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Introduction

The nullity of a Lie algebra is the minimum number of elements which
generate the Lie algebra, and the genus is the difference between the dimension
and the nullity. The concepts of genus and nullity seem to have originated with
Knebelman [8]. He gives relations between the structure constants of Lie al-
gebras and the genus, and classifies Lie algebras of genus zero and one. He
states also that every perfect Lie algebra can be generated by two elements. How-
ever, Patterson [13] points out that the argument in [8] contains errors and he
states some results concerning the genus of general algebras over an arbitrary
field. Bond classifies Lie algebras of genus one and genus two ([1], [3]). On
the other hand, it is proved by Kuranishi [9] that a semi-simple Lie algebra over
an algebraically closed field of characteristic zero is generated by two elements.
This result is generalized by Marshall [11] for a perfect Lie algebra of a certain
type, and he constructs examples of perfect Lie algebras with arbitrarily given
nullity more than 1, which prove the falsity of the statement in [8]. He states
also an inequality between the nullity and the dimension of a perfect Lie algebra.
However, this inequality needs to be slightly modified.

In this paper, we shall investigate the nullity of Lie algebras. Throughout
the paper, every Lie algebra is finite-dimensional and over a field of characteristic
zero. In § 1, it is shown that the nullity of a Lie algebra is invariant under the
extension of the base field (Theorem 1), and we state Theorem 2 which gives
a generalization of the first theorem in [11]. In §2, two examples of perfect
Lie algebras are given, one of which is a counter example to the inequality in [11].
In § 4, we give a sufficient condition for a perfect Lie algebra over an algebraically
closed field to have the nullity two (Theorem 3), and an estimating formula for
the nullity of perfect Lie algebras (Theorem 4). A corrected formula to the
inequality in [11] is also given. We shall study in § 5 the nullity of a Lie algebra
with the nilpotent radical (Theorem 5). In § 6, we treat solvable or non-solvable
Lie algebras whose adjoint representations are splittable (Theorems 6, 7).

§1

First a base field of Lie algebras is assumed to be an arbitrary field of charac-
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teristic zero. The nullity of a Lie algebra g is denoted by Nul(g).

LEMMA 1. Let § be a Lie algebra generated by m elements over a field

K, and let {fί9 ...,/„} be a basis for g. Let Xu (i = l, ..., m;j = l, ..., ή) be

the indeterminates and P(Xij) a given non-zero polynomial. Then generators

may be chosen such as P{ξtj)Φ{). Moreover, if Ko is a subfield of K, then the

coefficients ξu of at may be taken in Ko.

PROOF. For g to be generated by m elements bί9 ..., bm, it is necessary

and sufficient that the set of all the monomials in bί9 ..., bm contains n linearly

independent elements. Now we assume that bu ...,bm generate g, and their

monomials cί9 ..., cn are linearly independent. We extend the base field K to

Ω by adjoining the indeterminates Xtj (i = l, ..., m; j = l, ..., ή). When bt is

expressed as Σβijfj, we consider the corresponding element B—ΣXijfj in

gΩ, and corresponding to ck = [biί, [ ..., ίbip_ί9 bip] ... ] ] we consider Ck =

[B t l , [ ..., [Bip_l9 Bip] ... ] ] in gβ. When we express Cί9 ..., Cn as linear

combinations oΐfl9 ...,/Λ, the determinant of the matrix of coefficients is a non-

zero polynomial in Z o . We denote it by Q(Xij). Then there exist ζij^K such

that P{ξij)Q{ξiJ)φ^. We can easily see that the elements

generate the whole Lie algebra g.

The latter half of the lemma follows from the fact that the non-zero polynomial

P(Xij)Q(Xij) with coefficients in K is not identically zero in Ko since Ko is an

infinite field.

THEOREM 1. Let Qbe a Lie algebra over afield K, and let K' be an exten-

sion field of K. Then

Nul(g)=Nul(g x ,) .

PROOF. It is obvious that Nul(g)^Nul(g^,) We suppose that m

elements generate §κ> and {fu ...,/„} is a basis for g. By Lemma 1, gκ, is

generated by m elements a—Σξijfj (i = l, ..., m) where ξ^^K. Hence ^ e g ,

and Nul(g)^m. Thus we have the assertion.

The nullity of a semi-simple Lie algebra over an algebraically closed field

is two ([9]). Hence by Theorem 1 we have the following:

The nullity of a semi-simple Lie algebra over an arbitrary field of characteris-
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tic zero is two.

Hereafter, we shall assume that the base field of a Lie algebra is algebraically

closed. This gives no restrictions by Theorem 1.

LEMMA 2. Let ί) be an ideal of a Lie algebra g. Then,

Nul(g/ί)) ^Nul(g) ^ Nul(ί)) + Nul(g/ί)).

PROOF. Let {hl9...,hm} and {gl9...,gn} be systems of generators of ί)

and g/ί) respectively. If we take ^ G ^ (ί = l, ..., n), then hu ..., hm, gu ..., gn

generate g. Conversely, the generators of g are considered as those of g/ϊ)

by taking the residue classes modulo ί).

The following is an easy consequence of the above lemma.

LEMMA 3 (Knebelman [8]). // g is represented as a direct sum of two

ideals a and b, then

Max{Nul(α),

LEMMA 4. Let n be a nilpotent ideal of a Lie algebra g. Then

Nul(g) = Nul(g/[n, n]) .

PROOF. It is obvious by Lemma 2 that Nul(g)^Nul(g/[n, n]). For

g G g, we denote by g the class in g/[n, n] which contains g. For n elements

gί9 ...,#„ in g, we suppose that gί9...,gn generate the Lie algebra g/[n, n ] .

Let gx be a sublgebra generated by gί9 ..., gn. We suppose that n m = 0 . Then

for k such that l^k^m, we can show

In fact, it is obvious for k = m. Therefore we assume nk+1 c g x . For nu ..., nk

G n, we set

π, Λίe[n, n]).

jj ... ]

C •••' C«Jk-l+W*-l ^fc+^ii] ... ]

Ξ [ « i , [«2, [ •••, [flfc-i, β j ... ] mod n* + 1 ,

which implies that nfe c g t.

Especially, [n, n ] c g 1 } which implies that g c g x + [n, n] = gx. Hence

we get our assertion.
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COROLLARY. For a nilpotent Lie algebra π,

Nul(n) = dim n/[n, n ] .

A Lie algebra g is said to be perfect when g = [g, g]. The radical r

of a perfect Lie algebra g is nilpotent, since r = [g, r ] . Hence, by Lemma 4,

to investigate the nullity of a perfect Lie algebra, we may assume that the radical

r is abelian ([11]).

Let g be a perfect Lie algebra, s a maximal semisimple subalgabra of

g, ί) a Cartan subalgebra of s, and r the abelian radical of g. We denote by

Σ the root system of s and by {α1? ..., ccn} a system of simple roots. We set

2Ό = {α l5 ..., αw, — α l 9 ..., — α j . These notations will be employed as far as §4.

It is proved in [11] that if there exists an element h in ί) such that adfl/ι

has distinct non-zero latent roots and adr/z has at most one zero latent root,

then the nullity of g is two. The following gives its generalization.

THEOREM 2. Let g be a perfect Lie algebra with the abelian radical

r, and x a direct sum of irreducible z-submodules:

If each xt has a weight λtsuch that λi^Σ0 and λu ..., λm are different from each

othery then the nullity ofq is two.

PROOF. Let fλi be an element in rf which belongs to the weight λi9 and

ea an element in s which belongs to the root α.

i,k kΦl

is a non-zero polynomial function defined in ί), whence there exists an element

h e ί) such that P(h) Φ 0. We set

We denote by gx the Lie subalgebra generated by h and x. As is easily seen,

= Σ(oct(h))»eXi + Σ X -

By means of Vandermonde's formula, the matrix of coefficients of eai, e_ai,fλj

has the inverse. So eai, e_ai and fλj are contained in QX. eai and e_Λi (i =

1, ..., n) generate s ([7], p. 123), and s and fλj generate the irreducible s-

module Xj. Hence g i = g , which proves the theorem.
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§2

We show two examples of perfect Lie algebras, which give us a clue for con-

siderations in § 4 on the nullity of perfect Lie algbras.

Example 1. Let s be a three dimensional simple Lie algebra, whose basis

is denoted by {h9 ea9 e_α} as usual. For any integer n ^ l , let xl9 . . . , t 2 n+i

be two dimensional irreducible s-modules, and we consida* the Lie algebra

where [xi9 ty]=O. Each rf has the basis {/ί> + ,/ιV_} such that

lh,fit+l=fu+ [Λ, /u--] = -fu-

le*Ji,-~]=fi,+ O-«,/ί,+]=Λ-,

and other Lie multiplications are zero. Then we assert that Nul(g) =

First we consider the case n = l, and show that Nul(g)^3. Suppose that

this is false, i.e., that cj is generated by two elements yoh + yaea + y-ae-a + r

and y'oh + y'aea + y'-Λe-a + r', where r, r'^x1 + r 2 + r 3. By means of Lemma 1, we

may assume that 70(70 7i~"7«?Ό)^0. Hence, eliminating the terms γaea and γ'oh,

we can take the generators

where ait+ and t f >_ are elements in r 1 + r 2 + r 3 which belong to the weights

-^- and —^-respectively (i = l, 2). We set αlV_ = [ ^ _ α , α ί f +] and bit+ ={ea, bitJ\.

Then it is easily verified that

b2t--δ'alt-., b2f+-δ'alt+}}

is a subalgebra of dimension 7 which contains x and y (where {{ * }} means a

subspace spanned by the elements *). This contradicts d i m g = 9 . Hence in

this case g cannot be generated by two elements, i.e. Nul(g)^3.

In the case n ̂  2, we may conclude that Nul(g) ̂  n + 2 by the similar argu-

ment. In fact, we suppose that there exist n + 1 generators as follows:
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We set again α i ( _ = [ e _ α f ait+~]9 bt>+=[eα, fcf>-] and consider the following sub-

module of dimension 4n + 3:

b 4 ) _, ..., an+ί+9 an+ί_9 bn + 1+, &n + l f_}}.

Then it is easy to see that gx is a subalgebra and contains the above generators.

Ch cannot be the whole Lie algebra g of dimension 4w + 5. This is a contra-

diction. Hence Nul(g)^n-h2.

Using Theorem 4 to be shown in § 4, we may ascertain easily that the nullity

of g is exactly n + 2.

Since these Lie algebras are of dimension 4n + 5 and its nullity is n + 2, we

get counter examples to the following theorem in [11]:
/;If g is a perfect Lie algebra of dimension d (>8), then

A corrected form to this inequality is given in §4.

Example 2. Let 5 be a three dimensional simple Lie algebra, and xu x2,

x3 three dimensional s-modules isomorphic to s. We consider the Lie algebra

g = s + r1 + r2 + r3, where [xh r J ]=0. The basis {fit + ,fi,oJi,-} for h has the

following multiplication rules:

[*,/,.+] =2/,,+ [Λ,/,,-] =-2/,,_

[>«, /i, - ] =/ί,0 [«α. Λθ] = ~ 2/j, +

[e-«, Λo] = 2 / ( > - [e_α, / ί > +] = - / / f 0

and all other products are zero. We take two elements in cj as follows:

Then by easy computations we know that x and y generate g, that is, Nul(g) =2.

§3

We prove several lemmas for the later use.

LEMMA 5. Let m and n be natural numbers such that m^n. Then,
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where N = m -f n — 1.

Π
ί = l

Π (Xi-xj)2 Π (χt-Xj)9
i£n n<ί<j

PROOF. We consider x l 5 ...,xm as indeterminates. We denote by A the
determinant on the left hand side and D the polynomial on the right hand side
except the sign factor. Then,

1 1 0

1

2xt

0

1

2xn
f = l

Let A! be the part of determinant on the right hand side. A x has factors xt — Xj
( l ^ i < j ^ m ) , since Aί=0 by substituting x ί =x J into Aγ, We differentiate
partially At by xt for i such that i^n9 and substitute xt=Xj for i<j^m. Then
it becomes zero. Hence Aί has a factor (xf — Xj)2 for i and 7 such that i ^ n and

On the other hand, for z and j such that i

0
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The second term of the right hand side is zero, and other terms become zero if

wes ubstitute x~Xj. Similarly —- 2* =0 by substituting xt=Xj. Hence At

has factors (xf — x,-)4 for i and7 such that i<j<^n. Hence A is divisible by D.
Since J and D have the same order (m + n — l)(m + n)/2, its quotient factor X must

m(m— 1 )

be a constant. For n=0, iC = (— 1) 2 is a direct consequence from Vander-
monde's formula. So we use the mathematical induction, and assume the result
for n — 1. Now we introduce a lexicographic ordering in the set of monomials
in xί9 ..., xm as x^>X2^> ••• ^>χ

m- Then the coefficient of the highest term of
D is 1, whence that of A is K. On the other hand, as easily verified, the coefficient
of X?*"1 in A is

1

x2

X?

1

2x2

( -

By induction hypothesis,

(m-l)(fn-2) m(m-l)

K=(-l)m+1(-l) 2 =(-1) 2 .

Hence the lemma is proved.

LEMMA 6. Let λ = Σmμi be the highest weight of an irreducible represen-
tation of a semi-simple Lie algebra. Then it does not occur that only one mt

is negative.

PROOF. Suppose that m f<0 and m ^ O for jΦi. Then

(A, αt ) = m£μi9 α,) + Σw/α,, α4) <0,

which contradicts the fact that λ is dominant.
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LEMMA 7. Let $ be a semi-simple Lie algebra, p an irreducible repre-

sentation of z and m the representation space of p. Let λ be the highest weight

of p and μ an arbitrary weight. The weight spaces of λ and μ are denoted by

mλ and mμ respectively. Let vμ be an arbitrary non-zero element of mμ.

Then there exists a sequence of simple roots {aiί9 ...,α ί p} such that p(eaiί) ...

ρ(eai )vμ is a non-zero element of mΛ, and μ is represented as

μ=λ-aiί- ••• -ccip,

where λ — α f l — ••• — <xiq is also a weight for every q^

PROOF. Since m is an irreducible s-space, vμ generates the s-space m.

Hence there exists a non-zero element in mλ of the form p(eβι) ... p(eβp)vμ, where

βl9 ..., βp^Σ0. Obviously μ + Σβt=λ. Among such elements, let

have the minimum length p. Then we assert that every βt is a simple root (ΐ = l,

.. .,p). For this we show by mathematical induction on r that βί9 ...,βr are

simple roots. First, if βί = — α f l, then p(eβ2) ... p(eβp)vμ^mλ+(Xiι={0}, which

contradicts vλΦθ. Hence βι=ociί. Now we suppose that j5 1 =α ί l , ..., βr = ccir

have been shown and prove that βr+ί=ocir+ί. Suppose that it is false, i.e.,

that j9 r + 1 = - α j r + 1 . Then

vλ=ρ(eaii) ... p(leair, β _ β l r + i ] ) . . . p(eβp)vμ

If irΦir+u then [eα i r, e_α ί r + ] = 0 . Hence the first term of the right hand

side is zero. In the case ίΓ = i Γ + 1 , the first term is a scalar multiple of p(eα ί l)

... p(^«ίr_1)p(e/jr+2) ... p(eβp)vμ, which vanishes, for its length is less than p.

However,

contradicts our induction hypothesis. Hence we have proved the first half of the

lemma. Then the latter half will be evident.

LEMMA 8. Let s be a semi-simple Lie algebra, and m a non-trivial, ir-

reducible %-space. Donote by {acί9 ...,αΛ} the system of simple roots and by

Σo the set {α l s . . . ,α π , — α l 5 ..., — αn}. Then there exist at least three weights

ofxn which do not belong to Σθ9 except for the case where 5 has a ^-dimensional

simple ideal s l 9 and m is B-isomorphic to s x or $-isomorphίc to an irredu-

cible 2-dimensional s^space considered as an s-space.

PROOF. Let Σ be the system of roots. We denote by A the set of weights
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of m and by A the highest weight in A. We mean by Sa the reflection in the hyper-

plane orthogonal to the root α. Let μ be an arbitrary weight in A and let M be

the collection of weights of the form μ -f ioc, i an integer. Then M is an arithmetic

progression with first term μ — poc, difference α, and last term μ + q<x and we have

(α, α) F H

([7]). This sequence is called the α-series of the weight μ. Since λΦθ9 there

exists αf such that (A, a f )>0. Then λ — cn^A.

For the convenience of the proof, we divide the proof into four cases.

i) The case λ=ai. Since A is the highest weight, (αi5 α ^ O for any α,-.

On the other hand, by the property of simple roots (aci9 ocj) <Ξ 0 for any jΦi. Hence

we get (oLi9 O/)=0 for jΦ i, i.e. JΓ is decomposed into the union of mutually ortho-

gonal two subsystems, that is, {αί5 — αf} and the collection of all other roots.

Hence in this case s has a 3-dimensional simple ideal s x and m is s-isomor-

phic to »!.

ii) Γfte case / l e i ' — Σo. In this case, — λ = Sλλ^A — Σo. Then the

A-series of the weight A contains the weight 0. Hence we may take the weights

A, Oand -A.

iii) The case where λ~Σ and λ — a^AπΣ. We denote the αrseries of

the weight λ by {λ — pocb ..., λ — αi5 A} and the αΓseries of the root λ — <xt by {A —

/7'αί? ..., λ — α j . Then,

W ? ^ 2 ,_!
2 p

implies ^ ^ 2 and A —/7αfeyl —I 7 . A — α i e / t n 2 ? means Oe/1, considering the

(λ — <X|)-series of the weight λ — αf. λ — pcCi^Σ implies that λ — poίiΦO. Hence,

in this case we may take the weights λ, A — pαf and 0.

iv) 77ie case where λείΣ and λ — oc^Σ. If there exists a,- such as (αί5 OLJ)

< 0, then (A — αf, αy ) = (A, α,-) — (αf, α̂  ) > 0 implies A — αf — α7- e /I. When A — αf —

(Xj^Σθ9 we may take A, A —αf and A — αf — α,-. A — ^ —α7- coincides with neither

— αf nor — α,-, and A — αf — α7- cannot be — αfc by Lemma 6 (kΦί,j). If A — α£ — α,-

=α fc, then — αfc is also a weight. Therefore 0 is a weight and we may take A,

A —αf and 0. On the other hand, if A — 2αίGv4 — Σ, we may take A, A — αf

and A-2α f. If A-2α fGyίΠ 21, there exists a positive integer p (>3) such that

A — pcti e yl — 21 as in iii). Hence there remains only the case where A — αf e A — Σ,

λ — loίi^A and (αf, α7 ) = 0 for every jφi. Then s contains a 3-dimensional

simple ideal. If there exists ./(=£ i) such that A — OyG/1 n Σ, it may be reduced to

the case iii) by replacing αf by α,-. Hence we may suppose that λ — 0Cj^A or

A — α, e A — Σ for every y' ( ̂  i) If there exists j such that λ — oίj^A — Σ, we may

take A, A —αf and A — α,-. When λ — a^A for any j(φi), then (A, a7.)=0. Let
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λ be represented as Σmk<xk. Since the o^-series of the weight λ is {λ — och λ},

On the other hand, for j Φ i9

0 = (λ, Clj) = (-^ Cti+Σ mk0ίk9 Otj
\ Z kΦi

Σ
kΦi

Hence ( Σ m Λ > Σ mk(Xk)=^ implies that mk=0 for kφi and λ=-=- αf. Then
kΨi kΦi Z

m is a two-dimensional space with two weights - ^ and — -^-. This completes

the proof.

§4

Let g be a perfect Lie algebra whose radical r is abelian. We denote by

5 a maximal semi-simple subalgebra of g. Let s be decomposed into a direct

sum of simple ideals of s as follows:

where s ( i ) is a 3-dimensional simple ideal and t, is a simple ideal of other type.

We consider the radical r as an s-space and decompose r into a direct sum

of s-irreducible subspaces. Among them, we denote by u ^ , .-., u ^ the

subspaces isomorphic to the s-space s ( i ) . We take a basis {«**+, W^Q, W^L}

for u ^ ) as follows:

Λi) ΓpU) i/fi 1 — — 2ιv(ί )

j,0 \-ea » " j , OJ "~ Z M j , +

(cf. Example 2). We consider a two dimensional irreducible s(ί)-space υ ( i ) ,

which is also considered as an s-space. We denote by υψ,..., υ ^ the

irreducible components of r isomorphic to υ ( i ) (cf. Example 1). Besides,

we denote by tofcZ's irreducible components of other types, where tt>fcl,..., vokrk

are s-isomorphic to each other and wkl and vok>r are not s-isomorphic for

kφk'(k, k' =1, ..., t). Namely, r is decomposed as follows:
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f+Σϊ f )+ΣΣ% (0
i ί 1

Σ

The following is a generalization of Theorem 2.

THEOREM 3. Let the abelίan radical x of a perfect Lie algebra g be

decomposed into ^-irreducible subspaces as (1). Let Λk be a set of weights of

wkι and let

uk=Ca.rά(Λk-Σ0).

Thenuk^3. If

pt^3 q^2 rk^uk (i = l, ..., s; fc = l, ..., t),

then the nullity of g is two.

PROOF. We can assume that />! = ••• = p s = 3, #i = = g s = 2 , rί=uί, ...,

rt=uv For otherwise we adjoin a suitable s-space r* to g such that the Lie

algebra g*=g + r* satisfies our assumption. Then by Lemma 2 Nul(g*)^

Nul(g). Hence we have only to prove that Nul(g*)=2.

Let λku ...,λkUk be weights of wkι which are not contained in Σo. Let

{α1} ..., αw} be the system of the simple roots, and let α ( ί ) be the simple root

corresponding to a simple ideal s ( ί ). Then

P=Π(«ί-α?)Π(4α?-αJ)Π Π (λki-λkJ) Π (αf-λ^Παi
iΨj iΦj k=ί i<j^uk i,j,k i=ί

is a non-zero polynomial. We take an element h e ί) such that P(/i) ̂  0. From
. , ( α d ) α

( 5 ) α ( 1 ) α ( s ) , n , n 1
the set of weights j - ^ — , . . . , — - _ ^ _ , . . . , - ^ - , λlί9...9 λΐUί,...9 λtl9..., λtuj

we pick up only the mutually different ones and denote them by μ o = 0 , μί9 ...,

μd (where μo=0 should be omitted if unnecessary). Let wki be an element of

wki which belongs to the weight λki(k = l, ..., t\ i = l, ..., uk), and let i ^ + ^ ^ i 0

and v^-^vψ be elements which belong to the weights —^~ and — -
2 2

respectively. Among such weight vectors, we take the ones which belong to the

same weight μ}. Let/7 be the sum of them ( j = 0 , 1, ..., d). Now we take the

following two elements:

t
ί= 1

y= Σβ Σ(
βeΣ0 i=ί

We shall show that the Lie algebra g t generated by x and y coincides with g.

First we can easily show the following (/^ 1).
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(adx)'y

= Σ
βeΣo

Then by Lemma 5, the following determinant is not zero:

β(k) ! -α<'>(A) μj(h) \ 2 \ - 2

Hence all the following elements are contained in gj :

ef, β_,<'> + ιιί,'>_, /,-, u[% uψ^, t
k=ί

Moreover, since the elements

and

belong to g l 9 ^_α

(i) also belongs to g1# Hence gj contains s, u ^ and u ^ ,

because x\ψ and uψ are irreducible s-spaces. Now we decompose fj again as

follows (jφO):

/ j = W i i I i i . . . 4 W | M l M , (2)

where w ί v Z vetD/ v / v 'belong to the same weight μ, and i 1 ? ..., im are defferent

from each other (In certain cases some wivh should be replaced by υ^+ or

v[j

fl.). Among the s-spaces tDίyZ/s we assume that to ί l | 1 . has the highest

weight λ. Then Lemma 7 implies that there exists a sequence of simple

roots {o,v ..., αifc} such that wλ = [β α j i , [ ..., [> α j V w ^ j j ... ] ] is not zero

and belongs to the highest weight λ. We operate (ad eaj ) ... (ad eajk) to the both

sides of (2). Since A cannot be a weight of xoivlv(vΦl), all the terms wivlv

vanish except willr Hence w Λ e g 1 ? which implies that tD f l ί l is contained



42 Terukiyo SATO

in g1# By induction we may show that other wivlv(v^2) or υj^* are contained

in gλ. Quite similarly gx contains tυ t v ί v corresponding to μ 0 and u(

2

f).

Thus Qί must coincide with g. This completes the proof.

Furthermore we can prove the following

THEOREM 4. Let the abelian radical x of a perfect Lie algebra g be

decomposed into ^-irreducible spaces as (1). Let vk be the number of distinct

weights in wkh and let uk be the number of distinct weights in mkl which

are not contained in Σ0(k = l9 ..., t\ Z = l, ..., rfc). Then

Nul(g)<Ξ Max l-^-9 -^V*-, Γ* + f ; * " " t l * " 1

> oi + 2 (3)

PROOF. By the same reason as remarked in the proof of the previous theo-

rem, we may increase the values of ph qt and rk unless the integral part of the maxi-

mum value in the above inequality (3) is altered. Hence we can assume that

there exists an integer K such as Pi = 3K, q{=2K and rk + vk — uk=Kvk, i.e. the

integral part of the maximum value is equal to K—ΐ. Now we divide the family

o f s u b s p a c e s \x\ύ

9 υ^>, wkl ( i = l , ..., s ; c=4, ...,3K; κ=3, ..., 2K; k = l, ...,t;

Z = n k"+1, ..., (K— l)vk + uk) into K— 1 groups as follows:

{u(

4

f), u ^ , uψ, υψ, Ό(J\ wkUk+u ..., rυ f c M k + t ; k },

Wkuk+(K-l)vk}

Let I/^VJ US% a n c * u(j?- ^ e elements in u*-0 which belong to the weights
α ( ί ), 0, — α ( i ) respectively, and let vγ^+ and i ̂ L be elements in υy } which

belong to the weights ^ - and — %y- respectively. Now we denote by {λku ...,

λkυk} the system of weights of mkj, and we choose an element w f c M k + ( v_ 1 ) y k + ί
Gtϊ)fcuk+(v-i)t;k+z which belongs to the weight λkι (fe = l, ..., ί; v = l, ..., X - l ;

Z = l, ..., ι;Λ). We take the following additional K— 1 elements together with

the generators x and y in the proof of Theorem 3 :

Φ 2 J (

(v = l, ...,X-1).

Theorem 3 shows that x and y generate a subalgebra containing s. Hence it
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is easy to see that x, y, zu ...,zκ_1 generate g. Thus Nul(g)^X+l, which
proves the theorem.

The following is a rectification of Marshall's inequality.

COROLLARY. Let d be the dimension of a perfect Lie algebra g. Then,

PROOF. Set n=Nul(g). In the case n=2, there is nothing to be proved.
Hence we suppose n^ 3. Example 1 shows the existence of a perfect Lie algebra
of dimension An — 3 whose nullity is n. Suppose that g has the least dimension
among perfect Lie algebras with nullity n. We have only to show that dimg =
An —3. Obviously the radical r of g is abelian. Let r be decomposed as in
(1), and we denote by K— 1 the integral part of the maximum value in (3). Then

Theorem 4 shows n^K+l. If there exists i0 such that K-l=ϊPio~ Ί,

then pio^3n — 5, and

which is impossible. Similarly K— 1= - ^ ^ ^ is also a con-

tradiction. In fact, in this case,

The right hand side is greater than An — 3 since n^3 and vko^uko^3, which is

also impossible. Hence we have K — 1 = - ^ r ^ n — 2, i.e. if qio is even,

<? ίo^2n-2, and if qio is odd, qio^2n-3. Then d ^ 3 + 2(2n-2) and d ^ 3 +
2(2n —3) respectively. Hence only the latter case is possible. Thus the Lie
algebra of the least dimension is such one satisfying that dim s=3, s = l , p 1 = ί = 0
and qί=2n — 3. This is nothing but the one stated in Example 1. Hence the
proof is complete.

§5

In this section we discuss the nulity of a Lie algebra whose radical is nilpotent.
We begin with the following lemmas.

LEMMA 9. J/g is represented as a direct sum of two ideals a and b, then

Nul(g)^Max{Nul(α/[α, o]), Nul([b, b])}

+ Nul([α, α]) + Nul(b/[b, b]).
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PROOF. Let {au ..., an) and {bu ...,&J be sets of generators of a/[a9 α]
and b/[b9 b] respectively. We take representative elements al9 ..., an9

bu ..., bq contained in these residue classes. Let [α, α], [b, b] be generated
by {a'l9 ..., α^}, {6'l9 ..., b'n) respectively. We set ^ = ̂  + 6; (ί = l, ..., n)
and denote by gx the subalgebra generated by a\9 ...9a'p9 bl9 ...9bq9 cl9

...,cn. b is generated by bί9...9bq, b'l9...9b'n. Hence an arbitrary element
of [b, b] is represented as a linear combination of monomials in these elements
of order not less than 2. Then, since [α, α ] c g l 5

U>i9

Hence [b, b ] c g l 5 which implies that b; and αf are contained in gx. Thus
we obtain g=cji, which proves our statement.

LEMMA 10. // a Lie algebra g is a direct sum of an abelian ideal a and
a perfect ideal b, then

Nul (g) = Max {dim α, Nul (b)}.

PROOF. It is obvious by Lemma 3 that Nul(α)=dimα and Nul(g)Ξ>
Max {Nul(α), Nul(b)}. In the previous lemma, we put Nul([α, α])=Nul
(ty[b, b])=0. Then we have the assertion.

Now let g be a Lie algebra whose radical r is nilpotent, and s a maximal
semi-simple subalgebra of g. The radical r, considered as an s-space, is
represented as a direct sum of s-spaces as follows:

r=[r , r ] + α + b,

where [s, α] =0 and [s, b] =b. Then

b = ( β + b + [ r , r ] ) / [ r , r ]

is a perfect ideal of g/ [r, r] and

α=(α+[r, r ] )/[ r , r]

is an abelian ideal. g/[r, r] is a direct sum of these two ideals. From
Lemma 4, Nul(g)=Nul(g/[r, r]). Then the following theorem immediately
follows from the previous lemma.

THEOREM 5. Let g be a Lie algebra whose radical x is nilpotent, and
s its maximal semi-simple subalgebra. Let x be decomposed as follows:
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r=[r , r ]+α + b,

where [s, α] =0 and [s, b]=b. Then, (s+b + [r, r])/[r, r] is a perfect Lie
algebra and

Nul(g) = Max{Nul((s+b + [r, r])/[r, r]), dimα}.

§6

In this last section, we investigate the nullity of a Lie algebra whose adjoint
representation is splittable. A Lie algebra g is said to be splittable if it is a linear
Lie algebra and a nilpotent component of an arbitrary element of g also belongs
to g (Malcev [10]). This notion is an extension of Chevalley's notion of an
algebraic Lie algebra ([4]). A Lie algebra whose adjoint representation is al-
gebraic has a decomposition of a special type (Gotό[6], Matsushima [12], Cheval-
ley [5]) A Lie algebra whose adjoint representation is splittable has also a similar
decomposition (Togo [14]). That is, let ad g is splittable for a Lie algebra g.
Let r be the radical of g and n the largest nilpotent ideal. Then there exist
a maximal semi-simple subalgebra s and an abelian subalgebra α such that

g = s + r, r = α + n, (4)

where [s + α, α]=0 and adgα consists of semi-simple matrices. Conversely
every Lie algebra admitting such a decomposition has a splittable adjoint repre-
sentation.

PROPOSITION 1. Let $ be a Lie algebra whose nullity is m. Let {fί9 ...,
/„} be an arbitrary basis for g. Then there exist generators of g such that

«,=/i+ Σ Ujifj (i = l, ..., m)
j=m+ί

Moreover, let r be the dimension of g/[g, g]. For given r elements gί9 ...,
gr linearly independent modulo [g, g], there exist generators of g of the
following forms:

ΰi + hl9 •••> 9ΛK K+U •••> K (hl9 . . . ,/ ί m e[g, g]).

PROOF. We take generators

We may assume by Lemma 1 that
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Iβli \ βln, \

Hm 1 '. P mm

is a regular matrix. Then

(ai...am)=(b1...bJP-*=(fi-L)( ^ j

also generate g. The latter half is evident, since m ^ r by Lemma 2.
Now we suppose that 9 is a solvable Lie algebra and adg is splittable.

Then g is decomposed into a direct sum of subalgebras such as g=α + n,
where α is an abelian subalgabra, n is the largest nilpotent ideal and adβα
consists of semi-simple elements. Considering n as an ad α-space, we decompose
it into a sum of adα-spaces as follows:

h n r + [ n , n],

where [α, n o ]=0, [α, ni']=ni and \_a, ni']=βi(a)ni for
we have

). Then

THEOREM 6. Let Qbe a solvable Lie algebra whose adjoint representation
is splittable. Under the above notations, let

M= Max dim n f.

Then

Nul (g)= Max {dim (α + n 0 ), M + l } .

PROOF. For ί̂ > 1, we suppose that

We chose an element a1 in α such that

Π (/*,-/»,) Π /f,

does not vanish at ax. Let {α l5 « 2 J •••> Λp} be a basis for α and {n0 1, ..., nOq}
a basis for n 0 . Let L = Max {/? + # — 1, M}. Then it is easily proved that the
following L + l elements generate g:

al9 a2+

Σ
1 5j i ^

ί9 ..., ap+
P

•••5 W 0 g + Σ W

1 ^ i ^ r
(5)
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where we consider that ^ = 0 if j>M. Hence we get

Nul (g) ̂  Max {dim (α + n 0 ), M +1}.

To prove the reversed inequality we set JV=Nul(g). Let al9 ...9 ap, n0l9

r

...,nOq be the same as above. Since [g, g] = Σ n f + [n, n], N^p + q follows
i= 1

from Lemma 2. We can assume that [n, n ] = 0 . Proposition 1 implies that

there exist N generators of g as follows:

Σι

Σ

where m l 7 are some elements in n f. As is easily verified, for l^i<j^p and

Let b be the subalgebra generated by bί9...9bp. Then

b = {{&!, ..., bp9 βk(ad^kj-

(fc = l f . . . , r ; l ^

Since g is generated by fel5 ..., bN9

Let dim n k = M . Then the system of linear equations
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has a solution Xι=βko{aί). Hence the px p^~ ' matrix

ϊ)

o \

has a rank at most /7 — 1. Let

Then dimbfco is at most p— 1. Since

which implies that

Thus we have proved the theorem.
Remark. Knebelman [8] and Bond [2] state the following:
If the genus of g is zero, then g is either abelian or g = {{̂ }} + n, where

[π, n]=0 and [α, ή]=n for any n e n .
We give here another proof in our words. First it is obvious that [α, fe]e

{{a, b}} for a9 fceg. Let r be the radical and s a maximal semi-simple sub-
algebra. If s^O, then

dim g = Nul (g) ̂  Nul (s) + Nul(r) = 2 + Nul (r)

<dims + dimr=dimg,

which is a contradiction. Hence s=0, that is, g is solvable. Let a, b be two



On Generators of Lie Algebras 49

elements which are linearly independent modulo [g, g]. Then [α, b]e{{α,

£>}}Π[g, g] implies [α, ί?]=0. Hence g splits into α+[g, g], where α is an

abelian subalgebra. Since \_a, n]e{{n}} for α ε α and n£[g,g] , adg is

splittable. Then under the same notations as in Theorem 6,

dimg=Nul(g) = Max{dim(α + n0), M + l } .

If dim(α + n o ) = dimg, g is abelian. If d i m g = M + l , then dimα = l and

g = {{α}} + n 1, where [a, nί]=β(a)n1 for n1^xxί. We can assume that

β(a) = l9 and the proof is complete.

Now, let g be a non-solvable Lie algebra whose adjoint representation is

splittable. g has a decomposition as in (4). n is a completely reducible

(s-hα)-space ([5]), and {n£n; [n, s]=0} is (s-hα)-stable since [s, α]=0,

whence n is represented as follows:

n = [ n , n J + n o + ΠiH \rnr + mί-\ hfrts,

where

α, n o ] = O , [ β , n J = O (z = l , . . . ,r

τ n l s . . . , fn^ are non-trivial (s + α)-irreducible spaces and n l 5 . . . , n r are weight

spaces which belong to non-zero weights of α. We may assume [n, n ] = 0 b y

Lemma4. Let tr^ be an irreducible s-space contained in m f. For α ε α , [α, m j

is either s-isomorphic to m, or zero. Hence there exist aiu ..., «ίfcί in α such

that

We divide the family of irreducible 5-spaces ml9 . . . ,m s into classes as follows:

{m n , . . . , m l f l } ,

{m M l , ..., m u f j ,

where Σtk=s, m f J = m o / and m o ^=mΓ j , for iΦΪ. Let the s-space m^ have dt

different weights. We take an element h0 in a Cartan subalgebra of s which

separates all the distinct roots of s and all the distinct weights in rrt11 +

• •• +mul9 and let /z0 and s0 generate s. Let

+ 1.

Then, by the almost same argument as in the proof of Theorem 4, the perfect

Lie algebra B + m1 + -" +ms is generated by the following K + 2 elements:
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h0, sθ9 mί9 ..., mK9

where m, are suitable elements in ntj-h ••• + m s . On the other hand let

/? = dimα, q — άimnθ9 M = M a x d i m n f ,

JV=Max{M+l, p + q, K + 2}.

Then, under the same notations as in the proof of Theorem 6, the solvable Lie

algebra α + no + nί H hn r is generated by the elements in (5). Moreover,

it is also verified that the following N elements generate g:

a2 + Σnn

a3 + Σni2

nOί + Σnip

+ h0

+ s0

+ » ,

+ mP-2

+ mP-t

ΣniN-ί + m J V _ 2 ,

where Σ means a sum on i from 1 to r, and we consider that nu=0 if j>M and

77^=0 if i>K. The nullity of the solvable Lie algebra a + no + n1+ ••• + n Γ

is Max { M + l , p + q) and it is not greater than Nul(cj) since s+ft^H hm s

is an ideal of g. We can summarize our results in the following

THEOREM 7. Let Q be a Lie algebra whose adjoint representation is

splittable. Let x be the radical of g, and n the largest nilpotent ideal.

Then g is decomposed into a direct sum of subalgebras as follows:

where s is a maximal semi-simple subalgebra, α is an abelian subalgebra9

ad β α consists of semi-simple matrices, m .̂ is a non-trivial irreducible

a)-subspace and
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[s,o]=0, [s + o, no]=0,

[β,fl]=0, [o, n] = n.

Moreover fn^ contains an ^-irreducible space mfj , and

m r r foriΦΪ.

Let the s-space m^ have dt distinct weights. Then (α + n o -hn+ [n, n])/
[n, n] is a solvable Lie algebra whose adjoint representation is splίttable,
and its nullity is given by Theorem 6. We denote it by P. Then
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