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Introduction

The dihedral group Dn (n ̂  3) of symmetries of the n-sided regular polygon
is generated by two elements a and b with relations an = b2 =abab = \. Consi-
der the unit spheres S 2 m + ί and Sι in the complex (m + l)-space and the real (/ 4-1)-
space. Then Dn operates freely on the product space S 2 m + 1 xS* by

α (z, x) = (z exp (2πyj- 1/n), x), b-(z, x) = (tz, - x),

where t is the conjugation, and the orbit manifold

D(mJ\n) = (S2m+ί x Sι)jDn = (Lm(n) x Sι)/Z2

is defined, where Lm{n) = S2m+1jZn is the standard lens space. The bordism group
of Dn is studied by considering this manifold in [9].

The purpose of this note is to study the complex iC-ring K(D(m, l\ ή)) (m>0,
ί>0)foroddn.

Let

v, α €= K(D(m91 n)) and y e K(D(m, 21 n))

be the elements defined as follows: v +1 is the induced bundle of the canonical
complex line bundle over the real projective space RP(l) by the natural projection
D(m,l;ή)->SιIZ2=RP(l). α + v + 2 is the associated complex 2-plane bundle
of the principal J7(2)-bundle induced from the principal DΠ-bundle S 2 m + 1 x5'->
D(m, l n) by the natural inclusion Dnc0(2)c 1/(2). γ is the image of σ®gι by
the induced homomorphism of the projection

D(m, 21; n) - U D(m, 21; n)/D(m, 21-1; ή) -^ (Lm(ή) x S2l)/(Lm(n) x •),

where σ^K(Lm(n)) is the stable class of the canonical complex line bundle over
Lm(ή), and gι^K(S2l)=Z is the canonical generator.

Denote the natural inclusions by

i: Lm(n) c D(m, l n), k: RP(l) c D(m, l n).
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Also, consider the 2m-skeleton L^{n) of the cell complex

and set

D0(m, I; ή) = ( L » x Sι)/Z2 c D(m, /; n).

Denote the projection and the homeomorphism by

D(m, /; , I; n)/D0(m, I; n)-M

where the last term is the suspension of the stunted real projective space.

By these notations, our result (Theorem 3.9) is stated by

THEOREM. Assume that n is odd, m>0 and />0.

direct sum decomposition

Then we have the

K(D(m91; n)) = Amtl®Bmtl®Z2l,,2i®

Z2[(i+D/2] if m is even,

Z if m and I are odd,

0 otherwise,

where Amtl®Bmj is the odd component and the summands are given as follows:

(i) AmΛ is the subring generated by α, and is isomorphic to the image of

the complexίfication c: KO(Lm(n))->K(Lm(n)) by the induced homomorphism V.

(ii) Bm2l+ί=0 and Bm2l is the ideal generated by γ which satisfies

y 2 = 0 , and the subgroup Amί2ιφBmi2l is isomorphic to K(Lm(n)).

(iii) The third cyclic summand Z2π/2] is generated by v, and is isomor-

phic to K(RP(Ϊ)) by the induced homomorphism k\

(iv) The rest is the image of K(Sm ARP(m + l+l)IRP(m))) by the induced

homomorphism qι

of
ι, which is monomorphic. Its generator vm satisfies

v * = 0 and w2m = -2v2m, v v 2 m + 1 = 0 .

The partial result for odd m, I and odd prime n is obtained in [8].

In §1, we prepare some preliminary results on the cell structures and the

integral cohomology groups of D(m,l;ή), D0(m,l;ή), and on the homeomor-

phisms h, / a n d the double covering π: Lm(ή)xSι-+D(m,l;ri). In §2, we are

concerned with (iii), and notice that the order of K(D0(m, I; n)/RP(l)) is a divisor

of n [ m / 2 ] or nm according as / is odd or even. Also, we consider the above

elements α and y, and study their images by V and π ι . Using these results and the

known results for K(Lm(n)), we study AmΛ of (i) by V and Bmaι of (ii) by π1, and

prove the theorem by the exact sequence of (D(m, I; ή), D0(m, I; ή), RP(Ϊ)) in § 3.

Finally, we are concerned with the special case that n is an odd prime p (Corollary

3.14), using the known results for K(Lm(p)) in [10].
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§ 1. Preliminaries

The dihedral group Dn (n ̂  3) of order In is the subgroup of the orthogonal

group (9(2) generated by

/ cos(2π/rc) sin(2π/n) \ / 0 1 \
a = and b =

\-sin(2π/w) cos(2π/n) / \ 1 0 /

with relations an = b2 =abab = l. These elements a and b generate the cyclic

subgroups Zn and Z 2 of order n and 2, respectively, and Dn is a split extension of

Zn by Z 2 .

Let S 2 m + 1 and Sι be the unit spheres in the complex (m + l)-space C m + 1 and

real (/+l)-sρace Rι+ί, respectively. Then Dn operates freely on the product

space S2m+ί xSι by

a (z, x) = (z exp (2π ̂ J - 1/n), x), b-(z, x) = (tz9 τx)

for (z, x)^S2m+ί x Sι, where tz is the conjugation of z and τx = — x is the anti-

podal point of x. In this note, we study the orbit manifold

D(m,l;n)=(S2m+ίxSι)IDn.

Since Zn operates trivially on the second factor Sι, we have

(1.1)

where Lm(n)=S2m+1IZn is the standard lens space mod n, and the action of Z 2

is given by & ([z], x)=([*z], τx). Therefore, we have the fibering

(1.2) Lm(n)-UD(m, /; n) _A^RP(/),

where RP(l) = Sl/Z2 is the real /-dimensional projective space, i is the inclusion

and p is the projection. Also, we have the double covering

(1.3) π: Lm(n) x Sι >D(m, I; n).

The lens space Lm(n) has the cell decomposition

Lm(/ί) = C°UC 1 U U C 2 m U C 2 m + 1 , d ( C 2 ί + 1 ) = 0 , d(C2i)=nC2i~i,

which is invariant under the conjugation t. Also, Sι has the cell decomposition

such that ^ = D{ \jDLDD{n DL = SJ-1, and

LEMMA 1.4. [9, p. 338] D(m, I; ή) is the cell complex with the cells defined

by

for 0^ί^
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which have the boundary relations

d(C2i+1, DJ) = ( ( - l)* + ( - l) i+i)(C 2 l + 1 , Z)'"1),

We consider the 2ra-skeleton

(1.5) LS(«) = C 0 UC 1 U UC 2 m

of Lm(n) of the above, and the subcomplex

(1.6) D0(m9 I; n) = (Lft/i) x Sι)jZ2 c D(m, I; ή)

with cells {{C\ DJ)\0^i^2m, O^j^l}, and we consider naturally

D(i,j;n)czD0(mJ;n)czD(m,l;n) for i < m, j£l,

by Li(n)aL>$(n)c:Lm(n) and SJcS1. It is clear that

LEMMA. 1.7. Do(0,l',n)=RP(l), and the inclusion

k:RP(l) >D(m,l;ri)

is a right inverse of p in (1.2).

By the cell structure of Lemma 1.4, the subcomplex

Xtj=D0(i-l,l;n)\jD0(i9j;ή) (i^rn, j ^ l )

of D0(m,l',n) has the following cell structure:

χ.tj = χ.J_2 u (C 2 ' - 1 , DJ'1) U (C2ί, DJ~ι) U (C 2 ' " 1 , i)0 U (C2ί, DJ)

for j ^ 1 and even ί -f j , with the bounday relations

d(C2 ί, DJ) = i ίC 2 '- 1 , i ) ^ - 2 ε ( C 2 ί , D-''"1),

= 2ε(C2ί~1, Z)^"1), d(C2i, D^1) = /iCC21"1, Z)^"1),

=0, (ε = ± l ) ;

XitJ = Xu.x U (C2ί~\ DJ) U (C2\ DJ)

for 7=0 and even / or j = l and odd / + /, with the boundary relations

d(C2i, DJ) = n(C2i-\ DJ), d{C2i'\ DJ) = 0.

Therefore, it is easy to see that the reduced integral cohomology groups H* are

β*(Xit j) = H*(Xit j - 2 ) for y ^ l , e v e n / + j a n d o d d n
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[ 0 otherwise

for 7 = 0 and even / or j = I and odd / + /. Also, we have

D(m, I; ή) = D0(m, I; ή) U \Jιj=0(C2m+1

9

d(C2m+1, DJ) = ±2(C2m+1, DJ'1) if 7 ^ 1 and m+j is odd, = 0 otherwise.

Using these facts, we have easily

LEMMA. 1.8. Assume that n is odd.

( (ZH)« ifθ<i^2rn + l
(i) Hi(D0(mJ;n),RP(l))=\

[ 0 otherwise,

where (Zn)
a means the direct sum of a copies of Zn9 and

O r g α ^ l , Σ*2i = Σβ2i-i=[>/2] if I is odd,

0 ^ a{ ^ 2, ^2i-i=^5 Σβ2i = m if I is even.

(ii) H2ί(D(2rn + l, 2 I + l ; n ) , £P(2Z+1)) = Z i/ 2i =

= # 2 < (D 0 (2m + l , 2 Z + l ; n ) , ΛP(2/+1)) i/ 2i # 4m+ 2/+ 4.

The projection π of (1.3) defines naturally the homeomorphism

(1.9) ft: D(m,l;n)/D(m,l-l;n) <^-(Lm(n)xDl

+)/(Lm(n)xSl-i)

π(Lm(n)xSι)/(Lm(n)x*).

We consider the diagram

L x S=Lm{n) x S 2 / — ^ Z)( m , 2/ /ι)-JU Z)(m, 2/ ή)\D{m, 21-1; n)

(1.10) |«i «{Λ

Z = ( L x 5 ) / ( L x * ) ~A^ i v l -^-> XVX - ^ ^ Z

where π, q and ^ are the projections, h is the one of (1.9),

p: (L x 5)/(L x *) >(L x (S V 5))/(L x * ) = l v l

is the map induced from iάx p: Lx S->Lx(SV S) of the comultiplication p: £-•

S/S21'1 =SVS, and V is the folding map.

LEMMA. 1.11. 77iere exίsίs swcft α homeomorphism λ that the diagram

(1.10) is commutative and A=idV(ίxτ1), where txτ± is the induced map of

txτx: Lm(n) xS21 >Lm(ή) xS21
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(t is the conjugation) and the degree of τ^ is equal to — 1.

PROOF. Consider the commutative diagram

L x SJ±+(L x S)/(L x S') = Y+ V Y. i d v ( ' * τ ) > Y+ v 7 + - ^ > Γ+

k l U>+V<p- U+V<p+ \φ +

θ) -Λ X9

where 5 r 3 D ± = D | ί = ) 5 ' / = 5 ' 2 / - 1 , Γ ± = (LxZ) ± )/(Lx5 ' / ) , and the maps are as
follows: qί9 q2 are projections, and ψ±9 txτ, txτί are the maps induced from

idx φ±: L x D ± - > L x S , txτ: LxD_-+LxD + , txτ^.Lx S^L x S ,

respectively, where ψ ± is the restriction of the relative homeomorphism φ ± :
(S, DT)^(S, *) of degree 1, t is the conjugation, τ is the antipodal map and τx

= φ+τφ-1.
Then we have the lemma, since φ+\7 (id V (txτ))q2=hqπ by the definition

of h of (1.9) and the degree of τ^φ+τφZ1 is ( - l ) 2 ί + 1 = - l .
q.e.d.

We have also the following

LEMMA 1.12. There is a homeomorphism

f: D(m, I ή)jDQ(m, l;n)^(Smx RP(m + / +1))/(* x RP(m + / +1) U Sm x RP(m))

= SmΛ (RP(m + / + ί)IRP(m))9

where the last term is the\suspension of the stunted real projective space.

PROOF. Consider the relative homeomorphisms and homeomorphisms

φ: (Dlm+\ S2m) >(Ltn(n), LS(/ι)), Dmx Dm+ί-^D2m+ί J^-Dlm+1,

g: (Dm+1xSι, SmxSι) >(Sm+ι+1, Sm)9

defined as follows: Dlm+1 is the upper hemi-sphere of 5 2 m + 1 and

φ(zθ9...9 zm-l9r exp(nsy/'^T)) = [z0,..., z m _ l 9 r exp(2πs V -

Dj is the unit disc in R* and p+ is the projection;

θ(u, i?)=max(|tt|, | r | )( |u | 2 + |ϋ | 2 )" 1 / 2 ( ι i i , vί9...,um, υm9 vm+1

where u=(μl9 ...,um), v=(vu ...9vm9 vm+ί); and

Then, it is easy to see that the homeomorphism
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/: (Lm(n) x Sl)l(Ly(n) x Sι) ^ (Dm x Sm+ι+ί)l(Sm-1 x Sm+ι+ί U Dm x Sm)

π (Sm x Sm+ι+ί)/(* x Sm+ι+ί []Smx Sm)

is obtained by the composition (id xg)((Θ~ιp+φ~1)xiά)9 and / is equivariant

with respect to the Z2-actions, where Z2 acts on Lm(n)xSι by (1.1) and on Dm

X£m+ί+i by £.(Mj y)=(u, — y) Therefore/induces the desired homeomorphism
/. q.e.d.

Finally, we consider the diagram

;n)-^ D(m, I n) x D(mJ n) fq°Xp> ((S x RP)/ Z) x RP(l)

| ί d x i d x ί°

where 5 = Sm, RP = RP(m + l+i), Z = *xRP\JSxRP(m), and ^ 0 is the projec-
tion, / is the homeomorphism of the above lemma, d means the diagonal map,
p is the projection in (1.2) and i0: RP(l)-+RP is the inclusion given by ioί^ =
[0, x].

LEMMA 1.14. The diagram (1.13) is homotopy commutative.

PROOF. For the map g of the above proof, the diagram

Γim+1 v CZ α v Γ)m+1 v Oί v Γ)m+1 v C/ y "v Cm+i+1 v C*

Ifif l i d x i o

(p is the projection and i0 is the inclusion given by ΪO(X) = (0, x)) is homotopy
commutative by the homotopy Hs given by

Hs(v, x) = (g(v9 x), (sv, (1 -\sv\2yt2x)).

Since Hs(SmxSι)c:SmxSm+ι+1 and H s(-i;, - x) = - Hs(v, x), we see easily by
the above proof that Hs induces the desired homotopy of (1.13). q.e.d.

REMARK 1.15. The orthogonal group 0(2) acts freely on S 2 m + 1 xS* by

/ cos0 sin0\ /0 l\
• (z, x) = (z exp (0 V -1), x), (z, x) = (tz, τx).

\-sin0 COS0/ \ 1 0/

Therefore, there is the natural projection

p': D(m, I; ή) >(S2m+ί x Sι)/0(2)=D(m, I)

to the Dold manifold D(m, /). The homeomorphisms h of (1.9) and/ of Lemma
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1.12 are analogous to those for the Dold manifold of [7, Prop. 2], and Lemma
1.14 is similar to [7, Lemma 1].

§ 2. Some elements of K(D(m, I ή)) for odd n

In the rest of this note, we assume that n is odd, and study the complex
X-group of the manifold D(m,l;n) (m>0, />0) of (1.1).

Let K(X) be the iC-ring of the complex vector bundles over a finite CW-
complex X, and K(X) be the reduced K-ήng. It is well known that a map/: X-+
Y induces naturally the ring homomorphisms

/«: K(Y) >K(X), / ' : K(Y) >K(X)

and the Puppe exact sequence

K(X)^-K(Y)< K(Cf)< Kί(X)^—

where Cf is the mapping cone of/ and K1(X)=K~1(X)=K(Si ΛX). Also,
there is the Atiyah-Hirzebruch spectral sequence {EP'q} for K(X), such that
EP

2'4 = RP(X; K«(*))(K2i(*) = Z, K2i~ι(*)=0) and E%* is the graded group
associated to KP+«(X)=K(SP+« Λ X) (cf. [4, § 2]).

Consider the induced homomorphisms

(2.1)

of p in (1.2) and the inclusion j of (1.6). It is proved in [1, Th. 7.3] that

(2.2) K(RP(l)) = Z2[i/2] is generated by v,

and v is the stable class of the complexification of the canonical real line bundle
over RP(l). Define

(2.3) v = p'v e X(D(m, I; n)), v = j l v e X(D0(m, I; n)).

Then, by Lemma 1.7 and (2.2), we have immediately

PROPOSITION 2.4. There is the commutative diagram

0—>R(D(m,l;n)IRP(l))

1 " . !'• I
0 >K(D0(m,l;n)/RP(l)) >K(D0(mJ ;n))-^K(RP(l)) >0

of the split exact sequences, where j , k are the inclusions. The subrings of
K(D(m,l;n)) and K(D0(m,l;n)) generated by v of (2.3) are Z2vι*λ mapped
isomorphίcally onto K(RP(l)) by k\ and they are isomorphic by j 1 .
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The following lemma is proved easily by using the Atiyah-Hirzebruch spectral

sequence and Lemma 1.8, where #G means the number of elements of G.

LEMMA 2.5. (i) #Kι'(D0(m, I; n)/RP(l)) ( i=0, 1) is a divisor of ntm/2] o r

nm according as I is odd or even.

(ii) %(the torsion part of £(D(2m + 1 , 2 1 + 1 ; n)/RP(2l + l))) is a divisor of

nm.

Now, we consider the (unitary) representation ring R(Dn) of Dn. It is well

known that Dn (n: odd) has two representations 1 and χ0 of degree 1 and (n —1)/2

representations χf ( l ^ i ^ ( n —1)/2) of degree 2, which are given by

χo(a) = l, χo(b)=-l;

(2.6) /exp(2πiy[=ϊlή) 0 \ /0 1

() [ , Xi(b)=[
\ 0 exp(-2^V-lM)/ \10/

(cf. [5, p. 339]). We notice that the following is proved easily.

(2.7) The inclusion D n c 0 ( 2 ) c ί / ( 2 ) is equivalent to χx in R(Dn).

REMARK 2.8. It is easy to see that the multiplication is given by

1? XθXi = = Xi> XiXi = =

for Ϊ ^ 1 , 7 ^ 1 and iΦj, where χ _ ί = χ M _ i = χ ί . Therefore, we see that the reduced

representation ring R(Dn) is generated by χo — l and χx— χo — l.

Consider the inclusions

and the representations χ, χ' of ZM, Z 2 defined by

χ(a) = exp (2π V^T/n), χ'(b) = - 1 ,

respectively. Then, for the induced homomorphisms

(2.9) R(Zn)+±-R(Dn)^R(Z2)

of the above inclusions, we have the following by definition.

LEMMA 2.10. i*χ0 = 1, i*χt =χ+tχ, k*χ0 = χ', k*Xί =χ'

where t is the conjugation.

In general, a principal G-bundle

X >X/G
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defines the natural ring homomorphisms

ξ: R(G)—+K(XIG), ξ: R(G)—>K(X/G)

(R(G) is the reduced representation ring) as follows (cf. [4, §4.5]): For a re-

presentation ω of G of degree n9 ξ(ω) is the associated complex n-plane bundle

of the principal t/(n)-bundle induced from the given principal G-bundle X-+X/G

by the group homomorphism ω: G-+U(n).

Taking the principal Dn9 Zn, Zn-bundles

S2m+ι x s ι >Σ>(m,l;n), S2m+ί x Sι >Lm(n) x Sι, S2m+1 >Lm(n),

we have the commutative diagram

R(zn) = R(zn) <-£- R(Dn)

(2.11)

by the naturality of ξ9 where i* is the one in (2.9), i: Lm(ή) c Lm(n) x Sι and π is

the projection of (1.3). Therefore, we have the following commutative diagram,

by taking also the principal Z2-bundle Sι-*RP(l):

R(zn) ^- R(Dn) - ^ R(z2)

(2.12)

where the upper homomorphisms are the reduced ones of (2.9), i is the inclusion

of (1.2) and kι is the one in Proposition 2.4.

Now, we consider the elements

(2.13) α = ξ(Xί -χ0-1) e K(D(m, I; n))9 a =./•« e X(D0(m, /; n)),

where χx and χ0 are the ones of (2.6) and j ι is in (2.1). Let

(2.14) σ e £(L»(n))

be the stable class of the canonical complex line bundle over Lm(n) whose first

Chern class is the generator of H2(Lm(n))=Zn.

LEMMA 2.15. For the lower homomorphisms of (2.12), we have Voc =

σ + tσ (t: K->K is the conjugation), k 'α=0.

PROOF. The desired results follow from the commutativity of (2.12), Lemma

2.10 and the equality ξ(χ) = σ+l which is proved easily by definition (cf. [3, §2

and Appendix (3)]). q.e.d.
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The equality ξ(χ') = v+l<=K(RP(l)) holds by the same way as the one of the

above proof, and so we see that

v = ξ(χ0-1) e K(D(m91; n)) for the element v of (2.3),

considering the projections p: Dn->Z2 and p in (1.2). Therefore, (2.7) shows that

(2.16) α + v + 2EK(D(m, /; n)) is the associated complex 2-plane bundle of

the principal U(2)-bundle induced from the principal Dn-bundle S2m+1 xS'->

D(m9l;n) by the natural inclusion D π c 0(2) c 1/(2).

The following is an immediate consequence of the naturality of ξ.

LEMMA 2.17. The elements α of (2.13) are natural with respect to the

inclusions D(m', /'; n)czD0(m, /'; n)czD(m9 /; ή) for m'<ra, I'^l.

Let

(2.18) Am%icR(D(m,I;ή))9 AmJt0 c K(D0(m, I /i))

be the subrings generated by α of (2.13). Then

LEMMA 2.19. %AmΛ and %Aml0 are divisors of n [ m / 2 ] .

PROOF. In the lower exact sequence in Proposition 2.4, we see that fcια=O

by Lemma 2.15, and that #^4w,2/+i,o *s a divisor of π [ m / 2 ] by Lemma 2.5 (i).

Therefore, since A«,2/+i *s t n e image of Am+12ι+i}o by the above lemma, #Amt2ι+1

is a divisor of n

ί(jn+1^ί2'19 and so of n [ m / 2 ] by using Lemma 2.5 (ii) if m is odd.

These and the naturality of the above lemma show the desired results for even /.

q.e.d.

We consider the induced homomorphisms

K(Lm(n))(g)K(S21) = K((Lm(n) x S2l)j(Lm(n) x *))

, 21 ή)\D{m, 21- 1 «))-^K(£)(m, 21; ή))

of the homeomorphism h of (1.9) and the projection q, where the first equality

is obtained by the Kunneth formula

(2.20) K(Lm(n) x S21) = K(Lm(n))®K(S2l)®K(Lm(n))®Z (cf. [2]).

Consider the elements

(2.21) y = qW{σ®gι) e K(D(m9 2/ #0), y = / y G K(D0(m9 2/ «)),

where σ^K(Lm(n)) is the one of (2.14), gι^K(S2l) = Z is the canonical

generator, and j ι is the one in (2.1).
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LEMMA 2.22. (i) y is the element of odd order and y2 =0.

(ii) The elements y are natural with respect to the inclusions D(m',2l;n)
<zD0(m,2l;n)c:D(m,2l;n)for m'

(iii) Vy = 0, kιγ = 0,

for the lower homomorphisms of (2.12).

PROOF, (i) is easy to see since σ is of odd order (cf. [11, Prop. 2.6 (i)]) and
(giy =0 (/>0), and the others are seen easily. q.e.d.

Let

(2.23) Bmt2l c K(D(m, 21; n)), BmM0 c K(D0(m, 21; n))

be the subgroups generated by the elements yα'"1 ( i^ l ) , where α and y are the
ones of (2.13) and (2.21). To study these subgroups, we use the induced
homomorphism

(2.24) π1: K(D(m, 21; n)) >K(L>»(n) x S21)

of the double covering π of (1.3), where the range is given by (2.20).

LEMMA 2.25. (i) π1 is monomorphic on Bm2^

(ii) π'ftα'-1) =(σ

PROOF, (i) The desired result follows immediately from Lemma 2.22 (i)
and the fact that the order of Ker π1 is a power of 2 by [3, Prop. 2.11].

(ii) πιy = π]qιh[(σ<g)gι) = q\ρxλx V ι(σ®gι)

(-g1)) = (σ-tσ)®g\

by (2.21), Lemma 1.11 and the definition of p in (1.10). Also, we have π'α =
(σ + ίσ)(x)l using the right square in (2.11) where the equality ξ(/)=(σΉ-l)(g)l
holds by the same way as the equality in the proof of Lemma 2.15. Therefore,
we have the desired equality by the product formula in (2.20). q.e.d.

REMARK 2.26. The X-ring of the Dold manifold D(m91), stated in Remark
1.15, is studied in [6, 7], by considering the generators

vl9 αGX(D(m, /)), y<=K(D(m, 21)).

We notice that the equalities p']v1=v, pnoc=oί, pny=y are proved easily by
definition, where p' is the projection in Remark 1.15.
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§ 3. Proof of the main theorem

The following are known for the K-ήngs of the lens space Lm(ή) and its

subcomplex L^{n) of (1.5). (cf. [11, Lemma 2.4 (i), Prop. 2.6, 2.11]).

(3.1) The ring K(Lm(n)) is generated by σ o/(2.14) with relations (1 + σ)n = 1,

σm+ι=Q9 an(i contains exactly nm elements. Also, K(Lm(n)) = K(D$(n)) by the

isomorphism induced by the inclusion j : L™(ri)c2Lm(n).

(3.2) The complexification

c: Kb(Lftn)) >K(L>S(n)) = K{Lm(n))

is monomorphic, and its image

Cm = c(K0(L>8(n)) = c(KO(L>»(n))

is the subring of K(Lm(n)) generated by σ+tσ, and contains exactly n [ O T / 2 ]

elements.

LEMMA 3.3. K(Lm(n)) = CmφDm9

where Dm is the subgroup of K{Lm(n)) generated by the elements

PROOF. Consider the real restriction r: K(Lr$(ή))-+KO(Lrξ(n)). Since

i-1) = 0

and c is monomorphic, we see that r(D m )=0. This shows that 2a=rca=0 if

cfleCmΠ Dm9 and so we have CmΓ\Dm=0. Since 1 + tσ=(1 + σ)" 1 by definition,

we have tσ=—σ(l + σ)~1 and so (σ— tσ)2 =(σ + tσ)2 + 4(σ + tσ). This shows

that CmφDm is a subring of K(Lm(n)), and we have the desired result by (3.1) since

σ=((σ + tσ) + (σ- tσ))β e CmφDm. _ q.e.d.

For the canonical generator gι^K(S2l)=Z9 we denote by

(3.4) Dm®gιc:K(L>»(n)xS21)

the image of Dm in the above lemma by the isomorphism

®gι: K(Lm(n)) « K(Lm(n))(g)K(S21) (czK(Lm(n)xS21)).

To prove our main theorem, we study more precisely AmJ, Amtlt0 of (2.18)

and Bm>lh Bmt2lt0 of (2.23), using the above facts and the commutative diagram



66 Mitsunori IMAOKA and Masahiro SUGAWARA

^- K(D(m9l;n)) -^K(Lm(n) x Sι)

(35) -Jy j

where i and π are the maps of (1.2) and (1.3), i0 and π 0 are their restrictions,

/ s are the inclusions, and the right square is used for even I.

PROPOSITION 3.6. (i) The subrings AmΛ and Amfh0 of (2.18), generated by

α, are mapped isomorphically by the above V and iι

0 onto the subring Cm of

(3.2), generated by σ + tσ, where Vcc =VQUL =σ+tσ.

(ii) AmJ and Amh0 are isomorphic by p in (3.5).

(iii) K(D0(m, 2/+1 n)) = ΛM i 2 l + l i 0 Θ Z 2 « ,

where Z2ι is the subring generated by v given in Proposition 2.4.

PROOF, (i) and (ii) Since the equalities of (i) hold by Lemma 2.15, we have

the epimorphisms Amfl-^—>Aml0-
12-^Cm. Therefore, we have the desired results

by (3.2) and Lemma 2.19.

(iii) The result follows from (i), Proposition 2.4 and Lemma 2.5 (i). q.e.d.

PROPOSITION 3.7. (i) Bm2l and Bmf2h0 of (2.23), generated by

are mapped isomorphically onto the subgroup Dm(g)gι of (3A) by π1 and πι

0 in

(3.5), where π'ίyα1 '"1)

(ii) They are isomorphic by j ι in (3.5).

(iϋ) Λ»,2z Π Bmt2l = 0, Amt2li0 Π Bw,2*,o = 0,

where Am$2l and Am2l0 are the ones of the above proposition.

(iv) K(D0(m, 21; n)) = Amait0@BmM0®Z2ι9

where Z2ι is the subring generated by v given in Proposition 2.4.

PROOF, (i) and (ii) follow from Lemma 2.25, the definition of Dm in Lemma

3.3 and the right commutative square of (3.5).

(iii) follows from (i) of the above proposition and Vγ = 0 of Lemma 2.22 (iii).

(iv) By (i), (iii), Proposition 3.6 (i) and Lemma 3.3, we have

K(D0(m, 21; n ) ) D i m Λ O 0 ΰ m , 2 / ) O s Cm®Dm =

Since kla = kly=0 by Lemmas 2.15 and 2.22 (iii), we have the desired result by

Proposition 2.4, Lemma 2.5 (i) and (3.1). q.e.d.

The following for the stunted real projective space is known [1, Th. 7.3].
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fZ2[(i+i)/2] if mis even,

(3.8) lz®Z2[«/2] if mis odd,

Kι(RP(m + l+\)IRP{m)) = Z if m + l is even, = 0 ifm + lisodd.

(The results for X1 are seen by the Atiyah-Hirzeburch spectral sequence.)
Now, we are ready to prove our main theorem.

THEOREM 3.9. Suppose that n is odd. Then the reduced K-ring of
D(m,l;ή) (m>0, />0) 0/ (1.1) is given by the direct sum decomposition

K(D(m, I; ή)) =AmtlφBm>ιφZ2ίl/2,Θ

Z2[(i+D/2] if m is even,

Z if m and I are odd,

0 otherwise,

where AmtlφBmtl is the odd component and the summands are given as follows:
(i) Aml is the subring generated by the element α of (2.13), and is given

in Proposition 3.6 (i).
(ii) Bm2l+1 =0, and Bm2l is the ideal generated by the element γ of (2.21)

which satisfies y2 =0, and is given in Proposition 3.7 (i). Also the subgroup
Amt2ιφBmt2i is isomorphic to K(Lm(n)).

(iii) The third summand Z2n/2j is the subring generated by v of (2.3) and
is given in Proposition 2.4.

(iv) The rest is the monomorphic image of

K(Sm A (RP(m +1 + l)/ΛP(m)))

by qιof\ where D(m,l;n) - ^ D(m,l;n)ID0(m,l;n) -L> Sm Λ(ΛP(m + / + l)/
RP(m)) are the projection and the homeomorphίsm of Lemma 1.12. Its
generator vm satisfies v*=0, v2mv = -2v2m and v 2 m + 1 v=0.

PROOF. Consider the exact sequence of (D, Do, RP(l)):

where D=D(m,l;n), D0=D0(m,l;n). By (3.8) and the isomorphism /', we
see that K(DjD^) is given by the last summand of the theorem and that the order
of the torsion of X1(D/Z)0) is a power of 2. By these facts and Lemma 2.5 (i),
we have the exact sequence

0 > K(DID0) ̂ U K(DIRP(l)) -^-> K(D0/RP(l)) > 0.

Therefore, we have the desired direct sum decomposition by Propositions 3.6,
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3.7 and 2.4, where Bmt2l is the one of (2.23) and Λmt2lφBmf2l^K(Lm(n)) is seen

by the proof of Proposition 3.7 (iv). We see that Bm 2ι is equal to the ideal generat-

ed by γ, since Am2l®Bmt2l is the odd component.

γ2=0 is seen in Lemma 2.22 (i). Also, v 2 = 0 and vv 2 m + i=0 are clear.

v2wiv = —2v2m is seen as follows: By definition and {1, Th. 7.3],

where v(2m+1>><=K(RP(2m + l+l)IRP(2m)) is mapped to v2m+1 <=K(RP(2m + l +

1)). Using the induced diagram for the K-ringsof (1.13), which is commutative

by Lemma 1.14, we have

v2mV = dι(y2m®v) = d\fqQ x i0py(gm®v2m+1®v)

= (/^o)I(^m(8)^I(v2m+1(x)v)) = -2v 2 w ,

as desired, since pιv=v, iόv = v and v 2 m + 2 = — 2v2 m + 1 by [1, Th 7.3]. q.e.d.

Finally, we are concerned with the special case that n is an odd prime.

Let p=2q + l be an odd prime. The following is proved in [10, Th. 1, 2]:

(3.10) p p

and the summands are generated by σ, σ2, ..., σp~x, respectively,

(3.11) Cm = c(KO(Lm(p)) = (Z p S + 1 ) C | - / 2 ] e(Z p S )*-f/ 2 ]

and the summands are generated by σ + tσ, (σ + ίσ) 2 , ...,(σ + tσ)q, respectively;

σm+i = ( i + σ ) P _ i =0,

i

LEMMA 3.13. The direct sum decomposition o/(3.10) can be so taken that

the summands are generated by

σ-tσ9 σ + tσ, (σ - tσ){σ + tσ), (σ + ίσ)2,..., ( σ - tσ)(σ + ίσ)

respectively. Also, we have

2i = 0, (σ

PROOF. Since σ l(l + σ)* = σ ί(l + σ)*-1 + σ< + 1(l + σ ) k " 1 and

= - Σ ? = i 1 ( ^ V i ( H - σ ) k - 1 by ( l + σ ) p ~ l = 0 , we can take the summands of

(3.10) so that they are generated by the elements
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respectively, by the induction on k. Hence we can also take the summands of

(3.10) generated by the elements

respectively, obtained from the above generators for k = q + l=p — q by adding

repeatedly the neighboring generators. On the other hand,

since l + ίσ=(l4-σ)~ 1 by definition and ( l + σ ) p = l by (3.1). Therefore, we

have the first desired result from the last set of generators. The equalities in the

lemma are proved by the same way as the proof of the last two equalities of (3.12)

in [10, pp. 143-144]. q.e.d.

By these results and Theorem 3.9, we have immediately the following

COROLLARY 3.14. Let p=2q + l be an odd prime, and set m=s(p — l) + r,

0^r<p-l. Then K(D(m,l;p)) ( m > 0 , / > 0 ) is given by Theorem 3.9 for

n=p, where the summands Am>l and Bml are given more precisely as follows:

(i) Λmtl = (ZpS+ί)
ίr/21Θ(ZpS)«-W

((Zky means the direct sum of t copies of Zk) and the summands are generated

by the elements α, α 2,..., ccq, respectively.

and the summands are generated by y, α, yα, α 2,..., yα 4 " 1 , aq

9 respectively.

Furthermore, α [ m / 2 ] + 1 = y α [ m / 2 ] = 0 and

We notice that a similar result for n =p2 is obtained by using the known result

for K(Lm(p2)) [11, Th. 1.4, 1.7].
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