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§ 1. Introduction

An independence condition was introduced by M. Ohtsuka [2] in relation
with the condititonal Gauss variational problem. This notion was generalized
by the author [3] and applied to the study of semi-infinite programs. It was
shown in [3] that a decomposition theorem (Lemma 4 in [3]), i.e., the existence
of a full system of components, plays an important role in the study of the con-
ditional Gauss variational problem. One of our aims is to further generalize
the independence condition and the decomposition theorem. By making use of
our decomposition theorem, we shall study a change of values of semi-infinite
programs.

§2. An independence condition

Denote by Rn the n-dimensional Euclidean space, by R% the positive orthant
of Rn and by ek the vector in Rn whose j-th coordinate is equal to 0 if jφk and
1 ifj = k. We set R = Rί and R0 = R^. For a subset B of Rn, we denote by
B° the interior of B in Rn. Denote by ((v, w)) and ||w|| the usual inner product
of v, w^R" and the usual distance from 0 to weR n respectively, i.e.,

and NHK^

for v = (rl9 ..., O and w = (s1? ..., sn).
Let X be a real linear space and P be a convex subset of X such that Oe P.

Let/XX) (ι = l, ..., n) be a real-valued function defined on P satisfying the follow-
ing conditions:
(a) fi(tx) = tft(x) for all t e R0 and x e P such that tx e P,

(b) ft(x + y) = ft(x) +/ι()0 for all x, y e P such that x + y e P.
In case P is a convex cone, conditions (a) and (b) imply that //(x) is positively
homogeneous and additive.

Now we introduce an independence condition which coincides with the one
in [3] in the case where P is a convex cone.

DEFINITION. Let xeP. We say that {/.} = {/.; f = l, ...,n} is x-indepen-
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dent if there exists a set {x/} = {x/; 7 = 1, ..., n} in P called 0 system of com-
ponents of x such that x-xyeP for each j and det(/f(x;))^0, where det(00 )
denotes the determinant of a matrix (α0 ).

Let y4 be the transformation from P into #w defined by

The condition det^x^^O in the above definition is equivalent to that {AXj 9

7 = 1,..., n} is linearly independent. Denote by A(P) the image under A of P, i.e.,

Clearly Oe^4(P) and ^4(P) is convex by conditions (a) and (b).
A system of components {Xj} of x is called to be/w/7 if

7=1

In this case we say that x has a full system of components.
First we have

THEOREM 1. Let u and x be elements of P and set x* = εw + (l— ε)x with
0<ε<l. If {ft} is it-independent, then {ft} is x* -independent.

PROOF. Let {u3} be a system of components of u. Then εi^ eP and x* —
εuy = ε(M — My) + (l — ε)xeP for each 7. It is clear that {A(εUj)} is linearly inde-
pendent, so that {εUj} is a system of components of x*.

We shall prepare

LEMMA 1. Let B be a convex set in Rn such that Oe#. If B contains
a set of n vectors in B -which is linearly independent, then B° is nonempty.

PROOF. Let {zj} be the set of n vectors in B which is linearly indepen-
dent. Then the set V defined by

V={Σrjzj;(r1,...9rn)€ΞR»0 and Σ^^1}
.7-1 J=l

is contained in B. Since V° is nonempty, our assertion is clear.

LEMMA 2. Let B be a convex set in Rn such that Oe£. // z0<=B° and
ZO=^Q, then there exist a set {zj} of n vectors in B° and a set {«j} of n strictly
positive numbers such that {z^ is linearly independent,

n
zo = Σ BjZj and

j=ι

PROOF. Let us put zQ = (c^ ..., cn) and choose ε, in such a way that ε7 =
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1 if Cj^O and ε~ — 1 if c, <0. Let r>0 be a number such that
for each j9 m be the number of vanishing c/s and υ be the vector in Rn whose
i-th coordinate bt is equal to 0 if ctφQ and b<Q if ^ = 0. We choose \b\ so
small that ZQ + v + rSjβj^B0 for each j and r+wί»0. Let us take

Sjβj for each j. Writing

= .Σ \

we have α7->0 for each j,

Σ Λy = aQ < 1 and z0 = Σ αjzj

We show that {z;} is linearly independent. Suppose that 2 tjZj=Q for

. Setting ί0= Σ */» we have
7=1

Since {ej} is linearly independent, we have

(1) tQ(cj + bj) + r8jtj = 0

for each j. Multiplying both sides by εj9 we have

so that

0 = Σ Dod^l + β

Since c0 + mfc + r>0, we have ί0

=^ an^ hence ίy=0 by (1). Namely {z7 } is
linearly independent and {z, } and {aj} satisfy our requirements.

We have

THEOREM 2. If z0&A(P)°9 then there exists xeP such that Ax = zQ and
{fi} is X'independent.
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PROOF. First we consider the case where z0=^=0. Applying Lemma 2 with
B = A(P), we can find a set {z^} of n vectors in A(P)° and a set {α,-} of n strict-
ly positive numbers such that {zj} is linearly independent,

zo = Σ ajzj and Σ aj < 1

There exists x,eP such that Axj — Zj for each j. Taking x= Σ ajxp we see

that xeP and Ax = z0 by conditions (a) and (b). Since {Axj} is linearly inde-
pendent, we see that {cijXj} is a full system of components of x. In case z0=0,
let us choose r>0 so small that

r Σ *j ̂  A(PY and - rej e A(P)°

for each j. There exists a set {Uj} of n -f 1 elements in P such that

Auj**-rej C/ = l, ..., n),

,̂,+ 1 = ̂ 2^.

w+l
Writing x/ = w//(n + l) for eachj and x= Σ x/> we ^ave x^^ and ^4x=0. It

j=ι
is clear that {x/; j = l, ..., n} is a system of components of x. This completes
the proof.

COROLLARY. // z0e^4(P)°, then there exists xeP and f>0 SMC/I
^x = z0, (1 + OΛ: e P αwrf {/J /.s (1 + ̂ independent.

PROOF. Since z0e^(P)°, there exists ί>0 such that (l + i)z0<= A(P)°.
On account of Theorem 2, there exists x*eP such that Ax* = (l + f)zo and {/f}
is x*-independent. Taking x = x*/(l + ί)> we see tnat x e P, ̂ 4x = z0 and (1 + f)x =
x*eP.

We shall often use

LEMMA 3. Let [vj:>j=l, ..., n} be linearly independent in Rn. If ((vp w))
= 0 for each j, then w = 0.

PROOF. Let Vj = (alj9 ..., anj) and w = (r1, ..., rn). Then we have

Since det(αί7 )^=0, we have r f=0 for each i, i.e., w=0.
We have

THEOREM 3. // {/J is x-independent, then tAx<=A(P)° for every ί, 0<f <1.
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PROOF. Let us put z0=Ax and let {x;} be a system of components of x.
Since (Axj}c:A(P), A(P)° is nonempty by Lemma 1. Suppose that there exists
t0 such that 0<f 0 <l and t0z0£A(Py. By means of the separation theorem
([!]> P 71, Proposition 1), we can find a nonzero we#n and αe# such that

((f0z0, w)) = α^((z, w))

for all zeA(P). Since tz0^A(P) for every t, 0<:f<;l, we have ((z0, w))=0,
so that α=0. Since AXj&A(P) and A(x — Xj)&A(P) for each j, we have

, w))S(G4x, w)) = ((z0, w)) = 0,

and hence w = 0 by Lemma 3. This is a contradiction. Therefore tz0^A(P)°
for every ί, 0<ί<l.

COROLLARY. Assume that {ft} is x-independent. If there exists t>0
such that (l + f)x^P, then z0=Ax<=A(P)°.

PROOF. Let ε be a number such that 0<ε<l and s<t. It is valid that
(l+ε)xeP, so that (1+ ε)z0 = .4((l+ε)x)e,4(P). Since A(P) is convex, εz0e
A(P)° by Theorem 3 and z0 lies on the segment connecting εz0 and (l + ε)z0,
z0 belongs to A(P)° ([1], p. 51, Proposition 15). This completes the proof.

§ 3. A decomposition theorem

We shall be concerned with the existence of a full system of components of
x in case {fι} is x-independent.

For xe P, we define C[x] by

It is clear that C[x] is convex and contains 0 and x. Denote by Q(x) the convex
cone generated by A(C[x]\ i.e., z e β(x) if and only if there exist t > 0 and u e C[x]
such that z = tAu.

We have

LEMMA 4. // {/J is x-independent, then Ax^Q(x)°.

PROOF. Let {xj} be a system of components of x. Since (Axj}c:Q(x),
Q(x)° is nonempty by Lemma 1. Suppose that ^4x^Q(x)°. There exist a
nonzero w&R" and αe# such that

((Ax, w)) = α<ί((z, w))

for all zeQ(x) by the separation theorem ([1], p. 71, Proposition 1). Since Q(x)
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is a cone, we have α = 0. From x^ e C[x] and x — x^ e C[x] for each j, it follows
that

so that w = 0 by Lemma 3. This is a contradiction. Therefore
Now we shall prove the following decomposition theorem.

THEOREM 4. Let xeP and 4x^0. // {/J is ^-independent, then x has
a full system of components.

PROOF. Our assertion is clear in case n = l, so we assume n^2. We first
show that there exist a set {xj} of n elements in C[x] and a set {Sj} of n strictly
positive numbers such that {Axj} is linearly independent, nxjeC[x] for each
jand

We can apply Lemma 2 with B = Q(x), since β(x) is convex and contains 0,
and z0eg(x)° by Lemma 4. There exist a set {z7 } of n vectors in β(x)° and a
set {dj} of n strictly positive numbers such that {zj} is linearly independent and

ZG= Σ β/z/

There exist w7 eC[x] and ίy>0 such that tjAUj = Zj for each 7. Taking Xj = Uj/n
and Sj = najtj9 we see easily that {xj and [sj] satisfy our requirements. In case

n _ n

5n= Σ s /^l> we have x= 2 5/x/eC[x] and ̂ 4x = z0. By choosing

for each j, we see that {x^} is a full system of components of x. In case s0>l,
we have

n

*o = Σ (sj/s^Xj e C[x] and ^x0 = z0/50.

Let us define x^ by

for each j. Since x-x0eC[x] and πx^eCM, it is valid that xJ^C[x] for

each j an

ponents oJ
pose that

each j and x= 2 x* In order to prove that {x^} is a full system of com-

ponents of x, it is enough to show that {Axj} is linearly independent. Sup-
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j=l

for {bj} c R. Then it follows that

0 = Σ bfals0)Axj+(l - l/50)z0 Σ (bk/n)
j=l k=l

k=l

Since {AXj} is linearly independent, we have

Σ (bJn

for each j, so that

(2) bj + (sQ — ΐ)b0/n = Q with b0 =

Thus we have

and hence fco = ̂  Therefore fe/ = 0 by (2). Namely {AxJ} is linearly indepen-
dent. This completes the proof.

This is a generalization of Lemma 4 in [3].

THEOREM 5. Let xeP and ^Lx = 0. // {ft} is x-independent, then x does
not have a full system of components.

PROOF. Suppose that there exists a full system of components {xj} of x.
Then we have

J=l

for each ΐ, so that

J=l

= (0, ...,0) = 0.

Namely {Axj} is linearly dependent. This is a contradiction. Therefore x does
not have a full system of components.
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§ 4. Semi-infinite programs

Let g(x) be a real-valued function defined on P. Given z0^Rn, let us con-
sider the following semi-infinite program :

(I) Minimize g(x)

subject to x e P and Ax = z0.

Problem (I) was studied in [3] in the case where P is a convex cone and g(x) is
positively homogeneous and convex. We investigated the problem how the
value of problem (I) changes as g and /f change by using a duality theorem.
We shall be concerned with an analogous problem by using our decomposition
theorem.

Assume that g(x) satisfies conditions (a) and (b) in §2. Let {/lp)} and
{g(p)} be sequences of real-valued functions on P which converge (pointwise) to

f ι and g respectively and {z(p)} be a sequence of vectors in Rn which converges
to z0. Here we assume that /^p) and g(p) satisfy conditions (a) and (b). Let us
put

Mp=mΐ{g<p\x); xeS(p)}, M=inf{0(x); xeS}.

Here we use the convention that the infimum of a real-valued function on the
empty set is equal to oo.

We shall prove
THEOREM 6. // z0<=A(P)° and z0=£Q, then it is valid that^SmM <M.

p— >oo

PROOF. We may assume that M<oo. For any α>M, there is xeS such
that g(x) < α. Since z0 e A(P) ° , there exist x e P and t > 0 such that (1 + f)x e P,
Ax = z0 and {/J is (1 + ί)̂  independent by the corollary of Theorem 2. Writing

x* = ε(l + i)x + (l-έ)x with 0<ε<l, we see that x*eP, ^4x* = (l+εί)zo an^
{fι} is x*-independent by Theorem 1. Since ^4x*=^=0, there exists a full system
of components {xj} of x* by Theorem 4. First we show that there exists p0 such
that {ApxJ} is linearly independent for all p^p0 Supposing the contrary, we
may assume that there exists w(p) = (s{p\ ..., s^&R" such that ||w(p)|| = l and

for infinitely many p. By choosing a subsequence if necessary, we may assume
that {w(p)} converges to ^ = (5^ ..., sn). Then we have
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IM| = 1 and

since limA,xJ=AxJ for each j. This contradicts the fact that {Ax*} is linearly
p-*oo

independent. Therefore there exists pQ such that {ApxJ} is linearly independent
for all p^po Let D£ be the convex set in Rn defined by

and Jjr,xJeP}.

We show that there exists p± such that z(p)eD* for all p^p±. Supposing the
contrary, we have z(p)^D* for infinitely many p. In case z(p)^D* and
we can find /p)eRn and α e β such that ||/p)|| = l and

for all zeD* by the separation theorem ([1], p. 71, Proposition 1), since (D*)°
is nonempty by Lemma 1. By choosing a subsequence of {y(p)} if necessary, we
may assume that {y(p)} and {αp} converge to y and α respectively. It follows
that |b|| = l,α^0,

((z0, y)) = ̂ ((AxJ9 y))

for each 7 and

«^(( Σ

Therefore α^O and hence α=0. Thus we have ((AxJ, y)) = 0 for each 7, so that
y = Q by Lemma 3. This is a contradiction. Therefore there exists p± such that
Pi>p0 and z(p)eD* for all p^pi For z(p)eD*, there exists a unique v(p) =
(r(/>, ..., r(

n

p))<=R»Q such that

(3) z(p)=Σr(jp)ApxJ and ^>=Σ^P)

It is valid that x(p) e S(p) and

(4) Mp ̂  g(p\x™) = Σ r^>^(p)(x^)
7=1

for all P>P! Next we show that {||ι/p)||} is bounded. Supposing the contrary,
we may assume that #(PV=0 for all p and ||t/p)||-χχ> as p-»oo. Setting u(p) =
t,o»/ HβWji =(&</), ..., &<»»), we have ||u(p)|| = l and
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By choosing a subsequence if necessary, we may assume that {u(p)} converges to

!!=(&!, ..., bn). It follows that ||tι|| = l and

which contradicts that {AxJ} is linearly independent. Therefore { ||t;(p) ||} is bound-
ed. Let v = (rl9 ..., rn) be an accumlation vector of {υ(p)}. Then we have by (3)

(5) ΣιrjAxJ=z0.

On the other hand, we have

(6) gAxJ = Ax* = (l+eί)z0.

Since {AxJ} is linearly independent, we have by (5) and (6) that r j = l / ( l + εi)
for each j. Thus we have shown that

(7)
p-+oo

for each 7. On account of (4) and (7), we have

hm M ^ lim Σ r \ x ) =

Letting ε->0, we have

limM <
-

By the arbitrariness of α, we obtain the desired inequality.
This is an improvement of Theorem 10 in [3].
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