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Introduction

It is well known that the duality and categorical equivalence hold between

algebraic tori and character groups (e.g., [1], ch. III). In this paper we develop

an analogy for Lie algebras. General properties of toral Lie algebras are stated

in [3] and [5]. Their characters are introduced by Seligman in [3] and applied

to algebraic Lie algebras in [3] and [4].

Let Γbe a toral Lie algebra and let X(T) be the character group of T. Then

it is proved that the (contravariant) functor X: T\-+X(T) is actually an equivalence

of categories (Theorem 1) and in this relation every subalgebra (resp. quotient

algebra) of T corresponds to a quotient group (resp. subgroup) of X(T) (Proposi-

tion 3).

As an application we generalize some of the results in [3]. Namely, if T

satisfies a certain condition which generalizes that the base field is finite then the

properties (a) and (b) of Theorem 7 in [3] are equivalent (Theorem 2) and the

direct sum decomposition of T as in Theorem 8 in [3] holds (Theorem 3).

The main tools of the paper are the rationality property for vector spaces

in terms of Galois groups which is described in [1] and the direct sum decom-

position, stated in [2], of a vector space on which a nilpotent Lie algebra acts.

The author wishes to express his thanks to Professor S. Togo for helping

to complete this paper by giving several important observations.

1. Preliminaries and notations

Let k be any field of characteristic p > 0. Let L be a Lie p-algebra over k

of finite dimension with a p-map x\->xp. An element x G L is said to be separable

if x is represented as a linear combination of xp, xp2,.... If Tis an abelian Lie

p-algebra over k and every element of Γis separable then Tis called a torus or

a toral Lie algebra over k. Some criteria for tori are found in [5]. Cleary every

(p-)subalgebra of a torus is itself a torus. In this paper homomorphisms of Lie

p-algebras always mean Lie algebra homomorphisms which are compatible with

p-maps.

Let Jc be the algebraic closure of k and ks be the separable closure of k in

Jcf Then Jc and k§ are regarded as Lie p-algebras over k with natural p-th power.
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A homomorphism of a torus Γinto k is called a character of T. If ξ is a character

of Γand X G Γthen ξ(x) is a separable algebraic element over k, so that the image

ξ(T) is contained in ks. The set of all characters is denoted by X(T). X(T)

is an elementary p-group which is regarded as a vector space over P, the prime

field of fc.

Let Γ = Gal (/cs//c) be the Galois group of ks over k. Γ has a usual topology

with which it turns out a topological group (see e.g. N. Jacobson, Lectures in

Abstract Algebra, vol. II, p. 149). When Γ acts on a set S as a group of trans-

formations, the action is said to be continuous if the stability group of each S E 5

is an open subgroup in Γ. In this sense Γ acts on ks continuously.

Let g be a nilpotent Lie algebra of linear transformations in a finite-dimensio-

nal vector space V. Then V has a decomposition V= V0(gί)φVί(gi) which is called

the Fitting decomposition of V relative to g([2], Th. 2.4, p. 39). The subspaces

F0(g) and ^(g) are g-stable, and F0(g) is the maximal g-stable subspace of F o n

which the elements of g are all nilpotent. In particular, K0(g) has a composition

series with g-trivial factors.

When Vand W are vector spaces over k we denote by £k(V,W) the set of all

/c-linear maps of V into W.

2. The duality of tori and character groups

Let Tbe an n-dimensional torus over fc. Then 2k(T9k) forms a vector space

over k of dimension n, and it contains X(T).

LEMMA 1. Let ξί9...9ξm be (P-)linearly independent characters of T.

Then they are linearly independent over k.

PROOF. Assume not. Let ξί9..., ξr be linearly independent over U and

let ζr+ι=Σri=iaiζh ai^k> t>e a non-trivial linear relation. Then ξr+ί(zp) =

Ia&(zP). On the other hand ξr+ t(z^) ={ξr+ x(z)Y =ΣaΊξfaY =Iap&(zp)- Since

{ZP\Z<ΞT} spans T we have Σa^—ΣaF^. Therefore ap=ah i = l, .., r, which

implies a^P for all ι. This contradicts the fact that ξu..., ξr+ί are linearly

independent over P.

Now we have 2k(T,E)~Qli(k(g)kT9k) and £(g)T is a torus over k ([5], Cor.

2.6). On the other hand it is obvious that the ^-map of a torus is 1:1. Thus

the torus £(x)Tis isomorphic to the direct sum of n copies of k ([2], Th. 5.13,

p. 192), whose canonical projections are also characters. And then their rest-

rictions to T are characters of T. Consequently we have seen that T has at least

n characters which are linearly independent over P. Therefore we have

COROLLARY 1. k(g)PX(T)~2k(T,k).

Taking the dual of the diagram in Corollary 1 we obtain the following
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COROLLARY 2. £*(£(g)PX(T)> Φ - K®kT.

REMARK. In Corollaries above we may replace k by ks since every character

is ks-valued.

Next we define the action of Γ on X(T) by the rule:

ξ°(x)=(ξ(x)y, ξeX(T)9 σeΓ, xεΓ.

Since Tis of finite dimension this action of Γ on X(T) is continuous, i.e., for every

ξ(=X(T) Γξ = {σ<ΞΓ\ξσ = ξ} is an open subgroup (see § 1).

Let/ : T-*T' be a homomorphism of tori. T h e n / induces a Γ-homomor-

phism X(f) of X(Γ') into X(Γ): X(f)(ξ') = ξΌf for { Έ J f ( Γ ) . Then as easily

seen X is a (contravariant) functor from a category of tori over k and homomor-

phisms to a category of elementary p-groups of finite rank on which Γ acts con-

tinuously and Γ-homomorphisms. If dim T—n then clearly the order of the

group X(T) is pn. From this fact we have

PROPOSITION 1. X is an exact functor.

To prove that the functor X is fully faithful we need some general notions

of Galois criteria for rationality on vector spaces described in [1](§ 14.1, p. 52).

Let Kbe a vector space over k. Then Γ acts on ks®kV in the following manner:

(a®v)σ = aσ®v, a(=ks, v<=V, σ<ΞΓ.

Then l(g)Fis the set of Γ-fixed elements. If Wis a vector space over ks on which

Γ acts semi-linearly, i.e.,

then the dual space 2ks(W9ks) of W permits the action of Γ by the rule:

1 wείf,

Now we have by the Remark to Corollary 2 2ks(ks®PX(T))~ks(g)kT. Since

Γ acts semi-linearly on ks(g)X(T) we have from the above discussion two actions

of Γ on ks®T. However we have

LEMMA 2. The two actions off on ks®Tcoincide.

PROOF. Note that the above isomorphism is as follows:

(a®x)(b®ξ) = abξ{x\ a9b<=ks9 xeT, ξ^X(T).

Let CΓGΓ. We start to calculate (a(g)x)σ(b®ξ) along the action on the dual space.

x)(bσ~ί®ξσ~ 1)
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={abσ~ιξσ'\x)Y

= aσbξ(x)

=(aσ®x)(b(g)ξ).

This shows that the action equals that on the tensor product.

PROPOSITION 2. The functor X is fully faithful, that is, X: Horn(T,T')^>
HomΓ(X(T'% X(T)) is bijective. In particular, if X(T')~X(T) then T~T.

PROOF. Injectivity. Assume X(f)=X(g). This implies that ξ'(f(x) — g(x))

=0 for all { ' e Z ( ? ) and all XGΓ. By Corollary 1 we have f(x)=g(x) so that

f=0.
Surjectivity. Let ψ: X(T')-+X(T) be a Γ-homomorphism. Then l(g)ψ:

ks(g)PX(T')-+ks(g)PX(T) is a Γ-homomorphism, where Γ acts on these vector
spaces semi-linearly. Taking the dual of this diagram we have f(l(g)ίA): £*s(ks(8)
X(T), ks)-*2ks(ks®X(T'), ks) and this is a /cs-miear map. By the Remark to
corollary we have 2ks(ks®X(T), ks)~ks(g)kT and a similar isomorphism for T'.
These are provided with the action of Γ and '(K&ψ) is a Γ-homomorphism.
Moreover it is a homomorphism of ks-toή since \®\l/{ξ'){ap®xp)^=ap®\l/{ξ')(xp)
= ̂ ® ( ^ 0 W ) p = ( « ® ^ 0 W ) p = ( l ® ^ 0 ( « ® ^ ) ) p for a^ks and xeT. By
Lemma 2 and the previous discussion the set of Γ-fixed elements of /cs(x) T(resp.
ks(g)T') is l(g)T (resp. 1® 71') and '(1(8)1/0 maps 1® T into 1®Γ'. Let / be the
restriction of '(1®^) to l(g)Γ. Identify 1®Γ (resp. 1®T') with T (resp. T').
Since '(l(8)ι/0 is a homomorphism of ks-toή, we see that / is a homomorphism
of /c-tori, and we have φ=X(f) as directly checked.

THEOREM 1. The functor X is an equivalence of categories.

PROOF. Since the functor X is fully faithful by Proposition 2, it remains
to prove that for an elementary p-group X of finite rank on which Γ acts continu-
ously there exists a torus Tover k such that X~X(T). Let n be the rank (the
dimension over P) of X. And let K=Hom(X, ks). This is an n-dimensional
vector space over ks. Moreover it is a torus over ks with the following p-map:

zp(ξ)=z(ξ)p, z6Hom(I,y, ξ^X.

In fact, let xl9..., xn be a basis of K Then it suffices to see that x\,..., xp

n are linearly
independent ([4], Prop. 2.5, (2)). Let ξί9..., ξn be a basis of X (as a vector space
over P). Then we have det(xt (^)) Φ 0. It follows that det(xi(^ ))^=det(x i (^)
=det(xP(ξj))φ0, which shows linear independence of xp's. On the other hand
we have V~Qks(ks(g)PX, ks) on which Γ acts continuously. In fact, let X E Fand
let Γx be the stability group of x. By the definition of the action we have
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= {σ<=Γ\x(ξy=x(ξσ) for all

Since the action of Γ on X is continuous the stability group Γξ of ξ is an open
subgroup for each ζ e X. Similarly the stability group Γx(ξ) of x(ξ) e ks is an
open subgroup. Therefore the intersection Γξ Π Γx(ξ) is an open subgroup of Γ.
Since X is finite the intersection Π ξeχΓξ Π Γx ( ξ ) is also an open subgroup of Γ and
it is contained in Γx. Consequently Γx is also an open subgroup of Γ since Γ is
a topological group. Thus Fhas a /c-structure T=VΓ =HomΓ(X, ks)9 the set of
Γ-fixed elements in K([l], § 14 Ch. AG). It is easy to see that Tis an n-dimen-
sional torus over k and the map ξh+(zH>z(ξ)) is a Γ-homomorphism of X onto
X(T).

Let S be a subtorus of T. Then

So={ξtΞX(T)\ξ(x)=0 for all X G S }

is a Γ-stable subgroup of X(T). Conversely if Y is a subgroup of ^f(T) then the
set

Yo={xεΞT\ξ(x)=0 for all ξeY}

is a subtorus of Γ. Then we have

PROPOSITION 3. The maps Sh>S° and Y\-+Y° define reciprocal bijections
between the collection of subtori of T and the collection of Γ-stable subgroups
of X(T). Moreover we have canonical isomorphisms S° ~X(T/S) for every
subtorus S of T and Y ~X(TIY°) for every Γ-stable subgroup Y of X(T).

PROOF. Let S be a subtorus of T. The canonical isomorphism S°~X(T/S)
follows from the fact that the functor X is exact and 5° is the kernel of the restric-
tion map X(T)-+X(S). It is clear that ScS°° and SOOO=S°. From the exact
sequence 0-+S-+T-+T/S-+0 we obtain an exact sequence

(1) 0^X(S)<- X(T)+-X(T/S)+-09

where X(T/S)~S°. In the same way we have

(2) 0

and

(3) 0

Calculating the dimension of S°°, we have

dimSoo=log|X(Soo)|/log/>

=log(|Z(T)|/|5°|)/logp (by (3))
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=log|X(T)|/logp

=dimS.

Therefore 5° ° =S.
Conversely let 7 be any Γ-stable subgroup of X{T). Then Y is represented

as a character group X(U) for some torus U over k by Theorem 1. Then the
bijectivity of X: Horn (T,£/)-• Horn r(Y, X(T)) gives a unique homomorphism
/ : T->[/ such that X(f) is the inclusion map of Y into X(T). It is easy to see
that / is surjective. Let 5 = Ker/. Then we have Y=S°. Furthermore this
implies Y° =S so that Y=S° =X(T/S)=X(T/Y°). This completes the proof.

3. Some structure theorems of tori

Let K be a subfield of ks containing k. K is called a splitting field of T if
every character of T is K-valued ([3], Th. 6).

PROPOSITION 4. Thas a unique minimal splitting field K, which is a finite
Galois extension field of k. And there exists a canonical isomorphism of the
Galois group Gal(K/k) onto a subgroup of the group of all automorphisms of
X(T).

PROOF. Let N be the kernel of the representation of Γ on X(T): JV = Ker
(Γ->Aut(-Y(T))). Since the action of Γ on X(T) is continuous N is an open
normal subgroup with finite index. Then the subfield of ^/-invariants is a finite
Galois extension of k and we have an isomorphism Gal (K/k) ~ Γ/N. It is easy
to see that K is a splitting field of T. K is the minimal one. In fact, let Kf c
ks be any splitting field of T. Let JV' be the subgroup of Γ of elements σ such
that aσ — a for all a^K'. Then N' is a closed subgroup. Since K' is a splitting
field of T every element of N' acts identically on X(T). It follows that N'czN.
Consequently we have KczK' which asserts the minimality of K.

Now let U be a subtorus of T and let L be the minimal splitting field of U.
Then L is a subfield of K, the minimal splitting field of T. And let H be the Galois
group of L/k. Then H is the quotient group of G, the Galois group of K/k9 by
the normal subgroup {σ^G\aσ=a for all O G L } . Let π: G-+H be the natural
projection and let φ: X(T)-+X(U) be the homomorphism corresponding to the
inclusion map U-+T.

Since G and H are quotient groups of Γ and since φ is a Γ-homomorphism
we have the following lemma concerning the action of G and H on X(T) and
respectively.

LEMMA 3. For ξ<=X(T) and



Character Groups of Toral Lie Algebras 273

Now by Proposition 4 we may consider G (resp. H) as a subgroup of the
general linear group GL(X(T)) (resp. GL(X(U)). Let g (resp. ί)) be a Lie algebra
generated by the set {σ— l |σeG} (resp. {σ— l|σeiί}). An easy calculation
shows that g(resp. ϊ)) is given in fact as a linear span of the set in Q\(X(T)) (resp.
ql(X(U))). Then we have

LEMMA 4. There exists a surjectίve Lie algebra homomorphism π: g->f)
such that

π(σ-1) =π(σ)-1, σ£G.

PROOF. It suffices to prove that the map π' of the set {σ—l|σeG} onto
the set {σ— l |σei/} defined by π'(σ — l) = π(σ) — 1 can be extended to a linear
map ft: g-*ί). In this case the map π is in fact a Lie algebra homomorphism
as directly checked. Now let ̂  σrGG. Then we have only to prove the
following fact:

If Σϊ- i* ι (* ι- l )=0 faeP) then Σί=i« i(π(σ ί)-l)=0.

Let £' be any element of X(U). Then there is a f eJί(T) such that ξ' =φ(ξ).
Then

(by Lemma 3)

=0.

Therefore ΣaJ(π(σ^ -1) =0.

By Lemma 3 and 4 we immediately have

LEMMA 5. For A e g and ξ(=X(T)

φ(ξA) = φ(ξ)π(A).

LEMMA 6. Let g and therefore ί) fee nilpotent. Let

fee ίhe Fitting decomposition of X(T) (resp. X(U)) relative to g (resp. I)). T/ien
«I(Γ)0)cI(ί/)0

PROOF. Let ξ^X(T)0. For any Beί), we have β = 7f(^) for some A e g
by Lemma 4. It follows from Lemma 5 that φ(ξ)Bm = φ(ξAm)=0 for a large m.
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This implies that φ(ξ)e X(U)0.
Next let ξ&X(T)1 and let /^0 be any integer. Then ξ is of the form ξ =Σ

$9 η<=X(T)). Therefore by Lemma 5 φ(ξ)=Σφ(η)π(Aι)... 7f(^)

Hence ^ G ί l ^ o ^ W ) ^ ^ ^ ! .
We now have a generalization of Theorem 7 in [3].

THEOREM 2. Let T, X, G and g foe as above. If g is a nilpotent Lie algebra
then the following two conditions on T are equivalent.

a) The only k-valued character of T is zero,
b) T contains no subtorus isomorphic to k.

PROOF. a)=»b). Let l/~ k be a subtorus of T Then ϊ) =0 in the previous
notation. Consequently X(U)ί=0 so that by Lemma 6 φ(X(T)1)=0, that is,
0(X(T)o)=X(l/)o=X(l/). This implies that X(T)0Φθ. On the other hand
every element of g acts on X(T)0 as a nilpotent linear transformation. Therefore
there exists a ξΦO in Z(Γ)0 such that ξ^=0 for all A eg. Hence ξσ = £ for all
(TGG. It follows that ξσ = ξ for all σ e Γ which implies that ξ is /c-valued.

b)=»a). Let ξ^O be a /c-valued character of T. Then { is a Γ-fixed and
so G-fixed element in X(T). Thus ξ is in X(T)θ9 that is, X(T)o^0. But X(T)0

has a composition series with g-trivial and so G-trivial factors. Hence there
exists a G-stable subgroup Y of X(T)0 such that X(T)0IY~P~X(k). Now let
φ: X(T)-*X(k) be the natural map with the kernel Y+X(T)X. Since φ is sur-
jective the corresponding homomorphism fc->Tis injective. This implies that
T has a subtorus isomorphic to k.

COROLLARY. // G is abelian then conditions a) and b) in Theorem 2 are
equivalent. In particular, it is the case if k is finite.

PROOF. If G is abelian then the corresponding Lie algebra is also abelian.
In particular, when k is finite then G is a cyclic group.

As in [3] a torus Tis said to be anisotropic if T satisfies condition a) of Theo-
rem 2, and semisplit if T has a composition series with factors isomorphic to fc.
We have the first part of Theorem 8 in [2].

PROPOSITION 5. Let T be a torus over k. Then T has a unique maximal
anisotropic subtorus and a unique maximal semisplit subtorus.

PROOF. Since if 7\ and T2 are subtori of T then 7\ + T2 is also a subtorus
it suffices to see that if they are anisotropic (resp. semisplit) so is TXΛ-T2- But
these are immediate consequences of definitions.

If ξ is a character of Tthen ξ is A -valued if and only if it is a Γ-fixed element
in X(T\ that is, ξσ = ξ for every σ e Γ . Therefore we have proved the first part
of the follosing
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LEMMA 7. Tis anisotropic if and only if the only Γ-fixed element in X(T)
is zero and Tis semisplit if and only if X(T) has a composition series with Γ-
trivial factors.

PROOF. It remains to prove the last part. Now let Γbe semisplit. Then
by definition there exists a chain of subtori 0 = T o c Γ 1 c cΓ n = T such that
Ti/Ti_ί~k for i = l,..., n. Therefore we have a chain of Γ-stable subgroups
X(T) = To^T\ZD "Z)T0

n=0. Consider an exact sequence of tori 0-^TijTi_1

->TITi_ί-+TITi->0. From this we have an exact sequence of Γ-modules and Γ-
homomorphisms 0->X(Tί/Ti-.ί)-+X(TlTi_ί)-+X(T/Ti)->09 where by Proposition
3 X(T/Ti_ί)-T^1 and XiT/TJ-T). Therefore we have Ti.^jT^XiTJT^^
~ X(k) on which Γ acts trivially. The converse is proved in a similar way.

THEOREM 3. Let T, G and g be as in Theorem 2. If g is nilpotent then
T=AQ}S where A is the maximal anisotropic subtorus and S the maximal semi-
split subtorus.

PROOF. Let X(T)=X(T)0®X(T)1 be the Fitting decomposition of X(T)
relative to g. Note that X(T)t (i=0, 1) is a Γ-stable sugbroup of X(T). Thus
by Theorem 1 and Proposition 3 we have a decomposition of Tinto a derect sum
of two subtori, say T=A®S, where A=X(T)°0 and S=X(T)\. In this case
X(A)~X(T)t and X(S)~X(T)0, so we identify these respectively.

To prove that A is anisotropic let ξ e X(A) such that ξσ = ξ for all σ e Γ. Then
ξσ = ξ for all σ ε G since the action of G on X{T) is induced by that of Γ. There-
fore ξB=0 for all Beg which implies ξ(ΞX(T)0 so that ξ=0. By Lemma 7 A
is in fact anisotropic. On the other hand since X(T)0 has a composition series
with g-trivial factors which are also G-trivial. Therefore these factors are also
Γ-trivial. Hence S is semisplit by Lemma 7.

Finally we must prove the maximality of A and S. Now let A' be any aniso-
tropic subtorus of containing A. We can apply Lemma 6 for U=A'. Then
φ ma.psX(S) onto X(A')0 and X(A) onto X(A')ί. But since A' is anisotropic
by Lemma 7 and the construction of g we have X(A')0 =0 and then X{A')1 =X(A').
Therefore φ(X(A))=X(A'). Consequently we have \X(A)\^\X(Ar)\ so that
dim A^dim A'. It follows that A=A'. By Proposition 5 this shows the maxi-
mality of A. The maximality of S can be proved similarly.

By the same reasoning as in the proof of the Corollary to Theorem 2 we obtain
the following

COROLLARY. If G is abelian then the derect sum decomposition of T holds.
In particular it is the case if k is finite.
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