Integral Representations of Beppo Levi Functions of Higher Order

Yoshihiro MIZUTA (Received January 10, 1974)

Introduction

If f is a C^1 -function with compact support on the Euclidean space R^n $(n \ge 3)$, then it can be represented by its partial derivatives as follows:

(1)
$$f(x) = -\frac{1}{a_n} \sum_{i=1}^n \int \frac{\partial}{\partial t_i} |x-t|^{2-n} \frac{\partial f}{\partial t_i}(t) dt$$

There are many ways to represent a C^m -function (*m*: positive integer) with compact support on R^n ($n \ge 2$) in terms of its partial derivatives of *m*-th order. Among them, the following two are regarded as generalizations of (1):

(2)
$$\varphi(x) = \sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} \varphi(y)}{|x-y|^{n}} dy$$

(Yu. G. Reshetnyak [9]), and

(3)
$$\varphi(x) = \begin{cases} \sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha}(|x-y|^{2m-n}) D^{\alpha} \varphi(y) dy \\ \text{if } n-2m > 0 \text{ or } n \text{ is odd} \\ \text{and } n-2m < 0, \\ \sum_{|\alpha|=m} c_{\alpha}' \int D^{\alpha}(|x-y|^{2m-n} \log |x-y|) D^{\alpha} \varphi(y) dy \\ \text{if } n \text{ is even and } n-2m \le 0 \end{cases}$$

(H. Wallin [11]).

On the other hand, J. Deny and J. L. Lions [5] studied the space of Beppo Levi functions, e.g., the space $BL(L^p(\mathbb{R}^n))$ of distributions on \mathbb{R}^n whose partial derivatives belong to $L^p(\mathbb{R}^n)$. They showed that any quasi continuous function f in $BL(L^2(\mathbb{R}^n))$ ($n \ge 3$) is represented as (1) quasi everywhere, with an additional constant. M. Ohtsuka [8] extended their results to p-precise functions, which belong to $BL(L^p(\mathbb{R}^3))$, and gave many other properties of precise functions in his lectures at Hiroshima University.

In this paper, we consider the space $BL_m(L^p(\mathbb{R}^n))$ of Beppo Levi functions

of higher order *m*, that is the space consisting of distributions on \mathbb{R}^n whose partial derivatives of *m*-th order all belong to $L^p(\mathbb{R}^n)$. To obtain fine results, we need a concept of (m, p)-capacity. For our purpose, the (m, p)-capacity introduced by H. Wallin [12], which is denoted by $\Gamma_{m,p}$, is best suited. However, since we fail to verify whether it is subadditive or not, we also consider another capacity $\Gamma_{m,p}^+$, which is subadditive, and in fact, a true capacity in the sense of M. Brelot [2]. We shall see that it is equivalent to $\Gamma_{m,p}$. Through our capacity $\Gamma_{m,p}^-$, we shall define (m, p)-quasi continuity of functions.

It is known that functions in the Sobolev space $W^{m, p}(\mathbb{R}^n)$ are represented as Bessel potentials (cf. [1], [3], [9]). Using Bessel potentials, Yu. G. Reshetnyak defined (l, p) capacity and then gave a characterization of (l, p) polar sets (see [9; Theorem 5.8]). We shall show that in case l is a positive integer m, his capacity is equivalent to $(\Gamma_{m,p})^p$ and that his characterization can be given by using our integral representations.

Then we shall show that integral representation of the form (2) is possible for certain (m, p)-quasi continuous functions in $BL_m(L^p(\mathbb{R}^n))$. Integral representation of the form (3) was given by H. Wallin for functions in $BL_m(L^p(\mathbb{R}^n))$ with compact supports (see [11; Lemmas 7 and 8]). We shall extend his result to the case where supports are not necessarily compact, and in fact we shall prove it in a way different from his.

In the final section, we shall discuss representation of (m, p)-quasi continuous functions in $BL_m(L^p(\mathbb{R}^n))$ as Riesz potentials of functions in $L^p(\mathbb{R}^n)$. It is an extension of M. Ohtsuka's result for *p*-precise functions given in [8]. To obtain our result we shall make use of the methods in the previous sections.

§1. Preliminaries

Let \mathbb{R}^n be the *n*-dimensional Euclidean space with points $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$, etc. For a multi-index $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$, we set $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$, $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$ and

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}}.$$

We shall use the following notations of L. Schwartz [10]: $\mathcal{D}(\mathbb{R}^n)$, $\mathcal{S}(\mathbb{R}^n)$.

In this paper, let 1 . For a non-negative integer*m* $, we denote by <math>W^{m, p}(\mathbb{R}^n)$ the Sobolev space, that is, the space of all distributions *F* such that $D^{\alpha}F \in L^p(\mathbb{R}^n)$ for any α with $|\alpha| \leq m$. The norm of *F* in $W^{m, p}(\mathbb{R}^n)$ is defined by

$$||F||_{m,p} = ||(\sum_{|\alpha| \le m} |D^{\alpha}F|^2)^{1/2}||_p$$

where $\|\cdot\|_p$ denotes the L^p-norm in \mathbb{R}^n . It is well-known that $W^{m,p}(\mathbb{R}^n)$ is a reflex-

ive Banach space if 1 (cf. [7]).

J. Deny and J. L. Lions introduced the following spaces ([5]): $BL_m(L^p(\mathbb{R}^n))$ is the space of Beppo Levi functions of order *m* attached to $L^p(\mathbb{R}^n)$, that is, the space of all distributions *T* such that $D^{\alpha}T \in L^p(\mathbb{R}^n)$ for any $|\alpha| = m$ with a semi-norm $|T|_{m,p} = \|(\sum_{|\alpha|=m} |D^{\alpha}T|^2)^{1/2}\|_p$, and $BL_m \cdot (L^p(\mathbb{R}^n))$ is the quotient space of $BL_m(L^p(\mathbb{R}^n))$ by the space of all polynomials of degree $\leq m-1$. We note that if $F \in BL_m$ $(L^p(\mathbb{R}^n))$ has compact support, then $F \in W^{m, p}(\mathbb{R}^n)$ by [10; Chapitre 6, Théorème XV (Kryloff)].

§2. (m, p)-capacity

Let m be a non-negative integer. We introduce the notion of (m, p)-capacity. First, for a compact set $e \subset \mathbb{R}^n$, we define

$$\Gamma_{m,p}(e) = \inf \{ \|\varphi\|_{m,p}; \varphi \in \mathcal{D}(R^n), \varphi \ge 1 \text{ on } e \},\$$

$$\Gamma_{m,p}^+(e) = \inf \{ \|\varphi\|_{m,p}; \varphi \in \mathcal{D}_+(R^n), \varphi \ge 1 \text{ on } e \},\$$

where $\mathcal{D}_+(R^n) = \{ \varphi \in \mathcal{D}(R^n); \varphi \ge 0 \text{ on } R^n \}$. Next, for an open set $\omega \subset R^n$, we define

$$\Gamma_{m,p}(\omega) = \sup_{e \subset \omega, e: \text{compact}} \Gamma_{m,p}(e) ,$$

$$\Gamma_{m,p}^{+}(\omega) = \sup_{e \subset \omega, e: \text{compact}} \Gamma_{m,p}^{+}(e) .$$

Then we note that $\Gamma_{m,p}(e) = \inf \{ \Gamma_{m,p}(\omega); e \subset \omega, \omega \text{ is open} \}$ and $\Gamma_{m,p}^+(e) = \inf \{ \Gamma_{m,p}^+(\omega); e \subset \omega, \omega \text{ is open} \}$, which allow us to define for an arbitrary set $A \subset \mathbb{R}^n$ the following quantities:

$$\Gamma_{m,p}(A) = \inf_{A \subset \omega, \omega: \text{open}} \Gamma_{m,p}(\omega),$$

$$\Gamma_{m,p}^{+}(A) = \inf_{A \subset \omega, \omega: \text{open}} \Gamma_{m,p}^{+}(\omega).$$

 $\Gamma_{m,p}(A)$ is called the (m, p)-capacity of A (cf. [12]).

REMARK 2.1. It is easy to see that $\Gamma_{0,p}(A) = \Gamma_{0,p}^+(A) = \{ \text{outer Lebesgue} \text{ measure of } A \}^{1/p}$. Furthermore, we have $\Gamma_{1,p}(A) = \Gamma_{1,p}^+(A)$, because, for $F \in BL_1$ $(L^p(\mathbb{R}^n))$, $|F| \in BL_1(L^p(\mathbb{R}^n))$ and |grad |F|| = |grad F| a.e. on \mathbb{R}^n (see [5; Théorème 3.2 in p. 316]).

From the definitions, we can easily prove

LEMMA 2.1. (i) $\Gamma_{m,p}$ and $\Gamma_{m,p}^+$ are monotone increasing and continuous from the right.

(ii) $\Gamma_{m,p}^+$ is countably subadditive, that is

$$\Gamma^+_{m,p}(\bigcup_{j=1}^{\infty}A_j) \leq \sum_{j=1}^{\infty}\Gamma^+_{m,p}(A_j)$$

for a countable family $\{A_i\}$ of sets in \mathbb{R}^n .

For relationship between $\Gamma_{m,p}$ and $\Gamma_{m,p}^+$, we have

LEMMA 2.2. There exists a constant $C \ge 1$ such that

 $\Gamma_{m,p}^+(e) \leq C \Gamma_{m,p}(e)$ for all compact set e in \mathbb{R}^n .

From this lemma, the following theorem immediately follows:

THEOREM 2.1. There exists a constant $C \ge 1$ independent of A such that

$$\Gamma_{m,p}(A) \leq \Gamma_{m,p}^+(A) \leq C \Gamma_{m,p}(A)$$

for any set A in Rⁿ.

PROOF OF LEMMA 2.2. On account of Remark 2.1, it suffices to show the case $m \ge 2$. We use the Bessel kernel G_m , which is determined by the following properties:

- (i) G_m is a non-negative function belonging to $L^1(\mathbb{R}^n)$,
- (ii) the Fourier transform of G_m is $(1+4\pi^2|x|^2)^{-m/2}$.

It is known that a distribution F belongs to $W^{m, p}(\mathbb{R}^n)$ if and only if there exists a function $f \in L^p(\mathbb{R}^n)$ such that $F = G_m * f$ in $W^{m, p}(\mathbb{R}^n)$, and that

(2.1)
$$C^{-1} ||f||_{p} \leq ||G_{m} * f||_{m,p} \leq C ||f||_{p}$$

for some constant C > 0 independent of f (see [3; Theorem 7]).

Let $\varphi \in \mathcal{D}(\mathbb{R}^n)$ and $\varphi > 1$ on e. We can write $\varphi = G_m * f$ for some $f \in \mathcal{S}(\mathbb{R}^n)$. Then $G_m * f^+$ is obviously continuous and > 1 on e, where $f^+(x) = \max(0, f(x))$. If we show $\Gamma_{m,p}^+(e) \leq ||G_m * f^+||_{m,p}$, then

$$\Gamma_{m,p}^{+}(e) \leq C \|f^{+}\|_{p} \leq C \|f\|_{p} \leq C^{2} \|\varphi\|_{m,p},$$

which implies $\Gamma_{m,p}^+(e) \leq C^2 \Gamma_{m,p}(e)$.

Take a function $\psi \in \mathcal{D}_+(\mathbb{R}^1)$ which is equal to 1 on a neighborhood of 0. Set

$$\psi_j(t) = \begin{cases} 1 & \text{if } t \leq j \\ \psi(t-j) & \text{if } t > j, \end{cases}$$

and set $\tilde{\psi}_j(x) = \psi_j(|x|)$. It is easy to check that $\tilde{\psi}_j F \to F$ in $W^{m, p}(\mathbb{R}^n)$ as $j \to \infty$ for any $F \in W^{m, p}(\mathbb{R}^n)$. Let $\{h_k\}$ be a sequence of functions belonging to $\mathscr{D}_+(\mathbb{R}^n)$ such that $\operatorname{supp}(h_k) \subset \{x; |x| \leq (1/k)\}$ and $\int h_k(x) dx = 1$. For each j and $k \{\tilde{\psi}_j (G_m * f^+)\} * h_k \in \mathscr{D}_+(\mathbb{R}^n)$ and for sufficiently large j and k, we have $\{\tilde{\psi}_j(G_m * f^+)\} * h_k \geq 1$ on e. Therefore

$$\Gamma_{m,p}^+(e) \leq \lim_{j \to \infty} \lim_{k \to \infty} \|\{\tilde{\psi}_j(G_m * f^+)\} * h_k\|_{m,p} = \|G_m * f^+\|_{m,p}.$$

Thus Lemma 2.2 is proved.

REMARK 2.2. In the above proof, we have also shown that $\mathscr{D}_+(\mathbb{R}^n)$ is dense in $W^{m,p}_+(\mathbb{R}^n) = \{f \in W^{m,p}(\mathbb{R}^n); f \ge 0 \text{ a.e.}\}$ with respect to the topology of $W^{m,p}(\mathbb{R}^n)$.

A set $A \subset \mathbb{R}^n$ is called (m, p)-polar if $\Gamma_{m,p}(A) = 0$, or equivalently, $\Gamma_{m,p}^+(A) = 0$. If a property is true on a set $A \subset \mathbb{R}^n$ except for an (m, p)-polar set in A, then we say that this property is true (m, p)-quasi everywhere or (m, p)-q.e. on A.

A function f is called (m, p)-quasi continuous if given $\varepsilon > 0$, there exists an open set $\omega \subset \mathbb{R}^n$ such that $\Gamma_{m,p}(\omega) < \varepsilon$ and the restriction of f to $\mathbb{R}^n - \omega$ is continuous.

By Lemma 2.1 and Theorem 2.1, we can prove the following lemma in the same manner as J. Deny J. L. Lions [5].

LEMMA 2.3. For each $F \in W^{m, p}(\mathbb{R}^n)$, we set $\Phi(F) = \{f; f \text{ is } (m, p)\text{-quasi} \text{ continuous and equals } F \text{ a.e. on } \mathbb{R}^n\}$. Then we have the following assertions:

(i) $\Phi(F)$ is non-empty, two functions of $\Phi(F)$ are equal to each other (m, p)q.e., and any function which equals some function of $\Phi(F)$ (m, p)-q.e. belongs to $\Phi(F)$ (cf. [5; Théorème 3.1 in p. 354]).

(ii) If a sequence $\{F_j\}$ converges to F in $W^{m,p}(\mathbb{R}^n)$ as $j \to \infty$, then there exists a subsequence $\{F_{j_k}\}$ of $\{F_j\}$ such that for any $f_{j_k} \in \Phi(F_{j_k})$ and any $f \in \Phi(F)$, $\{f_{j_k}\}$ converges to f(m, p)-q.e. as $k \to \infty$ (cf. [5; Théorème 4.1 in p. 357]).

A distribution $T \in BL_m(L^p(\mathbb{R}^n))$ can be considered as a function f with $D^{\alpha} f \in L^p_{loc}(\mathbb{R}^n)$ for any α with $|\alpha| \leq m$. For this f, there exists an (m, p)-quasi continuous function equal to f a.e. (cf. [5; Théorème 3.1 in p. 354]).

Let ω be an open set in \mathbb{R}^n . Denote by $\mathscr{W}^{m,p}(\omega)$ the class of all $F \in W^{m,p}(\mathbb{R}^n)$ such that $F \ge 1$ a.e. on ω . Then we show

LEMMA 2.4. $\Gamma_{m,p}(\omega) = \inf \{ \|F\|_{m,p}; F \in \mathscr{W}^{m,p}(\omega) \}.$

PROOF. Let e be a compact set in ω , and let $\{\tilde{\psi}_j\}$ and $\{h_k\}$ be the same as in the proof of Lemma 2.2. Then for any $F \in \mathscr{W}^{m, p}(\omega)$, we have $\Gamma_{m, p}(e) \leq \lim_{j \to \infty} \lim_{k \to \infty} \|(\tilde{\psi}_j F) * h_k\|_{m, p} = \|F\|_{m, p}$. Therefore $\Gamma_{m, p}(\omega) \leq \inf \{\|F\|_{m, p}; F \in \mathscr{W}^{m, p}(\omega)\}$. To prove the converse inequality we may assume $\Gamma_{m, p}(\omega) < \infty$. Take a sequence

 $\{e_j\}$ of compact sets such that $e_j \subset$ the interior of $e_{j+1} \subset \omega$ for any $j \ge 1$, and $\bigcup_{j=1}^{\infty} e_j = \omega$. Next, for each *j*, choose $\{\varphi_j\} \subset \mathcal{D}(\mathbb{R}^n)$ satisfying $\varphi_j \ge 1$ on e_j and $\|\varphi_j\|_{m,p} < \Gamma_{m,p}(e_j) + (1/j)$. Then $\{\varphi_j\}$ is a bounded set in the reflexive Banach space $W^{m,p}(\mathbb{R}^n)$. Hence there exists a subsequence $\{\varphi_{j_k}\}$ of $\{\varphi_j\}$ and $F \in W^{m,p}(\mathbb{R}^n)$ such that $\varphi_{j_k} \to F$ weakly in $W^{m,p}(\mathbb{R}^n)$ as $k \to \infty$. This implies $F \ge 1$ a.e. on ω and $\|F\|_{m,p} \le \liminf_{k \to \infty} \|\varphi_{j_k}\|_{m,p} \le \Gamma_{m,p}(\omega)$. Thus our lemma is proved.

Let A be a set in \mathbb{R}^n . Denote by $\mathscr{W}^{m,p}(A)$ the closure of the class of all $F \in W^{m,p}(\mathbb{R}^n)$ such that $F \ge 1$ a.e. on a neighborhood of A.

THEOREM 2.2. If $\Gamma_{m,p}(A) < \infty$, then there exists a unique $F \in \mathscr{W}^{m,p}(A)$ such that

- (a) if $f \in \Phi(F)$, then $f \ge 1$ (m, p)-q.e. on A,
- (b) $||F||_{m,p} = \Gamma_{m,p}(A).$

PROOF. By Lemma 2.3, the class of all $F \in W^{m, p}(\mathbb{R}^n)$ such that $f \ge 1$ (m, p)q.e. on A for any $f \in \Phi(F)$ is a closed set in $W^{m, p}(\mathbb{R}^n)$ and includes $\mathscr{W}^{m, p}(A)$. Therefore all $F \in \mathscr{W}^{m, p}(A)$ satisfy (a).

On the other hand $\mathscr{W}^{m, p}(A)$ is a closed convex subset of the reflexive Banach space $W^{m, p}(R^n)$, and by using Lemma 2.4, we see that $\Gamma_{m, p}(A) = \inf \{ \|F\|_{m, p}; F \in \mathscr{W}^{m, p}(A) \}$. This infimum is attained at a unique element $F \in \mathscr{W}^{m, p}(A)$ because of the uniform convexity of $W^{m, p}(R^n)$ (see [7; Chapitre 1, 3.3]). This F is the required one.

For any set A in \mathbb{R}^n , we set $\mathscr{W}^{m,p}_+(A) = \{F \in \mathscr{W}^{m,p}(A); F \ge 0 \text{ a.e. on } \mathbb{R}^n\}$. It is easy to see that $\mathscr{W}^{m,p}_+(A)$ is a closed convex set and consists of all F in $\mathscr{W}^{m,p}(\mathbb{R}^n)$ such that any function of $\Phi(F)$ is ≥ 0 (m, p)-q.e. on \mathbb{R}^n and ≥ 1 (m, p)q.e. on A.

LEMMA 2.5. $\Gamma_{m,p}^+(A) = \inf \{ \|F\|_{m,p}; F \in \mathscr{W}_+^{m,p}(A) \}.$

PROOF. Let $F \in \mathscr{W}_{m,p}^{*,p}(A)$. Then $\Gamma_{m,p}^{+}(A) \leq ||F||_{m,p}$ can be shown in the same way as J. Deny and J. L. Lions [5; Lemme 4.1 in p. 356]. Hence we have $\Gamma_{m,p}^{+}(A) \leq \inf \{||F||_{m,p}; F \in \mathscr{W}_{m}^{*,p}(A)\}$. The converse inequality can be shown in the same way as in Lemma 2.4 and Theorem 2.2.

By this lemma, we have the following theorem:

THEOREM 2.2'. For an arbitrary set A with $\Gamma_{m,p}^+(A) < \infty$, there exists a unique $F \in W^{m,p}(\mathbb{R}^n)$ such that

- (a) for any $f \in \Phi(F)$, $f \ge 0$ (m, p)-q.e. and $f \ge 1$ (m, p)-q.e. on A,
- (b) $||F||_{m,p} = \Gamma^+_{m,p}(A).$

DEFINITION. We shall denote by f_A any function in $\Phi(F)$ in Theorem 2.2'.

LEMMA 2.6. Let $\{A_j\}$ be any increasing sequence of sets in \mathbb{R}^n , and set $A = \bigcup_{j=1}^{\infty} A_j$. Then $\Gamma_{m,p}^+(A_j) \uparrow \Gamma_{m,p}^+(A)$ as $j \to \infty$.

PROOF. Take $F_j \in W^{m,p}(\mathbb{R}^n)$ with the properties in Theorem 2.2' for each A_j . We may assume that $\lim_{j\to\infty} \Gamma^+_{m,p}(A_j) < \infty$. Then $\{F_j\}$ is bounded in $W^{m,p}(\mathbb{R}^n)$. Therefore there exist a subsequence $\{F_{jk}\}$ of $\{F_j\}$ and $F \in W^{m,p}(\mathbb{R}^n)$ such that $F_{jk} \to F$ weakly in $W^{m,p}(\mathbb{R}^n)$ as $k \to \infty$. Moreover we have $F \in \bigcap_{j=1}^{\infty} \mathcal{W}^{m,p}(A_j) = \mathcal{W}^{m,p}(A)$. Hence

$$\Gamma_{m,p}^+(A) \leq \|F\|_{m,p} \leq \liminf_{k \to \infty} \|F_{j_k}\|_{m,p} = \lim_{j \to \infty} \Gamma_{m,p}^+(A_j) \leq \Gamma_{m,p}^+(A),$$

which implies that $\lim_{j\to\infty} \Gamma^+_{m,p}(A_j) = \Gamma^+_{m,p}(A)$.

Lemmas 2.1 and 2.6 mean that $\Gamma_{m,p}^+$ is a true capacity in the sense of M. Brelot [2]. Thus we have

THEOREM 2.3. Any analytic set in \mathbb{R}^n is capacitable with respect to $\Gamma^+_{m,p}$.

Yu. G. Reshetnyak defined the (l, p) capacity $\operatorname{Cap}_{(l,p)}E$ of sets E in \mathbb{R}^n in case l is a positive number and p > 1, as follows (see [9]):

$$\operatorname{Cap}_{(l,p)}E = \inf \{ \|f\|_p; f \in L^p(\mathbb{R}^n), \ge 0 \text{ and } G_l * f \ge 1 \text{ on } E \}.$$

As another application of Lemma 2.4 we give

THEOREM 2.4. In case l is a positive integer m and $mp \leq n$, there exists a positive constant C such that

(2.2)
$$C^{-1}{\{\Gamma_{m,p}(E)\}^p} \leq \operatorname{Cap}_{(m,p)}E \leq C{\{\Gamma_{m,p}(E)\}^p}$$

for any set E in Rⁿ.

PROOF. It suffices to show (2.2) for any open set ω in \mathbb{R}^n because of the definition of $\Gamma_{m,p}$ and Lemma 2.2 in [9]. Recall that, if $f \in L^p(\mathbb{R}^n)$, then $G_m * f$ belongs to $W^{m,p}(\mathbb{R}^n)$ and satisfies (2.1). To show the left inequality of (2.2) for ω , choose a non-negative function f in $L^p(\mathbb{R}^n)$ such that $G_m * f \ge 1$ everywhere on ω . (If such an f does not exist, then $\operatorname{Cap}_{(m,p)}\omega = \infty$.) By (2.1) and Lemma 2.4 we have $C^{-p} \{\Gamma_{m,p}(\omega)\}^p \le \operatorname{Cap}_{(m,p)}\omega$.

To give the right inequality of (2.2), it suffices to show it only for any compact set e in \mathbb{R}^n by the capacitability of e for $\operatorname{Cap}_{(m,p)}$ (Theorem 2.1 in [9]) and the definition of $\Gamma_{m,p}$. Let us choose $\varphi \in \mathcal{D}(\mathbb{R}^n)$ so that $\varphi \ge 1$ on e. As in the proof of Lemma 2.2 we write $\varphi = G_m * f$ for some $f \in \mathscr{S}(\mathbb{R}^n)$ and have

$$\operatorname{Cap}_{(m,p)} e \leq \|f\|_{p}^{p} \leq C^{p} \|\varphi\|_{m,p}^{p}$$

This yields $\operatorname{Cap}_{(m,p)} e \leq C^p \{ \Gamma_{m,p}(e) \}^p$.

§3. Integral representation I

Hereafter, let m be a positive integer.

Let *l* be an integer and α a multi-index such that $m = |\alpha| - l + n \ge 1$. We set $\kappa(x) = x^{\alpha}/|x|^{l}$. For a multi-index β with $|\beta| = m$, we can express

(3.1)
$$(D^{\beta}\kappa)(x) = \sum_{k=0}^{m} \frac{a_k(x)}{|x|^{l+2k}},$$

where each $a_k(x)$ is a homogeneous polynomial of degree (l+2k)-n, or constantly zero. We shall show that $K = D^{\beta}\kappa$ fulfills the conditions for a kernel listed on p. 89 of [4]. In our case,

$$\Omega\left(\frac{x}{|x|}\right) = \sum_{k=0}^{m} \frac{a_k(x)}{|x|^{l+2k-n}} \quad \text{and} \quad K(x) = \frac{1}{|x|^n} \Omega\left(\frac{x}{|x|}\right).$$

Since $\sum_{k=0}^{m} a_k(x)/|x|^{l+2k-n}$ is a homogeneous function of degree 0, we can consider $\Omega(x)$ as a function on the unit sphere with center at the origin of \mathbb{R}^n . If |x| = |y| = 1, then

$$|\Omega(x) - \Omega(y)| \leq \sum_{k=0}^{m} |a_k(x) - a_k(y)| \leq c|x - y|$$

for some positive constant c. Next we show

Lemma 3.1.
$$\int_{|x|=1} K(x) dS(x) = 0.$$

PROOF. First we observe

(3.2)
$$\int_{|x|=1} x^{\gamma} dS(x) = \frac{2 \prod_{i=1}^{n} \left(\frac{1+(-1)^{\gamma_{i}}}{2}\right) \Gamma\left(\frac{\gamma_{i}+1}{2}\right)}{\Gamma\left(\frac{n+|\gamma|}{2}\right)}$$

for a multi-index γ , which can be obtained from an elementary calculus.

We prove the lemma by induction with respect to m. Let α , β and l be given so that $|\alpha| - l + n = |\beta| = 1$. Then we have

$$D^{\beta}\left(\frac{x^{\alpha}}{|x|^{l}}\right) = \binom{\alpha}{\beta} \frac{x^{\alpha-\beta}}{|x|^{l}} - l \frac{x^{\alpha+\beta}}{|x|^{l+2}}$$

where

$$\binom{\alpha}{\beta} = \begin{cases} \prod_{i=1}^{n} \binom{\alpha_i}{\beta_i} = \prod_{i=1}^{n} \frac{\alpha_i!}{\beta_i!(\alpha_i - \beta_i)!} & \text{if } \alpha_i \ge \beta_i \text{ for all } i, \\ 0 & \text{otherwise.} \end{cases}$$

Using (3.2), we have

$$\int_{|x|=1} D^{\beta} \left(\frac{x^{\alpha}}{|x|^{l}}\right) dS(x) = {\alpha \choose \beta} \frac{2 \prod_{i=1}^{n} \left(\frac{1+(-1)^{\alpha_{i}-\beta_{i}}}{2}\right) \Gamma\left(\frac{\alpha_{i}-\beta_{i}+1}{2}\right)}{\Gamma\left(\frac{n+|\alpha-\beta|}{2}\right)} - l \frac{2 \prod_{i=1}^{n} \left(\frac{1+(-1)^{\alpha_{i}+\beta_{i}}}{2}\right) \Gamma\left(\frac{\alpha_{i}+\beta_{i}+1}{2}\right)}{\Gamma\left(\frac{n+|\alpha+\beta|}{2}\right)}$$

Since $|\beta| = 1$, the right-hand side is seen to be zero.

Next we assume that the lemma is true for $|\alpha| - l + n = |\beta| = m$. Let α , β and l be given so that $|\alpha| - l + n = |\beta| = m + 1$. Writing $\beta = \gamma + \delta$, where $|\gamma| = 1$ and $|\delta| = m$, we have

$$D^{\beta}\left(\frac{x^{\alpha}}{|x|^{l}}\right) = {\alpha \choose \gamma} D^{\delta}\left(\frac{x^{\alpha-\gamma}}{|x|^{l}}\right) - l D^{\delta}\left(\frac{x^{\alpha+\gamma}}{|x|^{l+2}}\right).$$

Here if $\alpha - \gamma$ is not a multi-index, the first term of the right-hand side disappears, and if otherwise, $|\alpha - \gamma| - l + n = m$. Moreover $|\alpha + \gamma| - (l+2) + n = m$. Consequently, by the assumption of induction, we obtain

$$\int_{|x|=1} D^{\delta} \left(\frac{\alpha^{\alpha-\gamma}}{|x|^{l}} \right) dS(x) = 0 \quad \text{and} \quad \int_{|x|=1} D^{\delta} \left(\frac{x^{\alpha+\gamma}}{|x|^{l+2}} \right) dS(x) = 0,$$

i.e.,

$$\int_{|x|=1} D^{\beta}\left(\frac{x^{\alpha}}{|x|^{l}}\right) dS(x) = 0.$$

Thus Lemma 3.1 is proved.

Let f be a function in $L^{p}(\mathbb{R}^{n})$. For a positive integer j, we set $K_{(1/j)}(x) = K(x)$ if $|x| \ge 1/j$ and =0 if |x| < 1/j. Then, we can apply the results of singular integrals in [4] and obtain:

(i) $K_{(1/j)}*f$ belongs to $L^p(\mathbb{R}^n)$ for each j, and converges in $L^p(\mathbb{R}^n)$ as $j \to \infty$ ([4; Theorems 1 and 7]),

(ii)

(3.3)
$$||K_{(1/j)}*f||_p \le \text{const.} ||f||_p$$
 ([4; Theorem 1]).

Next, we consider $\kappa_j(x) = x^{\alpha}/(|x|^2 + (1/j)^2)^{1/2}$. Let f be a function in $L^p(\mathbb{R}^n)$ satisfying the following condition:

(3.4)
$$\int (1+|x|)^{m-n} |f(x)| dx = \int (1+|x|)^{|\alpha|-1} |f(x)| dx < \infty,$$

Yoshihiro MIZUTA

or equivalently,

$$\int |x-y|^{m-n} |f(y)| dy \neq \infty$$

(see Remark in p. 191 of [6] and also Lemma 9.1 of [8]). We set

$$(\kappa * f)(x) = \int \frac{(x-y)^{\alpha}}{|x-y|^{l}} f(y) dy$$

and $\kappa_j * f$ is similarly defined. By our assumptions, it is easy to see that $\kappa_j * f \in C^{\infty}$ and $D^{\beta}(\kappa_j * f) = (D^{\beta}\kappa_j) * f$ for any β . Furthermore we have

LEMMA 3.2. For any multi-index β with $|\beta| = m$, $D^{\beta}(\kappa_j * f)$ converges in $L^p(\mathbb{R}^n)$ as $j \to \infty$.

PROOF. We can write

$$(D^{\beta}(\kappa_{j}*f))(x) - (K_{(1/j)}*f)(x) = j^{n} \int_{\theta_{\beta}} (j(x-y))f(y) dy$$

where $\theta_{\beta} = D^{\beta}\kappa_1 - K_{(1)}$. We shall show that $\theta_{\beta} \in L^1(\mathbb{R}^n)$. First we notice that

$$D^{\beta}\kappa_{1}(x) = \sum_{k=0}^{m} \frac{a_{k}(x)}{(|x|^{2}+1)^{(l+2k)/2}}$$

for the same $a_k(x)$ as in (3.1). Therefore if $|x| \ge 1$, then

$$\theta_{\beta}(x) = -\sum_{k=0}^{m} \frac{a_{k}(x)}{(|x|^{2}+1)^{(l+2k)/2} |x|^{l+2k}} ((|x|^{2}+1)^{(l+2k)/2} - |x|^{l+2k})$$

and $(|x|^2+1)^{(l+2k)/2} - |x|^{l+2k} = O(|x|^{l+2k-2})$ as $|x| \to \infty$. Hence $\theta_{\beta}(x) = O(|x|^{-n-2})$ as $|x| \to \infty$, because each $a_k(x)$ is a homogeneous polynomial of degree (l+2k) - n, or constantly zero. Thus $\theta_{\beta} \in L^1(\mathbb{R}^n)$. We set $A_{\beta} = \int \theta_{\beta}(x) dx$. Then

$$(D^{\beta}(\kappa_{j}*f))(x) - (K_{(1/j)}*f)(x) - A_{\beta}f(x)$$
$$= j^{n} \int \theta_{\beta}(j(x-y))f(y)dy - \int \theta_{\beta}(y)f(x)dy$$
$$= \int \theta_{\beta}(y)\{f(x-(y/j)) - f(x)\}dy.$$

Therefore we have by Hölder's inequality,

$$\begin{split} \|D^{\beta}(\kappa_{j}*f) - K_{(1/j)}*f - A_{\beta}f\|_{p}^{p} \\ \leq & \left(\int |\theta_{\beta}(y)| dy \right)^{p/q} \int |\theta_{\beta}(y)| \left(\int |f(x - (y/j)) - f(x)|^{p} dx \right) dy, \end{split}$$

where (1/p) + (1/q) = 1. Noting that $\theta_{\beta} \in L^1(\mathbb{R}^n)$, $\int |f(x - (y/j))|^p dx = \int |f(x)|^p dx$ and that $\int |f(x - (y/j)) - f(x)|^p dx \to 0$ locally uniformly as $j \to \infty$ we obtain

(3.5)
$$\|D^{\beta}(\kappa_{j}*f) - K_{(1/j)}*f - A_{\beta}f\|_{p} \to 0$$

as $j \rightarrow \infty$ by Lebesgue's convergence theorem. This yields Lemma 3.2.

LEMMA 3.3. Let f be a function in $L^{p}(\mathbb{R}^{n})$ satisfying (3.4). Suppose $|\beta| = m$. Then

- (i) $D^{\beta}(\kappa_{j}*f) \rightarrow D^{\beta}(\kappa*f)$ in $L^{p}(\mathbb{R}^{n})$ as $j \rightarrow \infty$,
- (ii) $\|D^{\beta}(\kappa * f)\|_{p} \leq \text{const.} \|f\|_{p}$
- (iii) $\kappa * f$ is (m, p)-quasi continuous.

PROOF. From Lemma 3.2, it follows that $\kappa_j * f$ is a Cauchy sequence in $BL_m(L^p(\mathbb{R}^n))$. Then there exist a sequence $\{P_j\}$ of polynomials of degree $\leq m-1$ and $u \in BL_m(L^p(\mathbb{R}^n))$ such that $\kappa_j * f \rightarrow u$ in $BL_m(L^p(\mathbb{R}^n))$ as $j \rightarrow \infty$ and $D^{\beta'}(\kappa_j * f + P_j) \rightarrow D^{\beta'}u$ in $L^p_{loc}(\mathbb{R}^n)$ as $j \rightarrow \infty$ for any β' with $|\beta'| \leq m$ (see [5; Théorème 2.1 in Chap. III]).

First we consider the special case:

$$\kappa(x) = |x|^{m-n}$$
 and $\kappa_i(x) = (|x|^2 + (1/j)^2)^{(m-n)/2}$.

Since $\kappa_j * |f| \to \kappa * |f|$ pointwise as $j \to \infty$, there exists a polynomial P_0 of degree $\leq m-1$ such that $\kappa * |f| = u - P_0$ a.e. on \mathbb{R}^n . Moreover, for any $\varphi \in \mathcal{D}(\mathbb{R}^n)$, $\varphi(\kappa_j * |f|) \to \varphi(\kappa * |f|)$ in $W^{m, p}(\mathbb{R}^n)$ as $j \to \infty$. It follows from Lemma 2.3, (ii), that $\varphi(\kappa * |f|)$ is (m, p)-quasi continuous, which means that $\kappa * |f|$ is (m, p)-quasi continuous and that $\left\{x; \int |x-y|^{m-n} |f(y)| dy = \infty\right\}$ is (m, p)-polar.

Now we consider the general case. We observe that $\kappa_j * f$ converges to $\kappa * f$ except on an (m, p)-polar set, in fact, except on the set $\left\{x; \int |x-y|^{m-n}|f(y)|dy = \infty\right\}$. Therefore, in a way similar to the above, we obtain (i) and (iii). Moreover,

$$\begin{split} \|D^{\beta}(\kappa * f)\|_{p} &\leq \|D^{\beta}(\kappa_{j} * f) - D^{\beta}(\kappa * f)\|_{p} \\ &+ \|D^{\beta}(\kappa_{j} * f) - K_{(1/j)} * f - A_{\beta}f\|_{p} \\ &+ \|K_{(1/j)} * f\|_{p} + \|A_{\beta}\| \|f\|_{p} \end{split}$$

for any j. Letting $j \rightarrow \infty$ and using (3.3) and (3.5), we have (ii) of the lemma.

LEMMA 3.4. (Yu. G. Reshetnyak [9; Lemma 6.2]) For $\varphi \in \mathcal{D}(\mathbb{R}^n)$, we can write

Yoshihiro MIZUTA

$$\varphi(x) = \sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} \varphi(y)}{|x-y|^{n}} dy$$

where $a_{\alpha} = (-1)^m m/(\alpha! \omega_n)$, ω_n being the surface area of the unit sphere in \mathbb{R}^n .

THEOREM 3.1. Let f be an (m, p)-quasi continuous function belonging to $BL_m(L^p(\mathbb{R}^n))$ such that

(3.6)
$$\int (1+|x|)^{m-n} |D^{\alpha}f(x)| dx < \infty \quad \text{for any } \alpha \text{ with } |\alpha| = m.$$

If there exists a sequence $\{\varphi_j\}$ of functions in $\mathscr{D}(\mathbb{R}^n)$ such that $\varphi_j \rightarrow f$ in BL_m $(L^p(\mathbb{R}^n))$ as $j \rightarrow \infty$, then

(3.7)
$$f(x) = \sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} f(y)}{|x-y|^{n}} dy + P(x) \qquad (m, p) - q.e.,$$

where P is a polynomial of degree $\leq m-1$.

PROOF. By Lemma 3.4, we have

$$\varphi_j(x) = \sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} \varphi_j(y)}{|x-y|^n} dy.$$

Here we set

$$G_f(x) = \sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} f(y)}{|x-y|^n} dy.$$

From Lemma 3.3, it follows that G_f is (m, p)-quasi continuous and that $\varphi_j \rightarrow G_f$ in $BL_m(L^p(\mathbb{R}^n))$ as $j \rightarrow \infty$. Therefore $G_f = f$ in $BL_m(L^p(\mathbb{R}^n))$. Hence there exists a polynomial P of degree $\leq m-1$ such that $f = G_f + P$ a.e. on \mathbb{R}^n , which implies Theorem 3.1 by virtue of Lemma 2.3.

REMARK 3.1. Let f be an (m, p)-quasi continuous function in $W^{m, p}(\mathbb{R}^n)$ satisfying (3.6). Then we have (3.7), because there exists a sequence $\{\varphi_j\}$ of functions in $\mathcal{D}(\mathbb{R}^n)$ such that $\varphi_j \to f$ in $W^{m, p}(\mathbb{R}^n)$ as $j \to \infty$ (cf. Remark 2.2).

REMARK 3.2. Let f be an (m, p)-quasi continuous function belonging to $BL_m(L^p(\mathbb{R}^n))$. If f has compact support, then we have (3.7). Moreover if $(1 \le m < n, \text{ then } P = 0.$

REMARK 3.3. In Theorem 3.1, if (m <) mp < n, we can omit (3.6). In fact, in this case,

$$\int \frac{|D^{\alpha}f(x)|}{(1+|x|)^{n-m}} dx \leq \left(\int |D^{\alpha}f(x)|^{p} dx \right)^{1/p} \left(\int \frac{dx}{(1+|x|)^{q(n-m)}} \right)^{1/q} < \infty$$

where q = p/(p-1).

REMARK 3.4. In case m=1, these Remarks and Theorem 3.1 were given by M. Ohtsuka [8; Theorem 9.11].

As a consequence of Theorem 3.1, we have

THEOREM 3.2. (cf. [9; Theorem 5.8] and [12; Theorem 1]) A set A in \mathbb{R}^n is (m, p)-polar if and only if there exists a non-negative function f in $L^p(\mathbb{R}^n)$ satisfying (3.4) such that $\int |x-y|^{m-n} f(y) dy = \infty$ for every $x \in A$.

PROOF. The "if" part was observed in the proof of Lemma 3.3. We prove the "only if" part. Suppose m < n. First we consider the case where A is bounded. Take a sequence $\{\omega_j\}$ of open sets in \mathbb{R}^n such that ω_1 is bounded, $\omega_j \supset \omega_{j+1} \supset$ A and $\Gamma_{m,p}^+(\omega_j) < 1/2^j$ for each $j \ge 1$. Let φ be a non-negative function in $\mathcal{D}(\mathbb{R}^n)$ such that $\varphi = 1$ on ω_1 . By Theorem 3.1 and Remark 3.2, we have

$$(\varphi f_{\omega_j})(x) = \sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha}(\varphi f_{\omega_j})(y)}{|x-y|^n} dy \qquad (m, p)-q.e$$

(for the notation f_{ω_i} see the Definition given after Theorem 2.2'). This implies that

$$\sum_{|\alpha|=m} |a_{\alpha}| \int |x-y|^{m-n} |D^{\alpha}(\varphi f_{\omega_j})(y)| dy \ge 1 \quad \text{for } x \in \omega_j.$$

We set $f = \sum_{j=1}^{\infty} \{\sum_{|\alpha|=m} |a_{\alpha}| | D^{\alpha}(\varphi f_{\omega_j})|\}$. Then f is a non-negative function in $L^{p}(\mathbb{R}^{n})$ with compact support. Moreover, for $x \in A$, we obtain $\int |x-y|^{m-n} f(y) dy = \infty$.

Next we consider the general case. For each j, we set $A_j = A \cap \{x; |x| \le j\}$. Then from the above argument, for each j, there exists a non-negative function $f_j \in L^p(\mathbb{R}^n)$ satisfying (3.4) such that $\int |x-y|^{m-n} f_j(y) dy = \infty$ for every $x \in A_j$. By Lemmas 3.3 and 2.1, the set $B = \bigcup_{j=1}^{\infty} \{x; \int |x-y|^{m-n} f_j(y) dy = \infty\}$ is seen to be (m, p)-polar. Hence there exists a point $x_0 \notin B$. Set $c_j = \int |x_0 - y|^{m-n} f_j(y) dy$, $\tilde{c}_j = 2^j \max\{c_j, \|f_j\|_p, 1\}$ and $f = \sum_{j=1}^{\infty} (1/\tilde{c}_j) f_j$. Then $\int |x_0 - y|^{m-n} f(y) dy < \infty$ and $\int |x-y|^{m-n} f(y) dy = \infty$ for any $x \in A$. Thus f is the required function.

If $m \ge n$, then $A = \emptyset$ on account of the next proposition, so that we may take f=0.

PROPOSITION 3.1. Any non-empty set A in \mathbb{R}^n is not (m, p)-polar if and only if mp > n.

This can be proved in the same way as H. Wallin [12; Proposition 2].

By using our integral representation, we can prove the following theorem; cf. Theorem 13.5 in [1].

THEOREM 3.3. Let f be an (m, p)-quasi continuous function belonging to $BL_m(L^p(\mathbb{R}^n))$. Then any partial derivative of f of order α with $|\alpha| \leq m$ exists $(m-|\alpha|, p)$ -q.e. and is $(m-|\alpha|, p)$ -quasi continuous.

§4. Integral representation II

In this section, we study a representation of the form (3) (see Introduction). We denote by Δ_m the Laplace operator iterated *m* times. First we show

LEMMA 4.1. Let $H \in BL_m(L^p(\mathbb{R}^n))$. If $\Delta_m H = 0$, then H is a polynomial of degree $\leq m-1$.

PROOF. Let α be any multi-index with $|\alpha| = m$, and set $T = D^{\alpha}H$. By our assumptions, $T \in L^{p}(\mathbb{R}^{n})$ and $\Delta_{m}T = 0$ in the distribution sense. Then the Fourier transform of T exists and

$$(-4\pi^2|x|^2)^m \mathscr{F}(T) = \mathscr{F}(\Delta_m T) = 0,$$

where $\mathscr{F}(T)$ denotes the Fourier transform of T. Hence $\mathscr{F}(T)$ is supported by $\{0\}$, so that we can write $\mathscr{F}(T) = \sum_{\beta} c_{\beta} D^{\beta} \delta$, where δ is the Dirac measure and constants c_{β} are equal to 0 except for a finite number of β . Therefore T is a polynomial. Noting that $T \in L^{p}(\mathbb{R}^{n})$, we have T=0. Thus H is seen to be a polynomial of degree $\leq m-1$.

We note the following well-known representation of $\varphi \in \mathcal{D}(\mathbb{R}^n)$: If n-2m > 0 or *n* is odd and n-2m < 0, then

$$\varphi(x) = c \int |x - y|^{2m - n} \Delta_m \varphi(y) dy$$

and if $n-2m \leq 0$ and n is even, then

$$\varphi(x) = c' \int |x - y|^{2m-n} \log |x - y| \Delta_m \varphi(y) dy$$

where c and c' are certain constants. Furthermore notice that Δ_m is of the form $\sum_{|\alpha|=m} \tilde{c}_{\alpha} D^{2\alpha}$ for suitable constants \tilde{c}_{α} . Setting $c_{\alpha} = (-1)^m c \tilde{c}_{\alpha}$ and $c'_{\alpha} = (-1)^m c \tilde{c}_{\alpha}$, we have

LEMMA 4.2. (H. Wallin [11; p. 71]) Let $\varphi \in \mathcal{D}(\mathbb{R}^n)$. If either n-2m>0 or n is odd and n-2m<0, then

$$\varphi(x) = \sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha}(|x-y|^{2m-n}) D^{\alpha}\varphi(y) dy,$$

and if $n-2m \leq 0$ and n is even, then

$$\varphi(x) = \sum_{|\alpha|=m} c'_{\alpha} \int D^{\alpha}(|x-y|^{2m-n} \log |x-y|) D^{\alpha} \varphi(y) dy,$$

where c_{α} and c'_{α} are constants.

THEOREM 4.1. Let f be an (m, p)-quasi continuous function in $BL_m(L^p(\mathbb{R}^n))$ such that $\int (1+|x|)^{m-n} |D^{\alpha}f(x)| dx < \infty$ for any α with $|\alpha| = m$. If either n-2m>0or n is odd and n-2m<0, then

$$f(x) = \sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha}(|x-y|^{2m-n}) D^{\alpha}f(y) dy + P(x) \qquad (m, p)-q.e.,$$

and if n is even and $m < n \leq 2m$, then

$$f(x) = \sum_{|\alpha|=m} c'_{\alpha} \int D^{\alpha}(|x-y|^{2m-n} \log |x-y|) D^{\alpha}f(y) dy + P(x) \quad (m, \ p)-q.e.,$$

where c_{α} and c'_{α} are the same constants as in Lemma 4.2 and P is a polynomial of degree $\leq m-1$.

PROOF. First, suppose n-2m>0 or n is odd and n-2m<0. We set $G_f(x) = \sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha}(|x-y|^{2m-n})D^{\alpha}f(y)dy$. By Lemma 3.3, G_f is seen to be an (m, p)-quasi continuous function belonging to $BL_m(L^p(\mathbb{R}^n))$. Let $\varphi \in \mathcal{D}(\mathbb{R}^n)$. In view of our assumption that $\int (1+|x|)^{m-n} |D^{\alpha}f(x)| dx < \infty$ for any α with $|\alpha|=m$, we can apply Fubini's theorem, and have

$$\begin{split} \int G_f(x) \Delta_m \varphi(x) dx &= \sum_{|\alpha|=m} c_\alpha \int D^\alpha f(y) dy \int D^\alpha_y (|x-y|^{2m-n}) \Delta_m \varphi(x) dx \\ &= \sum_{|\alpha|=m} c_\alpha \int D^\alpha f(y) dy D^\alpha_y \int |x-y|^{2m-n} \Delta_m \varphi(x) dx \\ &= \sum_{|\alpha|=m} c_\alpha \int D^\alpha f(y) \frac{1}{c} D^\alpha \varphi(y) dy \\ &= \int f(y) \{ \sum_{|\alpha|=m} (-1)^m \frac{c_\alpha}{c} D^{2\alpha} \varphi(y) \} dy \\ &= \int f(y) \Delta_m \varphi(y) dy \,, \end{split}$$

where c is the same constant as given after Lemma 4.1. Therefore, $\Delta_m(f-G_f)=0$

in the distribution sense. By Lemma 4.1, there exists a polynomial P of degree $\leq m-1$ such that $f-G_f=P$ a.e. on R^n . Thus $f=G_f+P(m, p)$ -q.e. on account of Lemma 2.3.

The second half of the theorem is similarly obtained, since if m < n and n is even then $D^{\alpha}(|x|^{2m-n} \log |x|)$ is a linear combination of functions like κ in § 3.

To consider the remaining case, we first prove the following lemma similar to Lemma 3.3.

LEMMA 4.3. Let $|\alpha| = m - n \ge 0$, and set $\kappa(x) = x^{\alpha} \log |x|$. Let f be a nonnegative function in $L^{p}(\mathbb{R}^{n})$ such that

(4.1)
$$\int (1+|x|)^{m-n} \log(1+|x|) f(x) dx < \infty.$$

Then $\kappa * f$ is a continuous function belonging to $BL_m(L^p(\mathbb{R}^n))$.

PROOF. Set $\kappa_j(x) = x^{\alpha} \log(|x|^2 + (1/j)^2)^{1/2}$. Then $\kappa_j * f \in C^{\infty}$. Moreover, recalling the discussions in § 3, we infer that $\{\kappa_j * f\}$ is a Cauchy sequence in $BL_m(L^p(\mathbb{R}^n))$. If $\alpha = 0$, then we have

$$(\kappa_{j}*f)(x) = \log 2 \int_{|x-y|<1} f(y) dy - \int_{|x-y|<1} \log \frac{2}{\sqrt{|x-y|^{2} + (1/j)^{2}}} f(y) dy + \int_{|x-y|\ge 1} \log \sqrt{|x-y|^{2} + (1/j)^{2}} f(y) dy.$$

By Lebesgue's convergence theorem, the second term of the right-hand side increases to $\int_{|x-y|<1} (\log 2/|x-y|) f(y) dy$ as $j \to \infty$ and the last term decreases to $\int_{|x-y|\leq 1} \log |x-y| f(y) dy$ as $j \to \infty$ because of (4.1). Therefore $(\kappa_j * f)(x) \to (\kappa * f)(x)$ as $j \to \infty$. If $|\alpha| \ge 1$, then since $|(x-y)^{\alpha} \log (|x-y|^2 + (1/j)^2)^{1/2}| \le \text{const.} (1+|y|)^{m-n} \log (2+|y|)$, $(\kappa_j * f)(x) \to (\kappa * f)(x)$ as $j \to \infty$ by Lebesgue's convergence theorem. Hence, in a way similar to the proof of Lemma 3.3 $\kappa * f$ is shown to be (m, p)-quasi continuous. Because of Proposition 3.1, any (m, p)-quasi continuous function is continuous for mp > n. Thus we obtain the lemma.

On account of this lemma we can prove the following theorem in the same way as Theorem 4.1:

THEOREM 4.2. Let n be even and $n \leq m$. Let f be an (m, p)-quasi continuous function in $BL_m(L^p(\mathbb{R}^n))$ such that

$$\int (1+|x|)^{m-n} \log (1+|x|) |D^{\alpha} f(x)| dx < \infty \quad \text{for any } \alpha \text{ with } |\alpha| = m.$$

Then we have the following representation of f:

$$f(x) = \sum_{|\alpha|=m} c'_{\alpha} \int D^{\alpha}(|x-y|^{2m-n} \log |x-y|) D^{\alpha}f(y) dy + P(x),$$

where P is a polynomial of degree $\leq m-1$, and c'_{α} are the same constants as in Lemma 4.2.

REMARK 4.1. The function f in the above theorem is continuous by Proposition 3.1.

§5. A representation by Riesz potentials of functions in $L^p(\mathbb{R}^n)$

Given a multi-index α and a number l, we set $\kappa(x) = x^{\alpha}/|x|^{l}$ and $\kappa_{j}(x) = x^{\alpha}/(|x|^{2} + (1/j)^{2})^{l/2}$ for each positive integer j. Let β be any multi-index with $|\beta| = m$ and set $K = D^{\beta}\kappa$. For a function f in $L^{p}(\mathbb{R}^{n})$, the convolutions $\kappa * f$, $\kappa_{j} * f$ and $K_{(1/j)} * f$ make sense (see § 3).

Suppose that $|\alpha| - l + n = m$. Then we see from (i) and (ii) stated after Lemma 3.1 in § 3 that $K_{(1/j)} * f$ converges to a function $R^{\beta}_{\alpha,l} f$ in $L^{p}(\mathbb{R}^{n})$ as $j \to \infty$ such that

(5.1)
$$\|R_{\alpha,l}^{\beta}f\|_{p} \leq \text{const.} \|f\|_{p}.$$

First we show

LEMMA 5.1. Let α , l be given so that $m \leq |\alpha| - l + n < m + 2$. If a function f in $L^{p}(\mathbb{R}^{n})$ satisfies $\int (1+|x|)^{|\alpha|-l} |f(x)| dx < \infty$, then $\kappa * f$ is an (m, p)-quasi continuous function in $BL_{m}(L^{p}(\mathbb{R}^{n}))$ and $D^{\beta}(\kappa * f) = \mathbb{R}^{\beta}_{\alpha,l} f + a^{\beta}_{\alpha,l} f$ for any β with $|\beta| = m$, where

$$a_{\alpha,l}^{\beta} = \begin{cases} 0 & \text{if } m < |\alpha| - l + n < m + 2, \\ A_{\beta} & \text{defined in the proof of Lemma 3.2} \\ & \text{if } |\alpha| - l + n = m. \end{cases}$$

PROOF. First consider the case $|\alpha| - l + n = m$. From Lemma 3.3, we see that $\kappa * f$ is an (m, p)-quasi continuous function in $BL_m(L^p(\mathbb{R}^n))$ and that $\kappa_j * f \to \kappa * f$ in $BL_m(L^p(\mathbb{R}^n))$ as $j \to \infty$. In the proof of Lemma 3.2, we showed that $D^\beta(\kappa_j * f) - K_{(1/j)} * f - a^\beta_{\alpha,l} f$ tends to 0 in $L^p(\mathbb{R}^n)$ as $j \to \infty$. Hence we have $D^\beta(\kappa * f) = R^{\beta}_{\alpha,l} f + a^{\beta}_{\alpha,l} f$.

Next let us consider the case where $m < |\alpha| - l + n < m + 2$. We note

$$|D^{\beta}\kappa(x)| \leq C|x|^{|\alpha|-l-m}$$
 for all x

and

Yoshihiro MIZUTA

$$|D^{\beta}\kappa_{i}(x) - D^{\beta}\kappa(x)| \leq C|x|^{|\alpha|-l-m-2} \quad \text{for all } x \text{ with } |x| \geq N$$

where C and N are constants. Hence by using Lebesgue's dominated convergence theorem we have

$$\int |D^{\beta}\kappa_{j}-D^{\beta}\kappa|dx\to 0 \quad \text{as} \quad j\to\infty,$$

so that $\{\kappa_j * f\}$ is a Cauchy sequence in $BL_m(L^p(\mathbb{R}^n))$. In a way similar to the proof of Lemma 3.3, we see that $\kappa * f$ is an (m, p)-quasi continuous function in $BL_m(L^p(\mathbb{R}^n))$ and that $\kappa_j * f$ converges to $\kappa * f$ in $BL_m(L^p(\mathbb{R}^n))$ as $j \to \infty$. On the other hand,

$$\|D^{\beta}(\kappa_{j}*f) - K_{(1/j)}*f\|_{p}^{p}$$

$$\leq 2^{p-1} \left\{ \left(\int |D^{\beta}\kappa_{j} - D^{\beta}\kappa| dx \right)^{p} + \left(\int_{|x| \leq 1/j} |D^{\beta}\kappa| dx \right)^{p} \right\} \|f\|_{p}^{p}.$$

The right-hand side tends to 0 as $j \to \infty$. Therefore we obtain $D^{\beta}(\kappa * f) = R^{\beta}_{\alpha, 1} f$ and the lemma is proved.

For a number l and a function f, we set

$$U_{l}^{f}(x) = \int |x-y|^{l-n} f(y) dy.$$

By the above lemma we have

THEOREM 5.1. Suppose that $m \leq l < m+2$. If a function f in $L^p(\mathbb{R}^n)$ satisfies $\int (1+|x|)^{l-n} |f(x)| dx < \infty$, then U_l^f is an (m, p)-quasi continuous function in $BL_m(L^p(\mathbb{R}^n))$ and

(5.2)
$$D^{\beta}(U_{1}^{f}) = R^{\beta}_{0,n-1}f + a^{\beta}_{0,n-1}f$$

for any β with $|\beta| = m$.

REMARK 5.1. In case m=1, Theorem 5.1 was given by M. Ohtsuka [8; Theorem 9.6].

Let 2m < n. As was seen in §4, any $\varphi \in \mathscr{D}(\mathbb{R}^n)$ is written in the form: $\varphi(x) = c \int |x-y|^{2m-n} \Delta_m \varphi(y) dy$, where $\Delta_m = \sum_{|\alpha|=m} \tilde{c}_{\alpha} D^{2\alpha}$. By Riesz's composition formula, we have

$$\varphi(x) = \frac{c}{c(m, m)} \int |x-z|^{m-n} dz \int |z-y|^{m-n} \Delta_m \varphi(y) dy,$$

where

$$c(m, m) = \pi^{n/2} \frac{\Gamma\left(\frac{m}{2}\right)^2 \Gamma\left(\frac{n-2m}{2}\right)}{\Gamma\left(\frac{n-m}{2}\right)^2 \Gamma(m)}$$

Setting $\psi(z) = \frac{c}{c(m, m)} \int |z - y|^{m-n} \Delta_m \varphi(y) dy$, we have by (5.2)

$$\psi(z) = \frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha} \int |z-y|^{m-n} D^{2\alpha} \varphi(y) dy$$
$$= \frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha} \{ (R^{\alpha}_{0,n-m} D^{\alpha} \varphi)(z) + a^{\alpha}_{0,n-m} D^{\alpha} \varphi(z) \}.$$

For simplicity we write R_{α} and a_{α} for $R_{0,n-m}^{\alpha}$ and $a_{0,n-m}^{\alpha}$ respectively. Then we obtain

LEMMA 5.2. Let 2m < n, and let $\varphi \in \mathscr{D}(\mathbb{R}^n)$. Then $\varphi = U_m^{\psi}$, where $\psi = \frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha}(\mathbb{R}_{\alpha} + a_{\alpha}) D^{\alpha} \varphi$.

LEMMA 5.3. Let $m \leq |\alpha| - l + n < m + 1$. If $\varphi \in C^m$ satisfies $|D^{\gamma}\varphi| = O(|x|^{-|\gamma|-1})$ as $|x| \to \infty$ for each γ with $|\gamma| \leq m$, then

$$\int_{|x-y|>r} (D^{\beta}\kappa)(x-y)\varphi(y)dy \to (\kappa * D^{\beta}\varphi)(x) - a^{\beta}_{\alpha,l}\varphi(x) \quad \text{as} \quad r \to 0$$

for all x, where $|\beta| = m$.

PROOF. We write $\beta = \sum_{i=1}^{m} \beta_i$ where $|\beta_i| = 1$ for i = 1, 2, ..., m and set $\gamma_0 = 0$, $\gamma_i = \sum_{j=1}^{i} \beta_j$ for i = 1, 2, ..., m. Then we have

$$\begin{split} &\int_{|x-y|>r} (D^{\beta}\kappa)(x-y)\varphi(y)dy \\ &= \lim_{R \to \infty} \int_{r<|x-y|r} \kappa(x-y)D^{\beta}\varphi(y)dy \\ &- \sum_{i=1}^{m} \int_{|x-y|=r} (D^{\gamma_{i-1}}\kappa)(x-y)(D^{\beta-\gamma_{i}}\varphi)(y)n_{y} \cdot \beta_{i}dS(y), \end{split}$$

where n_y means the outward normal on the boundary of the domain $\{y; r < |x - y| < R\}$. Hence we obtain

$$\int_{|x-y|>r} (D^{\beta}\kappa)(x-y)\varphi(y)\,dy \to \int \kappa(x-y)D^{\beta}\varphi(y)\,dy - c\varphi(x) \quad \text{as} \quad r \to 0\,,$$

where $c = \int_{|x-y|=r} (D^{\gamma_{m-1}}\kappa)(x-y)n_y \cdot \beta_m dS(y) = \int_{|y|=1} (D^{\gamma_{m-1}}\kappa)(y)y^{\beta_m} dS(y)$ if $|\alpha| - l + n = m$ and =0 otherwise. This c is just equal to $a_{\alpha,l}^{\beta}$. In fact, if $|\alpha| - l + n = m$, then

$$a_{\alpha,l}^{\beta} = \lim_{R \to \infty} \int_{|x| < R} \theta_{\beta}(x) dx$$

=
$$\lim_{R \to \infty} \int_{|x| = R} \left[(D^{\beta - \beta_m} \kappa_1)(x) - (D^{\beta - \beta_m} \kappa)(x) \right] n_x \cdot \beta_m dS(x)$$

+
$$\int_{|x| = 1} (D^{\beta - \beta_m} \kappa)(x) x^{\beta_m} dS(x)$$

= c .

LEMMA 5.4. Let 2m < n. Then for a function f in $L^{p}(\mathbb{R}^{n})$ we have

(5.3)
$$\frac{c}{c(m,m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha}(R_{\alpha}+a_{\alpha})^2 f = f.$$

PROOF. It suffices to show (5.3) for $f = \varphi \in \mathcal{D}(\mathbb{R}^n)$ on account of (5.1). We note that $R_{\alpha}\varphi = |x|^{m-n}*D^{\alpha}\varphi - a_{\alpha}\varphi \in C^{\infty}$ and that $|D^{\gamma}(R_{\alpha}\varphi)| = O(|x|^{-m-1})$ as $|x| \to \infty$ for any γ with $|\gamma| \le m$. From Lemma 5.3 it follows that $R_{\alpha}(R_{\alpha}\varphi) = |x|^{m-n}*D^{\alpha}$ $(R_{\alpha}\varphi) - a_{\alpha}R_{\alpha}\varphi$. Using (5.2) and Riesz's composition formula, we have

$$(R_{\alpha}+a_{\alpha})^{2}\varphi=c(m, m)|x|^{2m-n}*D^{2\alpha}\varphi,$$

which yields (5.3) with $f = \varphi \in \mathcal{D}(\mathbb{R}^n)$. Thus the lemma is shown.

THEOREM 5.2. Let 2m < n, and let f be an (m, p)-quasi continuous function such that there exists a sequence $\{\varphi_j\}$ in $\mathscr{D}(\mathbb{R}^n)$ converging to f in $BL_m(L^p(\mathbb{R}^n))$. If

(5.4)
$$\int (1+|x|)^{m-n} |\sum_{|\alpha|=m} \tilde{c}_{\alpha}(R_{\alpha}+a_{\alpha})D^{\alpha}f|dx < \infty ,$$

then there exists a function $g \in L^p(\mathbb{R}^n)$ such that

(5.5)
$$\int (1+|x|)^{m-n} |g(x)| dx < \infty$$

and

$$f = U_m^g + P \qquad (m, p) - q.e.$$

for some polynomial P of degree $\leq m-1$; actually

(5.6)
$$g = \frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha}(R_{\alpha} + a_{\alpha}) D^{\alpha} f.$$

Conversely if there exists a function $g \in L^p(\mathbb{R}^n)$ satisfying (5.5) and $f - U_m^g$ is equal (m, p)-q.e. to a polynomial of degree $\leq m-1$, then (5.4) and (5.6) are fulfilled.

PROOF. Assume (5.4). By Lemma 5.2, we can write $\varphi_j = U_m^{\psi_j}$, where $\psi_j = \frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha}(R_{\alpha} + a_{\alpha}) D^{\alpha} \varphi_j$. Denote by g the right-hand side of (5.6). Then $g \in L^p(\mathbb{R}^n)$ and by (5.1), $\|\psi_j - g\|_p$ tends to 0 as $j \to \infty$. Therefore from Theorem 5.1, it follows that U_m^g is an (m, p)-quasi continuous function in BL_m $(L^p(\mathbb{R}^n))$ and that $\varphi_j = U_m^{\psi_j} \to U_m^g$ in $BL_m(L^p(\mathbb{R}^n))$ as $j \to \infty$. Thus $f := (U_m^g)$ in $BL_m(L^p(\mathbb{R}^n))$, so that there exists a polynomial P of degree $\leq m-1$ such that $f = U_m^g + P(m, p)$ -q.e.

Conversely suppose that $g \in L^p(\mathbb{R}^n)$ satisfies (5.5) and that $f - U_m^g$ is equal (m, p)-q.e. to a polynomial of degree at most m-1. By (5.2) and (5.3) we have

$$\sum_{|\alpha|=m} \tilde{c}_{\alpha}(R_{\alpha}+a_{\alpha})D^{\alpha}f = \sum_{|\alpha|=m} \tilde{c}_{\alpha}(R_{\alpha}+a_{\alpha})D^{\alpha}U_{m}^{g}$$
$$= \sum_{|\alpha|=m} \tilde{c}_{\alpha}(R_{\alpha}+a_{\alpha})^{2}g$$
$$= \frac{c(m,m)}{c}g.$$

Hence (5.6) is fulfilled and then so is (5.4) by assumption (5.5).

REMARK 5.2. If mp < n, then condition (5.4) is satisfied.

REMARK 5.3. In case the support of f is compact, then condition (5.4) is satisfied. Moreover, in this case, $f = U_m^g$ (m, p)-q.e., where g is the right-hand side of (5.6).

REMARK 5.4. In case m=1, these Remarks and Theorem 5.2 were given by M. Ohtsuka [8; Theorem 9.7].

References

- N. Aronszajn, F. Mulla and P. Steptycki, On spaces of potentials connected with L^p classes, Ann. Inst. Fourier 13 (1963), 211-306.
- [2] M. Brelot, Lectures on potential theory, Tata Institute of Fundamental Research, Bombay, 1960.

Yoshihiro Mizuta

- [3] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV, Amer. Math. Soc., 1961, 33-49.
- [4] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
- [5] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1955), 305–370.
- [6] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
- [7] J. L. Lions, Problémes aux limites dans les équations aux dérivées partielles, Sém. Math. Sup. Univ. Montréal, No. 1, 1962.
- [8] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture notes, Hiroshima University, 1973.
- [9] Yu. G. Reshetnyak, The concept of capacity in the theory of functions with generalized derivatives, Siberian Math. J. 10 (1969), 818-842.
- [10] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
- [11] H. Wallin, Continuous functions and potential theory, Ark. Math. 5 (1963), 55-84.
- [12] H. Wallin, Riesz potentials, k, p-capacity and p-modules, Mich. Math. J. 18 (1971), 257-263.

Department of Mathematics, Faculty of Science, Hiroshima University