant SnS subal-

gebras of L containing z. Hence L ̂  Mt(® Π δ) It follows that L ̂  ώ(S Π 8?)
and L <£ M^S n 5). On the other hand, any finite subset of L obviously lies

inside some An + (z). Hence LeL(βΠδ)- Thus we conclude that each of
M(® Π g), M^S Π g) and ώ^© Π 5) is different from L(£ Π δ).
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EXAMPLE 6.4. MΪ^M^ generally. Take 3E = 9I and let L = (x, y, z) be
a subalgebra of the Lie algebra in the proof of Theorem 5.1. For any element
u = ax + by + cz of L,

, z)<L.

Hence (u) is an 21 subideal of L. Therefore LeM^. However L^M$I, since
the subalgebra containing {x, y} is not abelian.

EXAMPLE 6.5. ώϊ^ώjϊ generally. Take 3E = 9I and let L be a sub-
algebra A + (y) of the Lie algebra in the proof of Theorem 5.1. Let u be any
non-zero element of L. If u = ay, (u) asc L. Otherwise we have

i=0

Then

Since An + (y) asc L, it follows that (u) asc L. Therefore L e ώiSI. It is however
obvious that L ̂  ώ9I.
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