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Introduction

The nullity of a Lie algebra is the minimum number of elements which
generate the Lie algebra, and the genus is the difference between the dimension
and the nullity. The concepts of genus and nullity seem to have originated with
Knebelman [8]. He gives relations between the structure constants of Lie al-
gebras and the genus, and classifies Lie algebras of genus zero and one. He
states also that every perfect Lie algebra can be generated by two elements. How-
ever, Patterson [13] points out that the argument in [8] contains errors and he
states some results concerning the genus of general algebras over an arbitrary
field. Bond classifies Lie algebras of genus one and genus two ([1], [3]). On
the other hand, it is proved by Kuranishi [9] that a semi-simple Lie algebra over
an algebraically closed field of characteristic zero is generated by two elements.
This result is generalized by Marshall [11] for a perfect Lie algebra of a certain
type, and he constructs examples of perfect Lie algebras with arbitrarily given
nullity more than 1, which prove the falsity of the statement in [8]. He states
also an inequality between the nullity and the dimension of a perfect Lie algebra.
However, this inequality needs to be slightly modified.

In this paper, we shall investigate the nullity of Lie algebras. Throughout
the paper, every Lie algebra is finite-dimensional and over a field of characteristic
zero. In §1, it is shown that the nullity of a Lie algebra is invariant under the
extension of the base field (Theorem 1), and we state Theorem 2 which gives
a generalization of the first theorem in [11]. In §2, two examples of perfect
Lie algebras are given, one of which is a counter example to the inequality in [11].
In § 4, we give a sufficient condition for a perfect Lie algebra over an algebraically
closed field to have the nullity two (Theorem 3), and an estimating formula for
the nullity of perfect Lie algebras (Theorem 4). A corrected formula to the
inequality in [11] is also given. We shall study in § 5 the nullity of a Lie algebra
with the nilpotent radical (Theorem 5). In §6, we treat solvable or non-solvable
Lie algebras whose adjoint representations are splittable (Theorems 6, 7).

§1

First a base field of Lie algebras is assumed to be an arbitrary field of charac-
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teristic zero. The nullity of a Lie algebra g is denoted by Nul(g).

LEMMA 1. Let g be a Lie algebra generated by m elements over a field
K, and let {f,,...,f,} be a basis for g. Let X, (i=1,...,m;j=1,...,n) be
the indeterminates and P(X;;) a given non-zero polynomial. Then generators

of g
ai=j}::lfijfj (i=1,...,m)

may be chosen such as P({;;)#0. Moreover, if K, is a subfield of K, then the
coefficients &;; of a; may be taken in K.

Proor. For g to be generated by m elements b,, ..., b,, it is necessary
and sufficient that the set of all the monomials in b, ..., b,, contains n linearly
independent elements. Now we assume that b, ..., b,, generate g, and their
monomials ¢,, ..., ¢, are linearly independent. We extend the base field K to
Q by adjoining the indeterminates X,; (i=1,...,m;j=1,...,n). When b, is
expressed as Xf;;f;, we consider the corresponding element B;=XX;f; in
8o, and corresponding to c¢,=[b;,, [...,[b;,_,, b;,]1... 1] we consider C,=
[B;,,[....,[Bi,_,» B;,]...1] in go. When we express C,,...,C, as linear
combinations of f,, ..., f,, the determinant of the matrix of coefficients is a non-
zero polynomial in X;;. We denote it by Q(X;;). Then there exist {;;& K such
that P(£;;))Q(&;)#0. We can easily see that the elements

a,:jijlg,.jfj (i=1,...,m)

generate the whole Lie algebra g.

The latter half of the lemma follows from the fact that the non-zero polynomial
P(X;;)Q(X;;) with coefficients in K is not identically zero in K, since K, is an
infinite field.

THEOREM 1. Let g be a Lie algebra over a field K, and let K’ be an exten-
sion field of K. Then

Nul(g) =Nul( gg-).

Proor. It is obvious that Nul(g)=Nul(gg). We suppose that m
elements generate gx and {f,,...,f,} is a basis for g. By Lemma 1, gx is
generated by m elements a;=2¢;;f; (i=1, ..., m) where {;;€ K. Hence g;€g,
and Nul(g)<m. Thus we have the assertion.

The nullity of a semi-simple Lie algebra over an algebraically closed field
is two ([9]). Hence by Theorem 1 we have the following:

The nullity of a semi-simple Lie algebra over an arbitrary field of characteris-
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tic zero is two.
Hereafter, we shall assume that the base field of a Lie algebra is algebraically
closed. This gives no restrictions by Theorem 1.

LEMMA 2. Let }) be an ideal of a Lie algebra g. Then,
Nul(g/}) =Nul(g) < Nul(h) + Nul(g/h).

Proor. Let {hy,..., h,} and {g,, ..., g,} be systems of generators of b
and g/b respectively. If we take g;=g;(i=1,...,n), then hy, ..., h,yy g15 -+
generate g. Conversely, the generators of g are considered as those of g/}
by taking the residue classes modulo b.

The following is an easy consequence of the above lemma.

LemMA 3 (Knebelman [8]). If g is represented as a direct sum of two
ideals a and b, then

Max{Nul(a), Nul(b)} <Nul(g)
= Nul(a) + Nul(b).
LeEMMA 4. Let n be a nilpotent ideal of a Lie algebra g. Then
Nul(g) =Nul(g/[n, n]).

ProofF. It is obvious by Lemma 2 that Nul(g)=Nul(g/[n, n]). For
geg, we denote by g the class in g/[n, n] which contains g. For n elements
di» -..» g, in g, we suppose that g,, ..., g, generate the Lie algebra g/[n, n].
Let g, be a sublgebra generated by g4, ..., g, We suppose that n™=0. Then
for k such that 1<k <m, we can show

nkcyg,.

In fact, it is obvious for k=m. Therefore we assume n**!'cg,. Forn,, ..., n,
€n, we set

n;=a;+n; (a;€g, N1, nie[n, n]).
[ny, [ngs [y [me—15 miJ -0 ]
=[a;+ny, [az+ny, [ [ak—1+nj—q, ap+ni] .. ]
=[ay, [a [ ..o [ar-, a] .- ] mod nk+1,

which implies that n*cg;.
Especially, [n, n]cg,, which implies that gcg,+[n, n]=g,;. Hence
we get our assertion.
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COROLLARY. For a nilpotent Lie algebra n,
Nul(n)=dim n/[n, n].

A Lie algebra g is said to be perfect when g=[g, g]. The radical r
of a perfect Lie algebra g is nilpotent, since t=[g, r]. Hence, by Lemma 4,
to investigate the nullity of a perfect Lie algebra, we may assume that the radical
v is abelian ([11]).

Let g be a perfect Lie algebra, s a maximal semisimple subalgabra of
g, h a Cartan subalgebra of s, and r the abelian radical of g. We denote by
2 the root system of s and by {«;, ..., a,} a system of simple roots. We set
To={0ty, ..0r 0, —0g, ..., —0,}. These notations will be employed as far as §4.

It is proved in [11] that if there exists an element h in § such that adh
has distinct non-zero latent roots and ad s has at most one zero latent root,
then the nullity of g is two. The following gives its generalization.

THEOREM 2. Let g be a perfect Lie algebra with the abelian radical
t, and v a direct sum of irreducible s-submodules:

T=0; 4+,

If each x; has a weight A, such that ;& ¥ and 14, ..., A, are different from each
other, then the nullity of g is two.

ProOF. Let f;, be an element in r; which belongs to the weight 4;, and
e, an element in s which belongs to the root a.

P=T1(a} —a})TT(a} — A)II(4—4)
i#j ik

k#1

is a non-zero polynomial function defined in ), whence there exists an element
heb such that P(h)#0. We set

X=e, +-+e, +e_, +-- +e—a,.+f).1+"' +f 2
We denote by g, the Lie subalgebra generated by h and x. As is easily seen,
(adh)rx = 2 (i(h)Pes, + H(—a(W)rey,

+§:(lj(h))PfM (»=0,1,...,2n+m—1).

By means of Vandermonde’s formula, the matrix of coefficients of e,,, e_,,, f,
has the inverse. So e,, e_,, and f,, are contained in g,. e, and e_,, (i=
1,...,n) generate s ([7], p. 123), and s and f, generate the irreducible s-
module r;. Hence g, =g, which proves the theorem.
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§2

We show two examples of perfect Lie algebras, which give us a clue for con-
siderations in §4 on the nullity of perfect Lie algbras.

Example 1. Let s be a three dimensional simple Lie algebra, whose basis
is denoted by {h, e,, e_,} as usual. For any integer n=1, let ry, ..., tp,4
be two dimensional irreducible s-modules, and we consider the Lie algebra

g=s+r;+ -+,
where [r;, r;]=0. Each v; has the basis {f; ,, f; -} such that
Lh, fi,+1=fi+ th, fi,-1=—fi,-
lews fi,-1=fiv [e-o fis1=fi -,

and other Lie multiplications are zero. Then we assert that Nul(g)=n+2.

First we consider the case n=1, and show that Nul(g)=3. Suppose that
this is false, i.e., that g is generated by two elements yoh+7y.€,+7_z€—otr
‘and ypoh+vy.e,+ 7y 4e_,+ 1, Where r, r’'Ex, +1,+1r;. By means of Lemma 1, we
may assume that yo(yo ¥4 —7.70)#0. Hence, eliminating the terms y,e, and yyh,
we can take the generators

x=h+6e_¢+a1’++b1’_

y=ea+5'e._¢+a2’++b2’_,
where a; , and b; _ are elements in r;+1,+1r; which belong to the weights
o

2
Then it is easily verified that

and —% respectively (i=1, 2). We set a; _ =[e_,, a; .] and b, , =[e, b; _1.

glz{{h+al,+—a2,—’ ea+a2,+’ e—a+a1,—y
a4 +by —da ., a,_+b,_—da, _,
by —day,_, by,—0day.}}

is a subalgebra of dimension 7 which contains x and y (where {{ * }} means a
subspace spanned by the elements x). This contradicts dim g=9. Hence in
this case g cannot be generated by two elements, i.e. Nul(g)=3.

In the case n=2, we may conclude that Nul(g)=n+2 by the similar argu-
ment. In fact, we suppose that there exist n+ 1 generators as follows:

h+a, ,+b,_, e+ay.+b,_, e_,+a3.+bs_,

a4++bs s oy Guigetbyig .
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We set again a; _=[e_, a; ], b; . =[e,, b; -] and consider the following sub-
module of dimension 4n+3:
gi={{h+a,+b,-, etay., e_,+b;_,
ay,+—bs 4, aj_—bs_, byitayy, by_ta,_,
b%+, b, -, a3y, as_, a4y, a4, by,
ba,—s s Guig,4s Gnit,—> buirq4s bn+1,—}}'

Then it is easy to see that g, is a subalgebra and contains the above generators.
g; cannot be the whole Lie algebra g of dimension 4n+5. This is a contra-
diction. Hence Nul(g)=n+2.

Using Theorem 4 to be shown in § 4, we may ascertain easily that the nullity
of g is exactly n+2.

Since these Lie algebras are of dimension 4n+5 and its nullity is n+2, we
get counter examples to the following theorem in [11]:

"If g is a perfect Lie algebra of dimension d (>8), then

Nul() S (d—1).”

A corrected form to this inequality is given in §4.

Example 2. Let s be a three dimensional simple Lie algebra, and r,, t,,
5 three dimensional s-modules isomorphic to s. We consider the Lie algebra
g=s-+1,+1,+1,, where [r, r;]=0. The basis {f; ., fio, fi,-} for r; has the
following multiplication rules:

h, fi,+1=2f + [h, fi,-1=—2f, -
Lew fi,-1=fi0 Lew fiol=—2f+
le-w fiol=2fi-  [e-wfi+l=—fi0
and all other products are zero. We take two elements in g as follows:
x=h+f;,0
y=e,te_,+f0+f5 -

Then by easy computations we know that x and y generate g, that is, Nul(g)=2.

§3
We prove several lemmas for the later use.

LeMMA 5. Let m and n be natural numbers such that m=n. Then,
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1 1 1 : 1
X, Xm 2x, 2x,
x3? x2 3x? 3x2
x¥ xN (N+1)xY (N+1)x¥
m(m—1) n
=(- 2 JIx; (xi—xj)4
i=1 i<jsSn

where N=m+n—1.

Proor. We consider x,, ...,x, as indeterminates. We denote by 4 the
determinant on the left hand side and D the polynomial on the right hand side
except the sign factor. Then,

1 1 0 0
X4 Xom 1 1
A= | x? x2 2x, 2x, ﬁxi
: i=1
xN : XN Nx-1 § NxN-1

Let 4, be the part of determinant on the right hand side. 4, has factors x;—Xx;
(Igi<j=m), since 4;=0 by substituting x;=x; into 4,. We differentiate
partially 4, by x; for i such that i<n, and substitute x;=x; for i< j<m. Then
it becomes zero. Hence 4, has a factor (x;—x;)? for i and j such that i<n and
i<j<m. On the other hand, for i and j such that i<j<n,

0 : 0 0 : 0 10
0 1 ol : 0 10
3 . . . . .
a ;‘i; =i o0 2 o2 430 2 02
6 3x i 3x? o6x; i 6x
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0 0 0 1 1 0
1 0 1 X; xj 0
2x; 0 2x; x? x? 0
+3 +
3x? 6 3x? 0
24

The second term of the right hand side is zero, and other terms become zero if
%4, _
ox?
has factors (x;—x;)* for i and j such that i< j<n. Hence 4 is divisible by D.
Since 4 and D have the same order (m+n— 1)(m + n)/2, its quotient factor K must

m(m—1)

be a constant. Forn=0, K=(—1) 2 is a direct consequence from Vander-
monde’s formula. So we use the mathematical induction, and assume the result
for n—1. Now we introduce a lexicographic ordering in the set of monomials
in X, ..., X,, a8 X, >Xx, > --- >X,. Then the coefficient of the highest term of
Dis 1, whence that of 4 is K. On the other hand, as easily verified, the coefficient
of x3¥-1in 4 is

wes ubstitute x;=x;. Similarly 0 by substituting x,=x;. Hence 4,

1 : 1
X2 2x,
( — l)m+ 1 :
x3 : 3x%
By induction hypothesis,
(m—1)(m—2) m(m—1)
2

K=(-1)™1(-1) 2 =(-1)
Hence the lemma is proved.

LEMMA 6. Let A=2Xm; be the highest weight of an irreducible represen-
tation of a semi-simple Lie algebra. Then it does not occur that only one m;
is negative.

Proor. Suppose that m;<0 and m;=0 for j#i. Then
(4, o) =my(o;, “i)+§{nj(aj, ;) <0,

which contradicts the fact that A is dominant.
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LEMMA 7. Let s be a semi-simple Lie algebra, p an irreducible repre-
sentation of s and mt the representation space of p. Let ) be the highest weight
of p and u an arbitrary weight. The weight spaces of A and u are denoted by
m, and wm, respectively. Let v, be an arbitrary non-zero element of m,.
Then there exists a sequence of simple roots {a;,, ..., a,-p} such that p(e,,) ...

p(e,,,y)v,, is a non-zero element of m,, and u is represented as
=iy, = e o,

where A—o; — -+ —a; is also a weight for every q<p.

ProoF. Since m is an irreducible s-space, v, generates the s-space m.
Hence there exists a non-zero element in m; of the form p(ey,) ... p(eg,)v,, Where
Bis ..., B,EZo. Obviously p+2p,=1. Among such elements, let

v,=p(eg,) ... pleg,)v,

have the minimum length p. Then we assert that every f; is a simple root (i=1,
..., p). For this we show by mathematical induction on r that 8, ..., B, are
simple roots. First, if f;=—a;, then p(ey,) ... p(eg,)v,Em;,,, ={0}, which
contradicts v;+0. Hence f,=a;,. Now we suppose that f;=a;, ..., f,=a;
have been shown and prove that f,,;=« Suppose that it is false, i.e.,
that B,,,=—«a Then

ir+1®

ir+1®
v}.=p(eau‘) e p([eaur’ e—a¢,+ 1]) p(eﬂp)uu
+p(ea“) p(e—m“, ,)p(ea,-r) p(eﬂp)vu'

If i,#1i,4y, then [e,,, e_,, , ]=0. Hence the first term of the right hand
side is zero. In the case i,=i,,, the first term is a scalar multiple of p(e,,,)
. p(es,,_ (e, ,) ... p(eg,)v,, which vanishes, for its length is less than p.
However,

02=p(s,,) oo P(ea,, JP(Cn,) e P(Eg, )0,

contradicts our induction hypothésis. Hence we have proved the first half of the
lemma. Then the latter half will be evident.

LEMMA 8. Let s be a semi-simple Lie algebra, and m a non-trivial. ir-
reducible s-space. Donote by {a,, ..., a,} the system of simple roots and by
3o the set {a, ..., 0, —0y, ..., —a,}. Then there exist at least three weights
of m which do not belong to 2, except for the case where s has a 3-dimensional
simple ideal s,, and m is s-isomorphic to s, or s-isomorphic to an irredu-
cible 2-dimensional s;-space considered as an s-space.

ProoF. Let 3 be the system of roots. We denote by A the set of weights



38 Terukiyo SaTd

of m and by A the highest weight in 4. We mean by S, the reflection in the hyper-
plane orthogonal to the root a. Let u be an arbitrary weight in A and let M be
the collection of weights of the form p+ia, i an integer. Then M is an arithmetic
progression with first term p— pa, difference o, and last term p+ qa and we have

, o
([7]). This sequence.is called the a-series of the weight u. Since A+0, there
exists a; such that (4, o;)>0. Then A—o,EA.

For the convenience of the proof, we divide the proof into four cases.

i) The case A=uq,. Since A is the highest weight, (a;, ;)= 0 for any «;.
On the other hand, by the property of simple roots («;, «;) <0 for any j+i. Hence
we get (a;, ;) =0 for j#1i,i.e. 2 is decomposed into the union of mutually ortho-
gonal two subsystems, that is, {«;, —a;} and the collection of all other roots.
Hence in this case s has a 3-dimensional simple ideal s; and m is s-isomor-
phic to s;.

i) The case AeX -3, In this case, —A=S,Ae€4—-23,. Then the
A-series of the weight A contains the weight 0. Hence we may take the weights
A, 0and —A.

iii) The case where A~ 2% and A—o;e AN Y. We denote the o-series of
the weight A by {1—pa;, ..., A—a;, A} and the o;-series of the root A—a; by {A—
Py ..., A—a;}. Then,

2 (A"' Oy CX,-)

(o, ;) =p-2=p-l

implies p=2 and A—py,eA—3. A—o,€4AN2Y means 0 A, considering the
(A —a;)-series of the weight A—«a;. A—po;EX implies that A— pa;#0. Hence,
in this case we may take the weights A, 1— po; and 0.

iv) The case where AE 3 and A—o;EX. If there exists o; such as (x;, «;)
<0, then (A—a;, a;)=(4, a;)—(x;, ®;)>0 implies A—o;—a;€A. When A—o;—
a; &3y, we may take 4, A—o; and A—o;—a;. A—a;—a; coincides with neither
—o; nor —a;, and A—a;—a; cannot be —a, by Lemma 6 (k+1, j). If A—o;—a;
=u,, then —a, is also a weight. Therefore 0 is a weight and we may take 4,
A—o; and 0. On the other hand, if A-20,e4—2%, we may take 4, A—q;
and 1—2q;. If A—20,e4n 3, there exists a positive integer p (>3) such that
A—pa;e A—23 asiniii). Hence there remains only the case where A —o,eA— 23,
A—=20,€A and (x;, «;)=0 for every j#i. Then s contains a 3-dimensional
simple ideal. If there exists j(#i) such that A—a;€ AN %, it may be reduced to
the case iii) by replacing «; by «;. Hence we may suppose that A—o;E A or
A—a;eA—2 for every j (+1i). If there exists j such that A—a;e4—23, we may
take 4, A—o; and A—a;. When A—a;E 4 for any j(#1i), then (4, «;)=0. Let
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. be represented as Ym,x,. Since the a-series of the weight 4 is {1—a;, 4},

(i,aﬂ
2 (s, o)

= 2mi = 1.
On the other hand, for j+1,

O=()», 0(1)=<% Oti+kz¢:‘mk0(k, al>

=(Z‘mk‘xka “j)-
k#i
Hence (32 myo,, >, meoy)=0 implies that m, =0 for k+i and A=-;~ o;. Then
k#i k#i
mis a two-dimensional space with two weights 0‘2‘ and —ﬁz-t. This completes

the proof.

§4

Let g be a perfect Lie algebra whose radical r is abelian. We denote by
s a maximal semi-simple subalgebra of g. Let s be decomposed into a direct
sum of simple ideals of s as follows:

i=1 7

where s(9) is a 3-dimensional simple ideal and t; is a simple ideal of other type.
We consider the radical r as an s-space and decompose r into a direct sum
of s-irreducible subspaces. Among them, we denote by u{, ..., ul? the
subspaces isomorphic to the s-space s(). We take a basis {u(?,, u{?, u{
for u{? as follows:

O, uP]=2u  [AD, uf)]=—2uf)

(60, wpl=ufly (e, uifel=—2ulp;

[e-i, uPT=—ulfs  [e-P, uffo]=2ufl

(cf. Example 2). We consider a two dimensional irreducible s()-space b,
which is also considered as an s-space. We denote by »'?,..., n{}) the
irreducible components of r isomorphic to »® (cf. Example 1). Besides,
we denote by w,,’s irreducible components of other types, where w,,..., w;,,
are s-isomorphic to each other and w,, and w,.,, are not s-isomorphic for
k#k'(k, k=1, ...,f). Namely, r is decomposed as follows:
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s pi i t Ik
=2 (Lul?+ 2o+ 3] 3wy (n
i=1 j=1 j=1 k=1 I1=1

i=1
The following is a generalization of Theorem 2.

THEOREM 3. Let the abelian radical ¥ of a perfect Lie algebra g be
decomposed into s-irreducible subspaces as (1). Let Ay be a set of weights of
wy,; and let

u,=Card (4, — 2).
Then u,=3. If
<3 q;<2 reSug (i=1,...,s; k=1,...,1),
then the nullity of g is two.

PrOOF. We can assume that p,=---=p,=3, q=:=¢q,=2, r{=uy, ...,
r,=u,. For otherwise we adjoin a suitable s-space t* to g such that the Lie
algebra g*=g+r* satisfies our assumption. Then by Lemma 2 Nul(g*)=
Nul(g). Hence we have only to prove that Nul(g*)=2.

Let A4, ..., A4, be weights of w,, which are not contained in X,. Let
{ay, ..., a,} be the system of the simple roots, and let «) be the simple root
corresponding to a simple ideal s, Then

P=TI(? =) T2 —a2) TT T (A=) T (02— 220 TTe
i*j iFj k=1 i,j.k i=1

i<jSuk

is a non-zero polynomial. We take an element h€l such that P(h)#0. From

. (1) ) (1) (s)
the set of weights {“2 ,,..,“T,—“T,..., —“—2—, Adtseens Aupsoees Mg onns /1,,“}

we pick up only the mutually different ones and denote them by py,=0, yy, ...,
1y (where py,=0 should be omitted if unnecessary). Let w,; be an element of
w,; which belongs to the weight A (k=1, ..., t; i=1, ..., uy), and let v{’, €v{?

(i) ) : . a(d) ad
and vY)_evY’ be elements which belong to the weights 5 and — 5

respectively. Among such weight vectors, we take the ones which belong to the
same weight u;. Let f; be the sum of them (j=0,1,...,d). Now we take the
following two elements:

S (‘
x=h+Zu11’)o
i=1

s . . d
y=2Deg+ 2 (uPo+u )+ o+ 2 f;
BeZo i=1 ji=1

We shall show that the Lie algebra g, generated by x and y coincides with g.
First we can easily show the following (I=1).
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(adx)'y
=,2 (B)'e,+3 (= aD(h)) (e_qo +u§))

i
+;(u,—(h))’f,- +21§(d‘”(h))"‘u‘f,’+
—21;(—a<i>(h))'~iu<1i)_
Then by Lemma 5, the following determinant is not zero:

By i —a®(h) i oph) 2 Po=2
Bm)? 1 (—a®@)?: (u;(h)? | 4aP(h) i —4(—aD(R))
B & (—a®@): (u;()> © 6(P(R)? i —6(—aP(h))?

Hence all the following elements are contained in g,:
. . . . S
e e_a(l) + u(al’)_, fj9 u(ll’)+, u(ll,)—, fO +k§lu(2k,)o

ey p+—a®, i=1,...,s; j=1,...,d)
Moreover, since the elements
[ea(i)s e—a(i) + ugi,)_] =h(i) + u(3i.)0
and
[AD+ufDs, e_ P +u) ]=—2e_D—4u§)_

belong to g;, e_{? also belongs to g;. Hence g, contains s, u{? and u$,
because u'” and u§’ are irreducible s-spaces. Now we decompose f; again as
follows (j+0):

[i=wia dtwia, (2)

where w; ;, €w;  ‘belong to the same weight p; and i,,...,i, are defferent
from each other (In certain cases some w;, should be replaced by v{’) or
v{)). Among the s-spaces w;,’s we assume that w; , has the highest
weight 1. Then Lemma 7 implies that there exists a sequence of simple
roots {a;,, ..., ;} such that w,=[e, ,[...,[e,,> wi,s,]... 1] is not zero
and belongs to the highest weight . We operate (ad e, ) ... (ad ¢,,,) to the both
sides of (2). Since A cannot be a weight of w;, (v#1), all the terms w,

vanish except w; Hence w,=g,, which implies that w; , is contained

U 1l
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ing,. By induction we may show that other w; , (v=2) or b{/> are contained
in g,. Quite similarly g; contains w;, corresponding to p, and u$.
Thus g, must coincide with g. This completes the proof.

Furthermore we can prove the following

THEOREM 4. Let the abelian radical v of a perfect Lie algebra g be
decomposed into s-irreducible spaces as (1). Let v, be the number of distinct
weights in wy;, and let u, be the number of distinct weights in w,, which
are not contained in Xy(k=1,...,t; Il=1,...,r). Then

Nul(g)x Max {271, 4ol nctv=ul ol 3)

1,8 2 v
2y k

ProoF. By the same reason as remarked in the proof of the previous theo-
rem, we may increase the values of p;, q; and r, unless the integral part of the maxi-
mum value in the above inequality (3) is altered. Hence we can assume that
there exists an integer K such as p;=3K, ¢;=2K and r,+ v, —u,=Kuv,, i.e. the
integral part of the maximum value is equal to K—1. Now we divide the family
of subspaces u{?, o\, w,, (i=1,...,s; c=4,...,3K; k=3,...,2K; k=1,
l=u+1, ..., (K=1)uv,+u,) into K—1 groups as follows:

{u(z) u(l) u(l), D(l) D(l) Wt 1s s mku;d—uk}’

{ubl—z, uGk_y, u§k, 04—y, %}, Wyt (K—2) it 190+

Wi+ (K—1 )vk}'

Let u$, u{? and u{?_ be elements in ul? which belong to the weights
a®, 0, —al® respectlvely, and let v§, and v{’_ be elements in (" which

o (®) oG )
belong to the weights & -5 and _T respectively. Now we denote by {4, ...,

M) the system of weights of w,;, and we choose an element wy,, 4+ (y—1ywi+1
E Wy, +(v—1)0x+: Which belongs to the weight 4, (k=1,...,t; v=1,...,K—1;
I=1,...,v). We take the following additional K—1 elements together with
the generators x and y in the proof of Theorem 3:

W g+ +uldis o+ ubi)is, -

e

zZ,=
1

13
0 0 B>
F0h1,+ T0N42,-) +k>_:1 lglwkuk+(v—1 Yo+l

(v=1, ..., K—1).

Theorem 3 shows that x and y generate a subalgebra containing s. Hence it
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is easy to see that x, y, z, ..., zx, generate g. Thus Nul(g)<K+1, which
proves the theorem.
The following is a rectification of Marshall’s inequality.

CoROLLARY. Let d be the dimension of a perfect Lie algebra g. Then,

Nul(@) = Max{4F3, 2},

Proor. Set n=Nul(g). In the case n=2, there is nothing to be proved.
Hence we suppose n=3. Example 1 shows the existence of a perfect Lie algebra
of dimension 4n—3 whose nullity is n. Suppose that g has the least dimension
among perfect Lie algebras with nullity n. We have only to show that dimg=
4n—3. Obviously the radical ¢ of g is abelian. Let r be decomposed as in
(1), and we denote by K —1 the integral part of the maximum value in (3). Then

Theorem 4 shows n<K+1. If there exists i, such that K—1=[p"—°3_1—],

then p; =3n-—35, and
d=dims+3(3n—5=9%—-12>4n-3,

rk0+vko—uko—-

Vko

which is impossible. Similarly K —1=[ 1} is also a con-

tradiction. In fact, in this case,

d =3+ 1,0, 2 34 (0 + Uy — 304+ Doy,

The right hand side is greater than 4n—3 since n=3 and v, =u,,=3, which is
also impossible. Hence we have K—1= [q—“’zil—]; n—2, ie. if q;, is even,

qi,22n-2, and if q;, is odd, q;,=2n—3. Then d=3+2(2n—2) and d=3+
2(2n—3) respectively. Hence only the latter case is possible. Thus the Lie
algebra of the least dimension is such one satisfying that dim s =3, s=1, p; =t=0
and g, =2n—3. This is nothing but the one stated in Example 1. Hence the
proof is complete.

§5

In this section we discuss the nulity of a Lie algebra whose radical is nilpotent.
We begin with the following lemmas.

LEMMA 9. If g is represented as a direct sum of two ideals a and b, then
Nul(g) =Max{Nul(a/[a, a]), Nul([b, b])}
+Nul([a, a]) +Nul(b/[b, b]).
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Proor. Let {a,, ..., a,} and {b,, ..., b,} be sets of generators of a/[a, a]
and b/[b, b] respectively. We take representative elements ay, ..., 4,
by, ..., b, contained in these residue classes. Let [a, a], [b, b] be generated
by {ai,...,ap}, {bi,...,b,} respectively. We set ¢;=a;+b}(i=1, ..., n)
and denote by g¢; the subalgebra generated by a4, ..., ap, by, ..., b, cy,
...s ¢, b is generated by by, ..., b, by, ..., b;,. Hence an arbitrary element
of [b, b] is represented as a linear combination of monomials in these elements
of order not less than 2. Then, since [a, a] Cg;,

[b}, b51=[ci, ¢;1—[ai, a;]Eg,ND
[6i, g,Nb]cg; ND
[, g Nb]=[c;, g, ND] g, ND.

Hence [b, b] cg,, which implies that b, and a; are contained in g;. Thus
we obtain g=g,, which proves our statement.

LeMMA 10. If a Lie algebra g is a direct sum of an abelian ideal a and
a perfect ideal b, then

Nul (g) =Max {dim a, Nul (b)}.

Proor. It is obvious by Lemma 3 that Nul(a)=dim a and Nul(g)=
Max {Nul(a), Nul(b)}. In the previous lemma, we put Nul([a, a])=Nul
(b/[b, b])=0. Then we have the assertion. '

Now let g be a Lie algebra whose radical r is nilpotent, and s a maximal
semi-simple subalgebra of @g. The radical r, considered as an s-space, is
represented as a direct sum of s-spaces as follows:

r=[r, r]+a+b,
where [s, a]=0 and [s, b]=b. Then
b =(s+b+[r, 1])/[r, 1]
is a perfect ideal of g/[r, ¢r] and
a=(a+[r, t])/[x, r]

is an abelian ideal. g/[r,r] is a direct sum of these two ideals. From
Lemma 4, Nul(g)=Nul(g/[r, r]). Then the following theorem immediately
follows from the previous lemma.

THEOREM 5. Let g be a Lie algebra whose radical t is nilpotent, and
s its maximal semi-simple subalgebra. Let t be decomposed as follows:
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t=[r,t]+a+Db,

where [s, a]=0 and [s,b]=b. Then, (s+b+[rx, t])/[x, t] is a perfect Lie
algebra and

Nul(g) =Max{Nul((s +b+[r, t])/[r, r]), dim a}.

§6

In this last section, we investigate the nullity of a Lie algebra whose adjoint
representation is splittable. A Lie algebra g is said to be splittable if it is a linear
Lie algebra and a nilpotent component of an arbitrary element of g also belongs
to g (Malcev [10]). This notion is an extension of Chevalley’s notion of an
algebraic Lie algebra ([4]). A Lie algebra whose adjoint representation is al-
gebraic has a decomposition of a special type (Gotd[6], Matsushima [12], Cheval-
ley [5]). A Lie algebra whose adjoint representation is splittable has also a similar
decomposition (Togo [14]). That is, let ad g is splittable for a Lie algebra g.
Let t be the radical of g and n the largest nilpotent ideal. Then there exist
a maximal semi-simple subalgebra s and an abelian subalgebra a such that

g=s+r1, r=a+n, 4)

where [s+a, a]=0 and adja consists of semi-simple matrices. Conversely
every Lie algebra admitting such a decomposition has a splittable adjoint repre-
sentation.

ProposITION 1. Let g be a Lie algebra whose nullity is m. Let {fy, ...,
fu} be an arbitrary basis for g. Then there exist generators of g such that

ai=fi+_ 2 %5if; (i=1,...,m)
Jj=m+1
Moreover, let v be the dimension of g/[g, g]. For given r elements g4, ...,

g, linearly independent modulo [g, g], there exist generators of g of the
following forms:

gl+h1a sy gr+hr’ hr+1’ seey hm (hls'“’hme[g’g])-

Proor. We take generators

b,.=§l/3,.,.f,. (i=1, ..., m).

We may assume by Lemma 1 that
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ﬂll ﬂlm

ﬂml ﬁmm

is a regular matrix. Then

E
(ay ... ay)=(b; ... b)P~1 =(f, -~f..)< )

*

also generate g. The latter half is evident, since m=r by Lemma 2.

Now we suppose that g is a solvable Lie algebra and adg is splittable.
Then g is decomposed into a direct sum of subalgebras such as g=a+mn,
where a is an abelian subalgabra, n is the largest nilpotent ideal and ada
consists of semi-simple elements. Considering n as an ad a-space, we decompose
it into a sum of ada-spaces as follows:

n=ny+n;+--+n,+[n, nj,

where [a, 1o] =0, [a, n;]=n; and [a, n;]=p(a)n; for aca, n;en; (i=1). Then
we have

THEOREM 6. Let g be a solvable Lie algebra whose adjoint representation
is splittable. Under the above notations, let

M= Max dim n;.

15isr
Then
Nul (g) =Max {dim (a +n,), M +1}.

Proor. For i=1, we suppose that

n={{ni(, ..., Minc}}-

We chose an element a, in a such that

H. (ﬂi—ﬂj)l s]'—iISrﬂi

15i<jsr

does not vanish at a,. Let {ay, a5, ..., a,} be a basis for a and {ng;, ..., no,}
a basis for n,. Let L=Max{p+q—1, M}. Then it is easily proved that the
following L+ 1 elements generate g:

ay, a + 23 My, ., Gt 3 Mg,
1sisr 1sisr

n01+ Z nip’ (X n0q+ nip+q—1s (5)
15isr 1sisr

I
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Miptg - 20 MiLs J
1sisr 1sSisr

where we consider that n;;=0 if j>M. Hence we get
Nul(g) < Max {dim (a + ny), M+1}.

To prove the reversed inequality we set N=Nul(g). Let ay, ..., ap, noy,
..., hg, be the same as above. Since [g, g] =Zr:n,-+[n, n], N=p+gq follows
i=1 ’

from Lemma 2. We can assume that [n, n]=0. Proposition 1 implies that
there exist N generators of g as follows:

by=a,+3m;,
iz1

b‘,=ap+i§1m,~p

b,r1=n9, +i§1mip+ 1

bp+q =Hhoq +i§lmip+q

bprg+1 =.Zz‘imip+q+l
iz

by=2my,
iz

where m;; are some elements in n;.  As is easily verified, for I<i<j<pand 1=0,

{ad (b)Y [bi b1 = Z{Bu@n)} {Badmy;—Buame).

Let b be the subalgebra generated by b,,...,b,. Then

-
b={{b,, ..., b, Bla)m;—p(a)my
(k=1,...,r; 1Si<j<p)}}.
Since g is generated by by, ..., by,
g=b+no+{{my (k=1,...,r; p+1<I<N)}}.

Let dim n, =M. Then the system of linear equations
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Bio(a))x; - Bio(a)x;=0 (I=i<j=p)

has a solution x;=pf,(a;). Hence the pxﬁ(—%:-l)- matrix

0
i) ﬂk‘o(aj)

0

0

has a rank at most p—1. Let
b, ={{ Bro(a)my,i— Bro(a)my,; (I<i<j=p)}}.
Then dimb,  is at most p—1. Since
Weo=bi +{{m, (P+1=<I=N)}},
dimn, <(p—D)+(N—-p)=N-1,
which implies that
N=Nul(g)=M+1.

Thus we have proved the theorem.

Remark. Knebelman [8] and Bond [2] state the following:

If the genus of g is zero, then g is either abelian or g={{a}}+n, where
[n, n]=0 and [a, n]=n for any nen.

We give here another proof in our words. First it is obvious that [a, b] e
{{a, b}} for a, beg. Letr be the radical and s a maximal semi-simple sub-
algebra. If s+0, then

dim g =Nul(g) <Nul(s) + Nul(x) =2+ Nul(r)
<dims+dimr=dimg,

which is a contradiction. Hence s =0, that is, g is solvable. Let a, b be two
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elements which are linearly independent modulo [g, g]. Then [a, b]le{{a,
b}}n[g, g] implies [a, b]=0. Hence g splits into a+[g, g], where a is an
abelian subalgebra. Since [a, n]€{{n}} for aca and ne[g, g], adg is
splittable. Then under the same notations as in Theorem 6,

dim g =Nul(g) =Max {dim (a+1n,), M +1}.

If dim(a+mny)=dimg, g is abelian. If dimg=M+1, then dima=1 and
g={{a}}+n,, where [a, n,]=p(a)n, for n,en,. We can assume that
B(a)=1, and the proof is complete.

Now, let g be a non-solvable Lie algebra whose adjoint representation is
splittable. g has a decomposition as in (4). n is a completely reducible
(s+a)-space ([5]), and {nen; [n, s]=0} is (s+a)-stable since [s, a]=0,
whence n is represented as follows: ‘

n=[n, n]+no+n, +--+n,+it, +--- + i,
where
[s+a, n,]=0, [s, n;]1=0 (i=1,...,r),

my, ..., i, are non-trivial (s +a)-irreducible spaces and ny, ..., n, are weight
spaces which belong to non-zero weights of a. We may assume [n, n]=0 by
Lemma 4. Letm; be an irreducible s-space contained in i1, For a<a, [a, m;]
is either s-isomorphic to mt; or zero. Hence there exist a;y, ..., a;, in a such
that

n~t,-=m,-+a“mi+'“ +a,~k‘mi.
We divide the family of irreducible s-spaces m,, ..., m, into classes as follows:

{myg, oo mm},

...............

{mul’ ctey mutu}’

where 3t, =s, m;;=m;; and m;;&m; ;. for i#i. Let the s-space m;; have d;
different weights. We take an element h, in a Cartan subalgebra of s which
separates all the distinct roots of s and all the distinct weights in m;,+
-« +m,,, and let hy, and s, generate s. Let

K=Max [ tid_l J+1.

1s5isu i

Then, by the almost same argument as in the proof of Theorem 4, the perfect
Lie algebra s+m;+--- +my is generated by the following K+2 elements:
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ho, g, My, ..., Mg,
where m,; are suitable elements in m,+ --- +m,. On the other hand let

p=dima, g=dim n,, M=Maxdim n;,
iz1

N=Max{M+1, p+q, K+2}.

Then, under the same notations as in the proof of Theorem 6, the solvable Lie
algebra a+ngy+n,;+---+n, is generated by the elements in (5). Moreover,
it is also verified that the following N elements generate g:

a, +ho
a,+2n;, +50
a3+2n,~2 +m;

ap+3ng,_y  tm,_,

Noy+2n;, +Mmp_y

n0q+ Snip+q—1 +mp+q—2
Z"ip+q tTMpig-1
ny_y  +my_y,

where 3 means a sum on i from 1 to r, and we consider that n;;=0 if j>M and
m;=0 if i>K. The nullity of the solvable Lie algebra a+mny+n,;+ --- +n,
is Max {M+1, p+4q} and it is not greater than Nul(g) since s+fit, +--- + i,
is an ideal of g. We can summarize our results in the following

THEOREM 7. Let g be a Lie algebra whose adjoint representation is
splittable. Let v be the radical of g, and n the largest nilpotent ideal.
Then g is decomposed into a direct sum of subalgebras as follows:

g=s+r, r=a+n,
n=[n, n]+no+ i+t +o iy, +ooF iy, +oo i,
where s is a maximal semi-simple subalgebra, a is an abelian subalgebra,

ad ja consists of semi-simple matrices, ;; is a non-trivial irreducible (s+
a)-subspace and
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[s, a]=0, [s+a, ny]=0,
[s, ] =0, [a, fi]=Ti.
Moreover fit;; contains an s-irreducible space m;, and
my;Em;, myRm e fori#i.

Let the s-space my; have d; distinct weights. Then (a+n,+fi+[n, n])/
[n, n] is a solvable Lie algebra whose adjoint representation is splittable,
and its nullity is given by Theorem 6. We denote it by P. Then

P< Nul(g) < Max{P, [‘—id‘-‘—]+3 G=1,..., u) }
i
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