Remarks on Algebraic Hopf Subalgebras

Hiroshi YANAGIHARA (Received May 14, 1973)

The aim of this note is to give a generalization of a theorem in the paper [2] which is concerned with algebraic Hopf subalgebras of the Hopf algebra attached to a group variety. In other words we show that a similar result to the theorem is obtained for not necessarily reduced group schemes over an algebraically closed field of a positive characteristic p, though the objects in [2] were group varieties exclusively. Moreover we give a corrected proof of Corollary to Lemma 12 in [2], because the previous proof is applicable only in the case where G is an affine algebraic group.

The terminalogies are the same as in the papers [1] and [2].

1. In the following let k be an algebraically closed field of a positive characteristic p and G a group scheme of finite type over k. Let $\mathcal{O} = \mathcal{O}_{e,G}$ be the local ring of G at the neutral point e, that is, the stalk of the structure sheal of G at e. If \mathcal{O}' is the local ring $\mathcal{O}_{e\times e^*}$, $_{G\times G}$ of the product scheme $G \times G$ over k at the point $e \times e$, it is the quotient ring $(\mathcal{O} \otimes_k \mathcal{O})_S$ of $\mathcal{O} \otimes_k \mathcal{O}$ with respect to the multiplicatively closed set S which is the complement of the maximal ideal $\mathfrak{m} \otimes \mathcal{O} + \mathcal{O} \otimes \mathfrak{m}$ of $\mathcal{O} \otimes_k \mathcal{O}$, where m is the maximal ideal of \mathcal{O} . Let R be the m-adic completion of \mathcal{O} . Then R has a natural structure of a formal group over k in the sense of §5 in [2], whose comultiplication $\Delta : R \to R \otimes_k R$ is given by the multiplication m of G. The antipode c of R is determined by the morphism $x \to x^{-1}$ of G to itself. Then R is called *the formalization of G*, and we remark that Proposition 7 of §5 in [2] is also true in this case. The proof is exactly the same.

First we give a corrected proof of the corollary to Lemma 12 in [2] in a slightly general form.

LEMMA 1. Let G, O and O' be as above. Let a be an ideal of O such that $\triangle(a) \subset (a \otimes O + O \otimes a)O'$ and c(a) = a. Let G' be the closed subset of G defined by the ideal a. Then G' is the underlying space of an irreducible group k-subscheme of G.

PROOF. We may assume that a is equal to its radical, because the radical of a also satisfies the same hypothesis as a. From our assumption, it follows that there exists an open subset V of $G' \times G'$ containing $e \times e$ such that the image of V by the morphism m of $G \times G$ onto G is contained in G'. Since each irreducible

component of G' contains the point $e, (G' \times G') \cap V$ is a dense open subset of $G' \times G'$. Let x and y be any two points of G' and U any open subset of G containing e. Then there exists an open subset W of $G \times G$ containing the point $e \times e$ such that the image $m((x \times y)W)$ of the open set $(x \times y)W$ by the morphism m is contained in xyU. Since $V \cap (G' \times G')$ is a dense subset of $G' \times G'$, the intersection $(x \times y)W \cap$ $V \cap (G' \times G')$ is not empty. Then we see that $xyU \cap G'$ is not empty. Since G' is a closed subset of G, xy belongs to G'. Similarly we see that x^{-1} is contained in G' if x is an element of G'. This means that G' is the underlying space of a group k-subscheme of G. Moreover G' is irreducible, because it is connected. q.e.d.

LEMMA 2. Let G, 0, 0' and a be the same as in Lemma 1. Then there exists a group k-subscheme G' of G such that the stalk at the point e of the defining ideal for G' is equal to a.

PROOF. As seen in Lemma 1, the closed subset G' defined by the ideal \mathfrak{a} is the underlying space of a group subvariety of G which is defined over k. Let U be an affine open subset of G containing e, and A the coordinates ring $\Gamma(U)$ of U. Then $U \times U$ is an affine open subset of $G \times G$ containing $e \times e$. Let S be the multiplicatively closed subset of $\mathcal{O} \otimes_k \mathcal{O}$ such that $\mathcal{O}' = (\mathcal{O} \otimes_k \mathcal{O})_s$. We see easily that there exists an element s of $(A \otimes_k A) \cap S^{(*)}$ such that $V = (U \times U)_s$ =Spec $(A \otimes_k A)_s$ =Spec (B) is contained in the inverse image $m^{-1}(U)$ of U. Let \mathfrak{a}_A and b be the ideals $\mathfrak{a} \cap A$ and $(\mathfrak{a} \otimes \mathcal{O} + \mathcal{O} \otimes \mathfrak{a}) \mathcal{O}' \cap (A \otimes_k A)_s$ respectively. Then we have $\triangle(\mathfrak{a}_A) \subset \mathfrak{b}$. On the other hand if we put $V' \times e = V \cap (G \times e)$, V' is an open subset of G such that $U \supset V \ni e$. Let L_a (resp. R_a) be the morphism of G onto G such that $L_a(x) = ax$ (resp. $R_a(x) = xa$). Then we have $L_a = m \circ h_a$, where h_a is the closed immersion of G into $G \times G$ given by $h_a(x) = a \times x$. Therefore the comorphism $L_a^*|_A$ of L_a is equal to $h_a^* \circ m^* = h_a^*|_B \circ \bigtriangleup|_A$. Now $h_a^*|_B$ is defined by the natural homomorphism $B \rightarrow B/(\mathfrak{m}_a \otimes_k A)B$, where \mathfrak{m}_a is the maximal ideal of A corresponding to a. Since $\triangle(\mathfrak{a}_A) \subset \mathfrak{b}$ and $h_a^*(\mathfrak{b}\mathcal{O}_{a \times e}) = \mathfrak{a}_A \mathcal{O}_{e,G}$, we can easily see that $L_a^*((\mathfrak{a}_A \mathcal{O}_{e,G}) \subset \mathfrak{a}_A \mathcal{O}_{e,G} = \mathfrak{a}$ if $\mathfrak{a}_A \mathcal{O}_{a,G} \neq \mathcal{O}_{a,G}$ and that $L_a^*(\mathfrak{a}_A \mathcal{O}_{a,G}) = \mathcal{O}_{e,G}$ if $\mathfrak{a}_{A}\mathcal{O}_{a,G} = \mathcal{O}_{a,e}$. Similarly if U_0 is a sufficiently small neighbourhood of e such that $x \times x^{-1}$ is contained in V for any x in U_0 , we see that $L^*_{a-1}(\mathfrak{a}_A \mathcal{O}_{e,G}) \subseteq \mathfrak{a}_A \mathcal{O}_{a,G}$ for a in U_0 and $\mathfrak{a}_A \mathcal{O}_{a,G} \neq \mathcal{O}_{a,G}$. Therefore we see that $L_a^*(\mathfrak{a}_A \mathcal{O}_{a,G}) = \mathfrak{a}$ for any closed point a in $U_0 \cap V'$ satisfying $\mathfrak{a}_A \mathcal{O}_{a,G} \neq \mathcal{O}_{a,G}$. In the same way we have an open subset U_1 of U such that $R_a^*(\mathfrak{a}_A \mathcal{O}_{a,G}) = \mathfrak{a}$ for any closed point a in U_1 satisfying $\mathfrak{a}_A \mathcal{O}_{a,G} \neq \mathcal{O}_{a,G}$. Hence there exists an affine open subset $W = \operatorname{Spec}(C)$

^(*) Let A be a commutative ring and let φ be the canonical homomorphism of A into the quotient ring A_T of A with respect to a multiplicatively closed subset T of A. If M is a subset of A_T , we understand by $A \cap M$ the subset $A \cap \varphi^{-1}(M)$ of A.

of G contained in U and an ideal \mathfrak{a}_C of C such that $L^*_a(\mathfrak{a}_C \mathcal{O}_{a,G}) = R^*_a(\mathfrak{a}_C \mathcal{O}_{a,G}) = \mathfrak{a}$ for any closed point a in $W \cap G'$ and $\mathfrak{a}_C \mathcal{O}_{a,G} = \mathcal{O}_{a,G}$ for any point a in W but not in G'. Next we show that there exists a coherent sheaf c of ideals of \mathcal{O}_G satisfying the following conditions: the closed subset of G defined by this sheaf c is G' and $\mathfrak{a} = \mathfrak{c}_e = L_x^*(\mathfrak{c}_x)$ for any closed point x in G', where \mathfrak{c}_x is the stalk of \mathfrak{c} at x. To see this let x be any closed point of G'. Then xW is an affine open subset of G containing x, and we have $W = L_{x-1}(xW)$ and hence $xW = \text{Spec}(L_{x-1}^*(C))$. Therefore we put $\Gamma(xW, \mathfrak{c}) = L_{x-1}^*(\mathfrak{a}_{\mathcal{C}})$. Since we have $\mathfrak{a}_{\mathcal{C}}\mathcal{O}_{y,G} = L_{y-1}^*(\mathfrak{a})$ for any closed point y in $W \cap G'$, we can see easily that the ideal of $\mathcal{O}_{xy, G}$ generated by $\Gamma(xW, \mathfrak{c})$ is equal to $L_{(xy)-1}(\mathfrak{a})$. This implies the existence of a coherent sheaf \mathfrak{c} of ideals of \mathcal{O}_G satisfying the above conditions. Moreover we have $\mathfrak{a} = \mathfrak{c}_e = R_x^*(\mathfrak{c}_x)$ for any closed point x in G'. In fact if x is any closed point of G', there exist closed points y and z in W such that x = yz, because $W \cap G'$ and $xW^{-1} \cap G'$ have a common closed point y of G. Therefore we have $L_x = L_{yz} = L_y \circ L_z$ and $R_x = R_{yz} = R_z \circ R_y$. Since $L_{x-1}^*(\mathfrak{a}) = R_{x-1}^*(\mathfrak{a})$ for any closed point x in $W \cap G'$ and $R_y L_z = L_z R_y$ for any closed points y and z in G, it follows easily that $L_{x-1}^*(\mathfrak{a}) = L_{y-1}^*(L_{z-1}^*(\mathfrak{a}))$ $=R_{z-1}^*(R_{y-1}^*(\mathfrak{a}))=R_{x-1}^*(\mathfrak{a})$. Now we show the morphism m gives naturally the multiplication of the subscheme $(G', \mathcal{O}_G/\mathfrak{c})$. Let a and b be any closed points of G'. Then the morphism m is equal to the composition $R_b \circ L_a \circ m \circ (L_{a-1} \times R_{b-1})$ and hence $m^*(\mathfrak{c}_{ab}) = (L_{a-1} \times R_{b-1})^* \circ m^* \circ L^*_a \circ R^*_b(\mathfrak{c}_{ab}) = (L_{a-1} \times R_{b-1})^* m^*(\mathfrak{c}_e)$ $\subset (L_{a-1}^* \otimes R_{b-1}^*) ((\mathfrak{c}_e \otimes \mathcal{O}_{e,G} + \mathcal{O}_{e,G} \otimes \mathfrak{c}_e) \mathcal{O}') = (\mathfrak{c}_a \otimes \mathcal{O}_b + \mathcal{O}_a \otimes \mathfrak{c}_b) \mathcal{O}_{a \times b}.$ This means that m induces naturally a morphism of $(G', \mathcal{O}_G/\mathfrak{c}) \times (G', \mathcal{O}_G/\mathfrak{c})$ to $(G', \mathcal{O}_G/\mathfrak{c})$. Similarly we can see that the morphism c of G to G induces a morphism of $(G', \mathcal{O}_G/\mathfrak{c})$ to itself. It is easy to see that these morphisms give the structure of a group subscheme of G to $(G', \mathcal{O}_G/\mathfrak{c})$, and hence the proof is completed.

2. PROPOSITION. Let G be a group k-scheme and $\mathcal{O} = \mathcal{O}_{e,G}$ the local ring of G at the neutral point e. Let R be the formalization of G and \bar{a} an ideal of R such that $(\bar{a} \cap \mathcal{O})R = \bar{a}$. If R/\bar{a} is a formal subgroup of R, then $a = \bar{a} \cap \mathcal{O}$ corresponds to a group k-subscheme G' of G such that the formalization of G' is R/\bar{a} .

PROOF. If \mathfrak{H} is the Hopf subalgebra of $\mathfrak{H}(R)$ corresponding to the formal subgroup $R/\bar{\mathfrak{a}}$, \mathfrak{H} satisfies the condition of Proposition 7 in [2]. Therefore $\Delta(\mathfrak{a})$ is contained in the ideal of \mathscr{O}' generated by $\mathfrak{a} \otimes \mathscr{O} + \mathscr{O} \otimes \mathfrak{a}$ and $c(\mathfrak{a})$ is equal to \mathfrak{a} . Hence it follows from Lemma 2 that \mathfrak{a} corresponds to a group k-subscheme $(G', \mathscr{O}_G/\mathfrak{c})$ such that the stalk \mathfrak{c}_e of the sheaf at the neutral point e is \mathfrak{a} . Then it is clear that the formalization of $(G', \mathscr{O}_G/\mathfrak{c})$ is $R/\bar{\mathfrak{a}}$.

If G' is a group k-subscheme of G whose local ring at e is given by \mathcal{O}/\mathfrak{a} , the formalization of G' is $R/\mathfrak{a}R$ and the Hopf algebra $\mathfrak{H}(R/\mathfrak{a}R)$ attached to the

formal group $R/\mathfrak{a}R$ in the sense of § 5 in [2] is canonically identified with the subset of the elements D in the Hopf algebra $\mathfrak{H}(R)$ attached to R such that $D(\mathfrak{a})=0$. We call such a Hopf subalgebra $\mathfrak{H}(R/\mathfrak{a}R)$ of $\mathfrak{H}(R)$ algebraic in wider sense. Now we obtain the following generalization of Theorem 6 in [2].

THEOREM. Let G, O and R be the same as in the above proposition. Let $\mathfrak{H}(R)$ be the Hopf algebra attached to the formal group R. Let \mathfrak{H} be a Hopf subalgebra of $\mathfrak{H}(R)$ and \mathfrak{a} the ideal of O consisting of the elements x such that D(x)=0 for any element D in \mathfrak{H} . Then H is algebraic in wider sense if and only if \mathfrak{H} is the set of the elements D in $\mathfrak{H}(R)$ such that $D(\mathfrak{a})=0$.

PROOF. Let $a_{\mathfrak{H}}$ be the ideal of R consisting of the element x in R such that D(x) = 0 for any element D in H. Then we see easily in the same way as in Proposition 7 in [2] that $(a_{\mathfrak{H}} \cap \mathcal{O})R$ is $a_{\mathfrak{H}}$ if and only if \mathfrak{H} is the set of the elements D of $\mathfrak{H}(R)$ such that $D(a_{\mathfrak{H}} \cap \mathcal{O}) = 0$. Since $a_{\mathfrak{H}} \cap \mathcal{O}$ is a, our assertion follows from Proposition.

References

- Oort, R., "Commutative group schemes", Lecture Notes in Mathematics, no. 15. (1966), Springer-Verlag.
- [2] Yanagihara, H., Some Properties of Hopf Algebras Attached to Group Varieties, Hiroshima Math. J. 1 (1971), 227-251.

Department of Mathematics, Faculty of Science, Hiroshima University