# Integral Representations of Beppo Levi Functions of Higher Order 

Yoshihiro Mizuta

(Received January 10, 1974)

## Introduction

If $f$ is a $C^{1}$-function with compact support on the Euclidean space $R^{n}(n \geqq 3)$, then it can be represented by its partial derivatives as follows:

$$
\begin{equation*}
f(x)=-\frac{1}{a_{n}} \sum_{i=1}^{n} \int \frac{\partial}{\partial t_{i}}|x-t|^{2-n} \frac{\partial f}{\partial t_{i}}(t) d t . \tag{1}
\end{equation*}
$$

There are many ways to represent a $C^{m}$-function ( $m$ : positive integer) with compact support on $R^{n}(n \geqq 2)$ in terms of its partial derivatives of $m$-th order. Among them, the following two are regarded as generalizations of (1):

$$
\begin{equation*}
\varphi(x)=\sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} \varphi(y)}{|x-y|^{n}} d y \tag{2}
\end{equation*}
$$

(Yu. G. Reshetnyak [9]), and

$$
\varphi(x)=\left\{\begin{array}{c}
\sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha}\left(|x-y|^{2 m-n}\right) D^{\alpha} \varphi(y) d y  \tag{3}\\
\quad \text { if } n-2 m>0 \text { or } n \text { is odd } \\
\text { and } n-2 m<0, \\
\sum_{|\alpha|=m} c_{\alpha}^{\prime} \int D^{\alpha}\left(|x-y|^{2 m-n} \log |x-y|\right) D^{\alpha} \varphi(y) d y \\
\\
\text { if } n \text { is even and } n-2 m \leqq 0
\end{array}\right.
$$

(H. Wallin [11]).

On the other hand, J. Deny and J. L. Lions [5] studied the space of Beppo Levi functions, e.g., the space $B L\left(L^{p}\left(R^{n}\right)\right)$ of distributions on $R^{n}$ whose partial derivatives belong to $L^{p}\left(R^{n}\right)$. They showed that any quasi continuous function $f$ in $B L\left(L^{2}\left(R^{n}\right)\right)(n \geqq 3)$ is represented as (1) quasi everywhere, with an additional constant. M. Ohtsuka [8] extended their results to $p$-precise functions, which belong to $B L\left(L^{p}\left(R^{3}\right)\right)$, and gave many other properties of precise functions in his lectures at Hiroshima University.

In this paper, we consider the space $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ of Beppo Levi functions
of higher order $m$, that is the space consisting of distributions on $R^{n}$ whose partial derivatives of $m$-th order all belong to $L^{p}\left(R^{n}\right)$. To obtain fine results, we need a concept of $(m, p)$-capacity. For our purpose, the ( $m, p$ )-capacity introduced by H. Wallin [12], which is denoted by $\Gamma_{m, p}$, is best suited. However, since we fail to verify whether it is subadditive or not, we also consider another capacity $\Gamma_{m, p}^{+}$, which is subadditive, and in fact, a true capacity in the sense of M. Brelot [2]. We shall see that it is equivalent to $\Gamma_{m, p}$. Through our capacity $\Gamma_{m, p}$, we shall define ( $m, p$ )-quasi continuity of functions.

It is known that functions in the Sobolev space $W^{m, p}\left(R^{n}\right)$ are represented as Bessel potentials (cf. [1], [3], [9]). Using Bessel potentials, Yu. G. Reshetnyak defined ( $l, p$ ) capacity and then gave a characterization of ( $l, p$ ) polar sets (see [9; Theorem 5.8]). We shall show that in case $l$ is a positive integer $m$, his capacity is equivalent to $\left(\Gamma_{m, p}\right)^{p}$ and that his characterization can be given by using our integral representations.

Then we shall show that integral representation of the form (2) is possible for certain ( $m, p$ )-quasi continuous functions in $B L_{m}\left(L^{p}\left(R^{n}\right)\right.$ ). Integral representation of the form (3) was given by H. Wallin for functions in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ with compact supports (see [11; Lemmas 7 and 8$]$ ). We shall extend his result to the case where supports are not necessarily compact, and in fact we shall prove it in a way different from his.

In the final section, we shall discuss representation of ( $m, p$ )-quasi continuous functions in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ as Riesz potentials of functions in $L^{p}\left(R^{n}\right)$. It is an extension of M. Ohtsuka's result for $p$-precise functions given in [8]. To obtain our result we shall make use of the methods in the previous sections.

## § 1. Preliminaries

Let $R^{n}$ be the $n$-dimensional Euclidean space with points $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, etc. For a multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, we set $|\alpha|=\alpha_{1}+$ $\alpha_{2}+\cdots+\alpha_{n}, x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$ and

$$
D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2} \cdots \partial x_{n}^{\alpha_{n}}} .}
$$

We shall use the following notations of L. Schwartz [10]: $\mathscr{D}\left(R^{n}\right), \mathscr{S}\left(R^{n}\right)$.
In this paper, let $1<p<\infty$. For a non-negative integer $m$, we denote by $W^{m, p}\left(R^{n}\right)$ the Sobolev space, that is, the space of all distributions $F$ such that $D^{\alpha} F \in L^{p}\left(R^{n}\right)$ for any $\alpha$ with $|\alpha| \leqq m$. The norm of $F$ in $W^{m, p}\left(R^{n}\right)$ is defined by

$$
\|F\|_{m, p}=\left\|\left(\sum_{|\alpha| \leqq m}\left|D^{\alpha} F\right|^{2}\right)^{1 / 2}\right\|_{p}
$$

where $\|\cdot\|_{p}$ denotes the $L^{p}$-norm in $R^{n}$. It is well-known that $W^{m, p}\left(R^{n}\right)$ is a reflex-
ive Banach space if $1<p<\infty$ (cf. [7]).
J. Deny and J. L. Lions introduced the following spaces ([5]): $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ is the space of Beppo Levi functions of order $m$ attached to $L^{p}\left(R^{n}\right)$, that is, the space of all distributions $T$ such that $D^{\alpha} T \in L^{p}\left(R^{n}\right)$ for any $|\alpha|=m$ with a semi-norm $|T|_{m, p}=\left\|\left(\sum_{|\alpha|=m}\left|D^{\alpha} T\right|^{2}\right)^{1 / 2}\right\|_{p}$, and $B L_{m} \cdot\left(L^{p}\left(R^{n}\right)\right)$ is the quotient space of $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ by the space of all polynomials of degree $\leqq m-1$. We note that if $F \in B L_{m}$ ( $L^{p}\left(R^{n}\right)$ ) has compact support, then $F \in W^{m, p}\left(R^{n}\right)$ by $[10$; Chapitre 6 , Théorème XV (Kryloff)].

## §2. (m, p)-capacity

Let $m$ be a non-negative integer. We introduce the notion of ( $m, p$ )-capacity. First, for a compact set $e \subset R^{n}$, we define

$$
\begin{aligned}
& \Gamma_{m, p}(e)=\inf \left\{\|\varphi\|_{m, p} ; \varphi \in \mathscr{D}\left(R^{n}\right), \varphi \geqq 1 \text { on } e\right\}, \\
& \Gamma_{m, p}^{+}(e)=\inf \left\{\|\varphi\|_{m, p} ; \varphi \in \mathscr{D}+\left(R^{n}\right), \varphi \geqq 1 \text { on } e\right\},
\end{aligned}
$$

where $\mathscr{D}_{+}\left(R^{n}\right)=\left\{\varphi \in \mathscr{D}\left(R^{n}\right) ; \varphi \geqq 0\right.$ on $\left.R^{n}\right\}$. Next, for an open set $\omega \subset R^{n}$, we define

$$
\begin{aligned}
& \Gamma_{m, p}(\omega)=\sup _{e \subset \omega, e: c o m p a c t} \Gamma_{m, p}(e), \\
& \Gamma_{m, p}^{+}(\omega)=\sup _{e \subset \omega, e: c o m p a c t} \Gamma_{m, p}^{+}(e) .
\end{aligned}
$$

Then we note that $\Gamma_{m, p}(e)=\inf \left\{\Gamma_{m, p}(\omega) ; e \subset \omega, \omega\right.$ is open $\}$ and $\Gamma_{m, p}^{+}(e)=\inf \left\{\Gamma_{m, p}^{+}\right.$ $(\omega) ; e \subset \omega, \omega$ is open $\}$, which allow us to define for an arbitrary set $A \subset R^{n}$ the following quantities:

$$
\begin{aligned}
& \Gamma_{m, p}(A)=\inf _{A \subset \omega, \omega: \text { open }} \Gamma_{m, p}(\omega), \\
& \Gamma_{m, p}^{+}(A)=\inf _{A \subset \omega, \omega: \text { open }} \Gamma_{m, p}^{+}(\omega) .
\end{aligned}
$$

$\Gamma_{m, p}(A)$ is called the ( $m, p$-capacity of $A$ (cf. [12]).
Remark 2.1. It is easy to see that $\Gamma_{0, p}(A)=\Gamma_{0, p}^{+}(A)=\{$ outer Lebesgue measure of $A\}^{1 / p}$. Furthermore, we have $\Gamma_{1, p}(A)=\Gamma_{1, p}^{+}(A)$, because, for $F \in B L_{1}$ $\left(L^{p}\left(R^{n}\right)\right.$ ), $|F| \in B L_{1}\left(L^{p}\left(R^{n}\right)\right.$ ) and $|\operatorname{grad}| F| |=|\operatorname{grad} F|$ a.e. on $R^{n}$ (see [5; Théorème 3.2 in p. 316]).

From the definitions, we can easily prove
Lemma 2.1. (i) $\Gamma_{m, p}$ and $\Gamma_{m, p}^{+}$are monotone increasing and continuous from the right.
(ii) $\Gamma_{m, p}^{+}$is countably subadditive, that is

$$
\Gamma_{m, p}^{+}\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leqq \sum_{j=1}^{\infty} \Gamma_{m, p}^{+}\left(A_{j}\right)
$$

for a countable family $\left\{A_{j}\right\}$ of sets in $R^{n}$.
For relationship between $\Gamma_{m, p}$ and $\Gamma_{m, p}^{+}$, we have
Lemma 2.2. There exists a constant $C \geqq 1$ such that

$$
\Gamma_{m, p}^{+}(e) \leqq C \Gamma_{m, p}(e) \quad \text { for all compact set } e \text { in } R^{n}
$$

From this lemma, the following theorem immediately follows:
Theorem 2.1. There exists a constant $C \geqq 1$ independent of $A$ such that

$$
\Gamma_{m, p}(A) \leqq \Gamma_{m, p}^{+}(A) \leqq C \Gamma_{m, p}(A)
$$

for any set $A$ in $R^{n}$.
Proof of Lemma 2.2. On account of Remark 2.1, it suffices to show the case $m \geqq 2$. We use the Bessel kernel $G_{m}$, which is determined by the following properties:
(i) $G_{m}$ is a non-negative function belonging to $L^{1}\left(R^{n}\right)$,
(ii) the Fourier transform of $G_{m}$ is $\left(1+4 \pi^{2}|x|^{2}\right)^{-m / 2}$.

It is known that a distribution $F$ belongs to $W^{m, p}\left(R^{n}\right)$ if and only if there exists a function $f \in L^{p}\left(R^{n}\right)$ such that $F=G_{m} * f$ in $W^{m, p}\left(R^{n}\right)$, and that

$$
\begin{equation*}
C^{-1}\|f\|_{p} \leqq\left\|G_{m} * f\right\|_{m, p} \leqq C\|f\|_{p} \tag{2.1}
\end{equation*}
$$

for some constant $C>0$ independent of $f$ (see [3; Theorem 7]).
Let $\varphi \in \mathscr{D}\left(R^{n}\right)$ and $\varphi>1$ on $e$. We can write $\varphi=G_{m} * f$ for some $f \in \mathscr{S}\left(R^{n}\right)$. Then $G_{m} * f^{+}$is obviously continuous and $>1$ on $e$, where $f^{+}(x)=\max (0, f(x))$. If we show $\Gamma_{m, p}^{+}(e) \leqq\left\|G_{m} * f^{+}\right\|_{m, p}$, then

$$
\Gamma_{m, p}^{+}(e) \leqq C\left\|f^{+}\right\|_{p} \leqq C\|f\|_{p} \leqq C^{2}\|\varphi\|_{m, p},
$$

which implies $\Gamma_{m, p}^{+}(e) \leqq C^{2} \Gamma_{m, p}(e)$.
Take a function $\psi \in \mathscr{D}_{+}\left(R^{1}\right)$ which is equal to 1 on a neighborhood of 0 . Set

$$
\psi_{j}(t)=\left\{\begin{array}{lll}
1 & \text { if } & t \leqq j \\
\psi(t-j) & \text { if } & t>j,
\end{array}\right.
$$

and set $\tilde{\psi}_{j}(x)=\psi_{j}(|x|)$. It is easy to check that $\tilde{\psi}_{j} F \rightarrow F$ in $W^{m, p}\left(R^{n}\right)$ as $j \rightarrow \infty$ for any $F \in W^{m, p}\left(R^{n}\right)$. Let $\left\{h_{k}\right\}$ be a sequence of functions belonging to $\mathscr{D}_{+}\left(R^{n}\right)$ such that $\operatorname{supp}\left(h_{k}\right) \subset\{x ;|x| \leqq(1 / k)\}$ and $\int h_{k}(x) d x=1$. For each $j$ and $k\left\{\tilde{\psi}_{j}\right.$ $\left.\left(G_{m} * f^{+}\right)\right\} * h_{k} \in \mathscr{D}_{+}\left(R^{n}\right)$ and for sufficiently large $j$ and $k$, we have $\left\{\tilde{\psi}_{j}\left(G_{m} * f^{+}\right)\right\} * h_{k}$ $\geqq 1$ on $e$. Therefore

$$
\Gamma_{m, p}^{+}(e) \leqq \lim _{j \rightarrow \infty} \lim _{k \rightarrow \infty}\left\|\left\{\tilde{\psi}_{j}\left(G_{m} * f^{+}\right)\right\} * h_{k}\right\|_{m, p}=\left\|G_{m} * f^{+}\right\|_{m, p}
$$

Thus Lemma 2.2 is proved.
Remark 2.2. In the above proof, we have also shown that $\mathscr{D}_{+}\left(R^{n}\right)$ is dense in $W_{+}^{m, p}\left(R^{n}\right)=\left\{f \in W^{m, p}\left(R^{n}\right) ; f \geqq 0\right.$ a.e. $\}$ with respect to the topology of $W^{m, p}\left(R^{n}\right)$.

A set $A \subset R^{n}$ is called ( $m, p$ )-polar if $\Gamma_{m, p}(A)=0$, or equivalently, $\Gamma_{m, p}^{+}(A)=0$. If a property is true on a set $A \subset R^{n}$ except for an ( $m, p$ )-polar set in $A$, then we say that this property is true $(m, p)$-quasi everywhere or $(m, p)-q . e$ on $A$.

A function $f$ is called ( $m, p$ )-quasi continuous if given $\varepsilon>0$, there exists an open set $\omega \subset R^{n}$ such that $\Gamma_{m, p}(\omega)<\varepsilon$ and the restriction of $f$ to $R^{n}-\omega$ is continuous.

By Lemma 2.1 and Theorem 2.1, we can prove the following lemma in the same manner as J. Deny J. L. Lions [5].

Lemma 2.3. For each $F \in W^{m, p}\left(R^{n}\right)$, we set $\Phi(F)=\{f ; f$ is ( $m, p$ )-quasi continuous and equals $F$ a.e. on $\left.R^{n}\right\}$. Then we have the following assertions:
(i) $\Phi(F)$ is non-empty, two functions of $\Phi(F)$ are equal to each other $(m, p)$ q.e., and any function which equals some function of $\Phi(F)(m, p)$-q.e. belongs to $\Phi(F)$ (cf. [5; Théorème 3.1 in $p .354]$ ).
(ii) If a sequence $\left\{F_{j}\right\}$ converges to $F$ in $W^{m, p}\left(R^{n}\right)$ as $j \rightarrow \infty$, then there exists a subsequence $\left\{F_{j_{k}}\right\}$ of $\left\{F_{j}\right\}$ such that for any $f_{j_{k}} \in \Phi\left(F_{j_{k}}\right)$ and any $f \in \Phi(F)$, $\left\{f_{j_{k}}\right\}$ converges to $f(m, p)$-q.e. as $k \rightarrow \infty$ (cf. [5; Théorème 4.1 in $\left.p .357\right]$ ).

A distribution $T \in B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ can be considered as a function $f$ with $D^{\alpha} f \in$ $L_{\text {ioc }}^{p}\left(R^{n}\right)$ for any $\alpha$ with $|\alpha| \leqq m$. For this $f$, there exists an ( $m, p$ )-quasi continuous function equal to $f$ a.e. (cf. [5; Théorème 3.1 in p . 354]).

Let $\omega$ be an open set in $R^{n}$. Denote by $\mathscr{W}^{m, p}(\omega)$ the class of all $F \in W^{m, p}\left(R^{n}\right)$ such that $F \geqq 1$ a.e. on $\omega$. Then we show

Lemma 2.4. $\quad \Gamma_{m, p}(\omega)=\inf \left\{\|F\|_{m, p} ; F \in \mathscr{W}^{m, p}(\omega)\right\}$.
Proof. Let $e$ be a compact set in $\omega$, and let $\left\{\tilde{\psi}_{j}\right\}$ and $\left\{h_{k}\right\}$ be the same as in the proof of Lemma 2.2. Then for any $F \in \mathscr{W}^{m, p}(\omega)$, we have $\Gamma_{m, p}(e) \leqq \lim _{j \rightarrow \infty}$ $\lim _{k \rightarrow \infty}\left\|\left(\tilde{\psi}_{j} F\right) * h_{k}\right\|_{m, p}=\|F\|_{m, p}$. Therefore $\quad \Gamma_{m, p}(\omega) \leqq \inf \left\{\|F\|_{m, p} ; \quad F \in \mathscr{W}^{m, p}(\omega)\right\}$. To prove the converse inequality we may assume $\Gamma_{m, p}(\omega)<\infty$. Take a sequence
$\left\{e_{j}\right\}$ of compact sets such that $e_{j} \subset$ the interior of $e_{j+1} \subset \omega$ for any $j \geqq 1$, and $\cup_{j=1}^{\infty} e_{j}=\omega$. Next, for each $j$, choose $\left\{\varphi_{j}\right\} \subset \mathscr{D}\left(R^{n}\right)$ satisfying $\varphi_{j} \geqq 1$ on $e_{j}$ and $\left\|\varphi_{j}\right\|_{m, p}<\Gamma_{m, p}\left(e_{j}\right)+(1 / j)$. Then $\left\{\varphi_{j}\right\}$ is a bounded set in the reflexive Banach space $W^{m, p}\left(R^{n}\right)$. Hence there exists a subsequence $\left\{\varphi_{j_{k}}\right\}$ of $\left\{\varphi_{j}\right\}$ and $F \in W^{m, p}$ $\left(R^{n}\right)$ such that $\varphi_{j_{k}} \rightarrow F$ weakly in $W^{m, p}\left(R^{n}\right)$ as $k \rightarrow \infty$. This implies $F \geqq 1$ a.e. on $\omega$ and $\|F\|_{m, p} \leqq \liminf _{k \rightarrow \infty}\left\|\varphi_{j_{k}}\right\|_{m, p} \leqq \Gamma_{m, p}(\omega)$. Thus our lemma is proved.

Let $A$ be a set in $R^{n}$. Denote by $\mathscr{W}^{m, p}(A)$ the closure of the class of all $F \in$ $W^{m, p}\left(R^{n}\right)$ such that $F \geqq 1$ a.e. on a neighborhood of $A$.

Theorem 2.2. If $\Gamma_{m, p}(A)<\infty$, then there exists a unique $F \in \mathscr{W}^{m, p}(A)$ such that
(a) if $f \in \Phi(F)$, then $f \geqq 1(m, p)$-q.e. on $A$,
(b) $\|F\|_{m, p}=\Gamma_{m, p}(A)$.

Proof. By Lemma 2.3, the class of all $F \in W^{m, p}\left(R^{n}\right)$ such that $f \geqq 1(m, p)$ q.e. on $A$ for any $f \in \Phi(F)$ is a closed set in $W^{m, p}\left(R^{n}\right)$ and includes $\mathscr{W}^{m, p}(A)$. Therefore all $F \in \mathscr{W}^{m, p}(A)$ satisfy (a).

On the other hand $\mathscr{W}^{m, p}(A)$ is a closed convex subset of the reflexive Banach space $W^{m, p}\left(R^{n}\right)$, and by using Lemma 2.4 , we see that $\Gamma_{m, p}(A)=\inf \left\{\|F\|_{m, p}\right.$; $\left.F \in \mathscr{W}^{m, p}(A)\right\}$. This infimum is attained at a unique element $F \in \mathscr{W}^{m, p}(A)$ because of the uniform convexity of $W^{m, p}\left(R^{n}\right)$ (see [7; Chapitre 1,3.3]). This $F$ is the required one.

For any set $A$ in $R^{n}$, we set $\mathscr{W}_{+}^{m, p}(A)=\left\{F \in \mathscr{W}^{m, p}(A) ; F \geqq 0\right.$ a.e. on $\left.R^{n}\right\}$. It is easy to see that $\mathscr{W}_{+}^{m, p}(A)$ is a closed convex set and consists of all $F$ in $W^{m, p}\left(R^{n}\right)$ such that any function of $\Phi(F)$ is $\geqq 0(m, p)$-q.e. on $R^{n}$ and $\geqq 1(m, p)$ q.e. on $A$.

Lemma 2.5. $\quad \Gamma_{m, p}^{+}(A)=\inf \left\{\|F\|_{m, p} ; F \in \mathscr{W}_{+}^{m, p}(A)\right\}$.
Proof. Let $F \in \mathscr{W}_{+}^{m, p}(A)$. Then $\Gamma_{m, p}^{+}(A) \leqq\|F\|_{m, p}$ can be shown in the same way as J. Deny and J. L. Lions [5; Lemme 4.1 in p. 356]. Hence we have $\Gamma_{m, p}^{+}(A) \leqq \inf \left\{\|F\|_{m, p} ; F \in \mathscr{W}_{+}^{m, p}(A)\right\}$. The converse inequality can be shown in the same way as in Lemma 2.4 and Theorem 2.2.

By this lemma, we have the following theorem:
Theorem 2.2'. For an arbitrary set $A$ with $\Gamma_{m, p}^{+}(A)<\infty$, there exists a unique $F \in W^{m, p}\left(R^{n}\right)$ such that
(a) for any $f \in \Phi(F), f \geqq 0(m, p)$-q.e. and $f \geqq 1(m, p)$-q.e. on $A$,
(b) $\|F\|_{m, p}=\Gamma_{m, p}^{+}(A)$.

Definition. We shall denote by $f_{A}$ any function in $\Phi(F)$ in Theorem $2.2^{\prime}$.

Lemma 2.6. Let $\left\{A_{j}\right\}$ be any increasing sequence of sets in $R^{n}$, and set $A=\cup_{j=1}^{\infty} A_{j}$. Then $\Gamma_{m, p}^{+}\left(A_{j}\right) \uparrow \Gamma_{m, p}^{+}(A)$ as $j \rightarrow \infty$.

Proof. Take $F_{j} \in W^{m, p}\left(R^{n}\right)$ with the properties in Theorem $2.2^{\prime}$ for each $A_{j}$. We may assume that $\lim _{j \rightarrow \infty} \Gamma_{m, p}^{+}\left(A_{j}\right)<\infty$. Then $\left\{F_{j}\right\}$ is bounded in $W^{m, p}$ $\left(R^{n}\right)$. Therefore there exist a subsequence $\left\{F_{j_{k}}\right\}$ of $\left\{F_{j}\right\}$ and $F \in W^{m, p}\left(R^{n}\right)$ such that $F_{j_{k}} \rightarrow F$ weakly in $W^{m, p}\left(R^{n}\right)$ as $k \rightarrow \infty$. Moreover we have $F \in \bigcap_{j=1}^{\infty}$ $\mathscr{W}_{+}^{m, p}\left(A_{j}\right)=\mathscr{W}_{+}^{m, p}(A)$. Hence

$$
\Gamma_{m, p}^{+}(A) \leqq\|F\|_{m, p} \leqq \liminf _{k \rightarrow \infty}\left\|F_{j_{k}}\right\|_{m, p}=\lim _{j \rightarrow \infty} \Gamma_{m, p}^{+}\left(A_{j}\right) \leqq \Gamma_{m, p}^{+}(A)
$$

which implies that $\lim _{j \rightarrow \infty} \Gamma_{m, p}^{+}\left(A_{j}\right)=\Gamma_{m, p}^{+}(A)$.
Lemmas 2.1 and 2.6 mean that $\Gamma_{m, p}^{+}$is a true capacity in the sense of M. Brelot [2]. Thus we have

Theorem 2.3. Any analytic set in $R^{n}$ is capacitable with respect to $\Gamma_{m, p}^{+}$.
Yu. G. Reshetnyak defined the (l, p) capacity $\mathrm{Cap}_{(l, p)} E$ of sets $E$ in $R^{n}$ in case $l$ is a positive number and $p>1$, as follows (see [9]):

$$
\operatorname{Cap}_{(l, p)} E=\inf \left\{\|f\|_{p} ; f \in L^{p}\left(R^{n}\right), \geqq 0 \quad \text { and } \quad G_{l} * f \geqq 1 \quad \text { on } E\right\} .
$$

As another application of Lemma 2.4 we give
Theorem 2.4. In case $l$ is a positive integer $m$ and $m p \leqq n$, there exists a positive constant $C$ such that

$$
\begin{equation*}
C^{-1}\left\{\Gamma_{m, p}(E)\right\}^{p} \leqq \operatorname{Cap}_{(m, p)} E \leqq C\left\{\Gamma_{m, p}(E)\right\}^{p} \tag{2.2}
\end{equation*}
$$

for any set $E$ in $R^{n}$.
Proof. It suffices to show (2.2) for any open set $\omega$ in $R^{n}$ because of the definition of $\Gamma_{m, p}$ and Lemma 2.2 in [9]. Recall that, if $f \in L^{p}\left(R^{n}\right)$, then $G_{m} * f$ belongs to $W^{m, p}\left(R^{n}\right)$ and satisfies (2.1). To show the left inequality of (2.2) for $\omega$, choose a non-negative function $f$ in $L^{p}\left(R^{n}\right)$ such that $G_{m} * f \geqq 1$ everywhere on $\omega$. (If such an $f$ does not exist, then $\mathrm{Cap}_{(m, p)} \omega=\infty$.) By (2.1) and Lemma 2.4 we have $C^{-p}\left\{\Gamma_{m, p}(\omega)\right\}^{p} \leqq \operatorname{Cap}_{(m, p)} \omega$.

To give the right inequality of (2.2), it suffices to show it only for any compact set $e$ in $R^{n}$ by the capacitability of $e$ for $\mathrm{Cap}_{(m, p)}$ (Theorem 2.1 in [9]) and the definition of $\Gamma_{m, p}$. Let us choose $\varphi \in \mathscr{D}\left(R^{n}\right)$ so that $\varphi \geqq 1$ on $e$. As in the proof of Lemma 2.2 we write $\varphi=G_{m} * f$ for some $f \in \mathscr{S}\left(R^{n}\right)$ and have

$$
\operatorname{Cap}_{(m, p)} \varrho \leqq\|f\|_{p}^{p} \leqq C^{p}\|\varphi\|_{m, p}^{p} .
$$

This yields $\operatorname{Cap}_{(m, p)} e \leqq C^{p}\left\{\Gamma_{m, p}(e)\right\}^{p}$.

## § 3. Integral representation I

Hereafter, let $m$ be a positive integer.
Let $l$ be an integer and $\alpha$ a multi-index such that $m=|\alpha|-l+n \geqq 1$. We set $\kappa(x)=x^{\alpha} /|x|^{l}$. For a multi-index $\beta$ with $|\beta|=m$, we can express

$$
\begin{equation*}
\left(D^{\beta} \kappa\right)(x)=\sum_{k=0}^{m} \frac{a_{k}(x)}{|x|^{l+2 k}}, \tag{3.1}
\end{equation*}
$$

where each $a_{k}(x)$ is a homogeneous polynomial of degree $(l+2 k)-n$, or constantly zero. We shall show that $K=D^{\beta} \kappa$ fulfills the conditions for a kernel listed on p. 89 of [4]. In our case,

$$
\Omega\left(\frac{x}{|x|}\right)=\sum_{k=0}^{m} \frac{a_{k}(x)}{|x|^{l+2 k-n}} \quad \text { and } \quad K(x)=\frac{1}{|x|^{n}} \Omega\left(\frac{x}{|x|}\right) .
$$

Since $\sum_{k=0}^{m} a_{k}(x) /|x|^{l+2 k-n}$ is a homogeneous function of degree 0 , we can consider $\Omega(x)$ as a function on the unit sphere with center at the origin of $R^{n}$. If $|x|=|y|=1$, then

$$
|\Omega(x)-\Omega(y)| \leqq \sum_{k=0}^{m}\left|a_{k}(x)-a_{k}(y)\right| \leqq c|x-y|
$$

for some positive constant c. Next we show
Lemma 3.1. $\int_{|x|=1} K(x) d S(x)=0$.
Proof. First we observe

$$
\begin{equation*}
\int_{|x|=1} x^{\nu} d S(x)=\frac{2 \prod_{i=1}^{n}\left(\frac{1+(-1)^{\gamma_{i}}}{2}\right) \Gamma\left(\frac{\gamma_{i}+1}{2}\right)}{\Gamma\left(\frac{n+|\gamma|}{2}\right)} \tag{3.2}
\end{equation*}
$$

for a multi-index $\gamma$, which can be obtained from an elementary calculus.
We prove the lemma by induction with respect to $m$. Let $\alpha, \beta$ and $l$ be given so that $|\alpha|-l+n=|\beta|=1$. Then we have

$$
D^{\beta}\left(\frac{x^{\alpha}}{|x|^{l}}\right)=\binom{\alpha}{\beta} \frac{x^{\alpha-\beta}}{|x|^{l}}-l \frac{x^{\alpha+\beta}}{|x|^{l+2}}
$$

where

$$
\binom{\alpha}{\beta}= \begin{cases}\prod_{i=1}^{n}\binom{\alpha_{i}}{\beta_{i}}=\prod_{i=1}^{n} \frac{\alpha_{i}!}{\beta_{i}!\left(\alpha_{i}-\beta_{i}\right)!} & \text { if } \alpha_{i} \geqq \beta_{i} \text { for all } i, \\ 0 & \text { otherwise. }\end{cases}
$$

Using (3.2), we have

$$
\begin{aligned}
& \int_{|x|=1} D^{\beta}\left(\frac{x^{\alpha}}{|x|^{l}}\right) d S(x)=\binom{\alpha}{\beta} \frac{2 \prod_{i=1}^{n}\left(\frac{1+(-1)^{\alpha_{i}-\beta_{i}}}{2}\right) \Gamma\left(\frac{\alpha_{i}-\beta_{i}+1}{2}\right)}{\Gamma\left(\frac{n+|\alpha-\beta|}{2}\right)} \\
&-l \frac{2 \prod_{i=1}^{n}\left(\frac{1+(-1)^{\alpha_{i}+\beta_{i}}}{2}\right) \Gamma\left(\frac{\alpha_{i}+\beta_{i}+1}{2}\right)}{\Gamma\left(\frac{n+|\alpha+\beta|}{2}\right)}
\end{aligned}
$$

Since $|\beta|=1$, the right-hand side is seen to be zero.
Next we assume that the lemma is true for $|\alpha|-l+n=|\beta|=m$. Let $\alpha, \beta$ and $l$ be given so that $|\alpha|-l+n=|\beta|=m+1$. Writing $\beta=\gamma+\delta$, where $|\gamma|=1$ and $|\delta|=m$, we have

$$
D^{\beta}\left(\frac{x^{\alpha}}{|x|^{l}}\right)=\binom{\alpha}{\gamma} D^{\delta}\left(\frac{x^{\alpha-\gamma}}{|x|^{l}}\right)-l D^{\delta}\left(\frac{x^{\alpha+\gamma}}{|x|^{l+2}}\right) .
$$

Here if $\alpha-\gamma$ is not a multi-index, the first term of the right-hand side disappears, and if otherwise, $|\alpha-\gamma|-l+n=m$. Moreover $|\alpha+\gamma|-(l+2)+n=m$. Consequently, by the assumption of induction, we obtain

$$
\int_{|x|=1} D^{\delta}\left(\frac{\alpha^{\alpha-\gamma}}{|x|^{l}}\right) d S(x)=0 \quad \text { and } \quad \int_{|x|=1} D^{\delta}\left(\frac{x^{\alpha+\gamma}}{|x|^{l+2}}\right) d S(x)=0
$$

i.e.,

$$
\int_{|x|=1} D^{\beta}\left(\frac{x^{\alpha}}{|x|^{\mid}}\right) d S(x)=0 .
$$

Thus Lemma 3.1 is proved.
Let $f$ be a function in $L^{p}\left(R^{n}\right)$. For a positive integer $j$, we set $K_{(1 / j)}(x)=$ $K(x)$ if $|x| \geqq 1 / j$ and $=0$ if $|x|<1 / j$. Then, we can apply the results of singular integrals in [4] and obtain:
(i) $K_{(1 / j)^{*}} * f$ belongs to $L^{p}\left(R^{n}\right)$ for each $j$, and converges in $L^{p}\left(R^{n}\right)$ as $j \rightarrow \infty$ ([4; Theorems 1 and 7]),
(ii)

$$
\begin{equation*}
\left\|K_{(1 / j)} * f\right\|_{p} \leqq \text { const. }\|f\|_{p} \quad([4 ; \text { Theorem 1] }) \tag{3.3}
\end{equation*}
$$

Next, we consider $\kappa_{j}(x)=x^{\alpha} /\left(|x|^{2}+(1 / j)^{2}\right)^{1 / 2}$. Let $f$ be a function in $L^{p}\left(R^{n}\right)$ satisfying the following condition:

$$
\begin{equation*}
\int(1+|x|)^{m-n}|f(x)| d x=\int(1+|x|)^{|x|-l}|f(x)| d x<\infty, \tag{3.4}
\end{equation*}
$$

or equivalently,

$$
\int|x-y|^{m-n}|f(y)| d y \not \equiv \infty
$$

(see Remark in p. 191 of [6] and also Lemma 9.1 of [8]). We set

$$
(\kappa * f)(x)=\int \frac{(x-y)^{\alpha}}{|x-y|^{l}} f(y) d y
$$

and $\kappa_{j} * f$ is similarly defined. By our assumptions, it is easy to see that $\kappa_{j} * f \in C^{\infty}$ and $D^{\beta}\left(\kappa_{j} * f\right)=\left(D^{\beta} \kappa_{j}\right) * f$ for any $\beta$. Furthermore we have

Lemma 3.2. For any multi-index $\beta$ with $|\beta|=m, D^{\beta}\left(\kappa_{j} * f\right)$ converges in $L^{p}\left(R^{n}\right)$ as $j \rightarrow \infty$.

Proof. We can write

$$
\left(D^{\beta}\left(\kappa_{j} * f\right)\right)(x)-\left(K_{(1 / j)} * f\right)(x)=j^{n} \int \theta_{\beta}(j(x-y)) f(y) d y
$$

where $\theta_{\beta}=D^{\beta} \kappa_{1}-K_{(1)}$. We shall show that $\theta_{\beta} \in L^{1}\left(R^{n}\right)$. First we notice that

$$
D^{\beta} \kappa_{1}(x)=\sum_{k=0}^{m} \frac{a_{k}(x)}{\left(|x|^{2}+1\right)^{(l+2 k) / 2}}
$$

for the same $a_{k}(x)$ as in (3.1). Therefore if $|x| \geqq 1$, then

$$
\theta_{\beta}(x)=-\sum_{k=0}^{m} \frac{a_{k}(x)}{\left(|x|^{2}+1\right)^{(l+2 k) / 2}|x|^{l+2 k}}\left(\left(|x|^{2}+1\right)^{(l+2 k) / 2}-|x|^{l+2 k}\right)
$$

and $\left(|x|^{2}+1\right)^{(l+2 k) / 2}-|x|^{l+2 k}=O\left(|x|^{l+2 k-2}\right)$ as $|x| \rightarrow \infty$. Hence $\theta_{\beta}(x)=O\left(|x|^{-n-2}\right)$ as $|x| \rightarrow \infty$, because each $a_{k}(x)$ is a homogeneous polynomial of degree $(l+2 k)-\mathrm{n}$, or constantly zero. Thus $\theta_{\beta} \in L^{1}\left(R^{n}\right)$. We set $A_{\beta}=\int \theta_{\beta}(x) d x$. Then

$$
\begin{aligned}
& \left(D^{\beta}\left(\kappa_{j^{*}} * f\right)\right)(x)-\left(K_{(1 / j)^{*}} f\right)(x)-A_{\beta} f(x) \\
& \quad=j^{n} \int \theta_{\beta}(j(x-y)) f(y) d y-\int \theta_{\beta}(y) f(x) d y \\
& \quad=\int \theta_{\beta}(y)\{f(x-(y / j))-f(x)\} d y .
\end{aligned}
$$

Therefore we have by Hölder's inequality,

$$
\begin{aligned}
& \left\|D^{\beta}\left(\kappa_{j} * f\right)-K_{(1 / j)^{*}} f-A_{\beta} f\right\|_{p}^{p} \\
& \quad \leqq\left(\int\left|\theta_{\beta}(y)\right| d y\right)^{p / q} \int\left|\theta_{\beta}(y)\right|\left(\int|f(x-(y / j))-f(x)|^{p} d x\right) d y
\end{aligned}
$$

where $(1 / p)+(1 / q)=1$. Noting that $\theta_{\beta} \in L^{1}\left(R^{n}\right), \int|f(x-(y / j))|^{p} d x=\int|f(x)|^{p} d x$ and that $\int|f(x-(y / j))-f(x)|^{p} d x \rightarrow 0$ locally uniformly as $j \rightarrow \infty$ we obtain

$$
\begin{equation*}
\left\|D^{\beta}\left(\kappa_{j} * f\right)-K_{(1 / j)} * f-A_{\beta} f\right\|_{p} \rightarrow 0 \tag{3.5}
\end{equation*}
$$

as $j \rightarrow \infty$ by Lebesgue's convergence theorem. This yields Lemma 3.2.
Lemma 3.3. Let $f$ be a function in $L^{p}\left(R^{n}\right)$ satisfying (3.4). Suppose $|\beta|=$ m. Then
(i) $D^{\beta}\left(\kappa_{j} * f\right) \rightarrow D^{\beta}(\kappa * f) \quad$ in $L^{p}\left(R^{n}\right)$ as $j \rightarrow \infty$,
(ii) $\left\|D^{\beta}(\kappa * f)\right\|_{p} \leqq$ const. $\|f\|_{p}$,
(iii) $\kappa * f$ is $(m, p)$-quasi continuous.

Proof. From Lemma 3.2, it follows that $\kappa_{j} * f$ is a Cauchy sequence in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$. Then there exist a sequence $\left\{P_{j}\right\}$ of polynomials of degree $\leqq m-1$ and $u \in B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ such that $\kappa_{j} * f \rightarrow u$ in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ as $j \rightarrow \infty$ and $D^{\beta^{\prime}}\left(\kappa_{j} * f+P_{j}\right)$ $\rightarrow D^{\beta^{\prime}} u$ in $L_{\mathrm{loc}}^{p}\left(R^{n}\right)$ as $j \rightarrow \infty$ for any $\beta^{\prime}$ with $\left|\beta^{\prime}\right| \leqq m$ (see [5; Théorème 2.1 in Chap. III]).

First we consider the special case:

$$
\kappa(x)=|x|^{m-n} \quad \text { and } \quad \kappa_{j}(x)=\left(|x|^{2}+(1 / j)^{2}\right)^{(m-n) / 2} .
$$

Since $\kappa_{j} *|f| \rightarrow \kappa *|f|$ pointwise as $j \rightarrow \infty$, there exists a polynomial $P_{0}$ of degree $\leqq m-1$ such that $\kappa *|f|=u-P_{0}$ a.e. on $R^{n}$. Moreover, for any $\varphi \in \mathscr{D}\left(R^{n}\right), \varphi$ $\left(\kappa_{j} *|f|\right) \rightarrow \varphi(\kappa *|f|)$ in $W^{m, p}\left(R^{n}\right)$ as $j \rightarrow \infty$. It follows from Lemma 2.3, (ii), that $\varphi(\kappa *|f|)$ is $(m, p)$-quasi continuous, which means that $\kappa *|f|$ is $(m, p)$-quasi continuous and that $\left\{x ; \int|x-y|^{m-n}|f(y)| d y=\infty\right\}$ is $(m, p)$-polar.

Now we consider the general case. We observe that $\kappa_{j} * f$ converges to $\kappa * f$ except on an ( $m, p$ )-polar set, in fact, except on the set $\left\{x ; \int|x-y|^{m-n}|f(y)| d y=\right.$ $\infty\}$. Therefore, in a way similar to the above, we obtain (i) and (iii). Moreover,

$$
\begin{aligned}
\left\|D^{\beta}(\kappa * f)\right\|_{p} & \leqq\left\|D^{\beta}\left(\kappa_{j} * f\right)-D^{\beta}(\kappa * f)\right\|_{p} \\
& +\left\|D^{\beta}\left(\kappa_{j} * f\right)-K_{(1 / j)} * f-A_{\beta} f\right\|_{p} \\
& +\left\|K_{(1 / j)} * f\right\|_{p}+\left|A_{\beta}\right|\|f\|_{p}
\end{aligned}
$$

for any $j$. Letting $j \rightarrow \infty$ and using (3.3) and (3.5), we have (ii) of the lemma.
Lemma 3.4. (Yu. G. Reshetnyak [9; Lemma 6.2]) For $\varphi \in \mathscr{D}\left(R^{n}\right)$, we can write

$$
\varphi(x)=\sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} \varphi(y)}{|x-y|^{n}} d y
$$

where $a_{\alpha}=(-1)^{m} m /\left(\alpha!\omega_{n}\right), \omega_{n}$ being the surface area of the unit sphere in $R^{n}$.
Theorem 3.1. Let $f$ be an ( $m, p$ )-quasi continuous function belonging to $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ such that

$$
\begin{equation*}
\int(1+|x|)^{m-\eta}\left|D^{\alpha} f(x)\right| d x<\infty \quad \text { for any } \alpha \text { with }|\alpha|=m . \tag{3.6}
\end{equation*}
$$

If there exists a sequence $\left\{\varphi_{j}\right\}$ of functions in $\mathscr{D}\left(R^{n}\right)$ such that $\varphi_{j} \rightarrow f$ in $B L_{m}$ ( $L^{p}\left(R^{n}\right)$ ) as $j \rightarrow \infty$, then

$$
\begin{equation*}
f(x)=\sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} f(y)}{|x-y|^{n}} d y+P(x) \quad(m, p)-q . e . \tag{3.7}
\end{equation*}
$$

where $P$ is a polynomial of degree $\leqq m-1$.
Proof. By Lemma 3.4, we have

$$
\varphi_{j}(x)=\sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} \varphi_{j}(y)}{|x-y|^{n}} d y .
$$

Here we set

$$
G_{f}(x)=\sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha} f(y)}{|x-y|^{n}} d y .
$$

From Lemma 3.3, it follows that $G_{f}$ is ( $m, p$ )-quasi continuous and that $\varphi_{j} \rightarrow G_{f}$ in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ as $j \rightarrow \infty$. Therefore $G_{\dot{f}}^{\cdot}=f \cdot$ in $B L_{m}^{\cdot}\left(L^{p}\left(R^{n}\right)\right)$. Hence there exists a polynomial $P$ of degree $\leqq m-1$ such that $f=G_{f}+P$ a.e. on $R^{n}$, which implies Theorem 3.1 by virtue of Lemma 2.3.

Remark 3.1. Let $f$ be an ( $m, p$ )-quasi continuous function in $W^{m, p}\left(R^{n}\right)$ satisfying (3.6). Then we have (3.7), because there exists a sequence $\left\{\varphi_{j}\right\}$ of functions in $\mathscr{D}\left(R^{n}\right)$ such that $\varphi_{j} \rightarrow f$ in $W^{m, p}\left(R^{n}\right)$ as $j \rightarrow \infty$ (cf. Remark 2.2).

Remark 3.2. Let $f$ be an ( $m, p$ )-quasi continuous function belonging to $B L_{m}\left(L^{p}\left(R^{n}\right)\right.$ ). If $f$ has compact support, then we have (3.7). Moreover if (1§) $m<n$, then $P=0$.

Remark 3.3. In Theorem 3.1, if ( $m<$ ) $m p<n$, we can omit (3.6). In fact, in this case,

$$
\int \frac{\left|D^{\alpha} f(x)\right|}{(1+|x|)^{n-m}} d x \leqq\left(\int\left|D^{\alpha} f(x)\right|^{p} d x\right)^{1 / p}\left(\int \frac{d x}{(1+|x|)^{q(n-m)}}\right)^{1 / q}<\infty
$$

where $q=p /(p-1)$.
Remark 3.4. In case $m=1$, these Remarks and Theorem 3.1 were given by M. Ohtsuka [8; Theorem 9.11].

As a consequence of Theorem 3.1, we have
Theorem 3.2. (cf. [9; Theorem 5.8] and [12; Theorem 1]) $A$ set $A$ in $R^{n}$ is $(m, p)$-polar if and only if there exists a non-negative function $f$ in $L^{p}\left(R^{n}\right)$ satisfying (3.4) such that $\int|x-y|^{m-n} f(y) d y=\infty$ for every $x \in A$.

Proof. The "if"' part was observed in the proof of Lemma 3.3. We prove the "only if" part. Suppose $m<n$. First we consider the case where $A$ is bounded. Take a sequence $\left\{\omega_{j}\right\}$ of open sets in $R^{n}$ such that $\omega_{1}$ is bounded, $\omega_{j} \supset \omega_{j+1} \supset$ $A$ and $\Gamma_{m, p}^{+}\left(\omega_{j}\right)<1 / 2^{j}$ for each $j \geqq 1$. Let $\varphi$ be a non-negative function in $\mathscr{D}\left(R^{n}\right)$ such that $\varphi=1$ on $\omega_{1}$. By Theorem 3.1 and Remark 3.2, we have

$$
\left(\varphi f_{\omega_{j}}\right)(x)=\sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha} D^{\alpha}\left(\varphi f_{\omega_{j}}\right)(y)}{|x-y|^{n}} d y \quad(m, p)-q . e .
$$

(for the notation $f_{\omega_{j}}$ see the Definition given after Theorem 2.2'). This implies that

$$
\sum_{|\alpha|=m}\left|a_{\alpha}\right| \int|x-y|^{m-n}\left|D^{\alpha}\left(\varphi f_{\omega_{j}}\right)(y)\right| d y \geqq 1 \quad \text { for } x \in \omega_{j}
$$

We set $f=\sum_{j=1}^{\infty}\left\{\sum_{|\alpha|=m}\left|a_{\alpha}\right|\left|D^{\alpha}\left(\varphi f_{\omega_{j}}\right)\right|\right\}$. Then $f$ is a non-negative function in $L^{p}\left(R^{n}\right)$ with compact support. Moreover, for $x \in A$, we obtain $\int|x-y|^{m-n}$ $f(y) d y=\infty$.

Next we consider the general case. For each $j$, we set $A_{j}=A \cap\{x ;|x| \leqq j\}$. Then from the above argument, for each $j$, there exists a non-negative function $f_{j} \in L^{p}\left(R^{n}\right)$ satisfying (3.4) such that $\int|x-y|^{m-n} f_{j}(y) d y=\infty$ for every $x \in A_{j}$. By Lemmas 3.3 and 2.1, the set $B=\cup_{j=1}^{\infty}\left\{x ; \int|x-y|^{m-n} f_{j}(y) d y=\infty\right\}$ is seen to be $(m, p)$-polar. Hence there exists a point $x_{0} \notin B$. Set $c_{j}=\int\left|x_{0}-y\right|^{m-n} f_{j}(y) d y$, $\tilde{c}_{j}=2^{j} \max \left\{c_{j},\left\|f_{j}\right\|_{p}, 1\right\}$ and $f=\sum_{j=1}^{\infty}\left(1 / \tilde{c}_{j}\right) f_{j}$. Then $\int\left|x_{0}-y\right|^{m-n} f(y) d y<\infty$ and $\int|x-y|^{m-n} f(y) d y=\infty$ for any $x \in A$. Thus $f$ is the required function.

If $m \geqq n$, then $A=\emptyset$ on account of the next proposition, so that we may take $f=0$.

Proposition 3.1. Any non-empty set $A$ in $R^{n}$ is not ( $m, p$ )-polar if and only if $m p>n$.

This can be proved in the same way as H. Wallin [12; Proposition 2].
By using our integral representation, we can prove the following theorem; cf. Theorem 13.5 in [1].

Theorem 3.3. Let $f$ be an ( $m, p$ )-quasi continuous function belonging to $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$. Then any partial derivative of $f$ of order $\alpha$ with $|\alpha| \leqq m$ exists ( $m-|\alpha|, p$ )-q.e. and is $(m-|\alpha|, p)$-quasi continuous.

## §4. Integral representation II

In this section, we study a representation of the form (3) (see Introduction). We denote by $\Delta_{m}$ the Laplace operator iterated $m$ times. First we show

Lemma 4.1. Let $H \in B L_{m}\left(L^{p}\left(R^{n}\right)\right)$. If $\Delta_{m} H=0$, then $H$ is a polynomial of degree $\leqq m-1$.

Proof. Let $\alpha$ be any multi-index with $|\alpha|=m$, and set $T=D^{\alpha} H$. By our assumptions, $T \in L^{p}\left(R^{n}\right)$ and $\Delta_{m} T=0$ in the distribution sense. Then the Fourier transform of $T$ exists and

$$
\left(-4 \pi^{2}|x|^{2}\right)^{m} \mathscr{F}(T)=\mathscr{F}\left(\Delta_{m} T\right)=0,
$$

where $\mathscr{F}(T)$ denotes the Fourier transform of $T$. Hence $\mathscr{F}(T)$ is supported by $\{0\}$, so that we can write $\mathscr{F}(T)=\Sigma_{\beta} c_{\beta} D^{\beta} \delta$, where $\delta$ is the Dirac measure and constants $c_{\beta}$ are equal to 0 except for a finite number of $\beta$. Therefore $T$ is a polynomial. Noting that $T \in L^{p}\left(R^{n}\right)$, we have $T=0$. Thus $H$ is seen to be a polynomial of degree $\leqq m-1$.

We note the following well-known representation of $\varphi \in \mathscr{D}\left(R^{n}\right)$ : If $n-2 m>$ 0 or $n$ is odd and $n-2 m<0$, then

$$
\varphi(x)=c \int|x-y|^{2 m-n} \Delta_{m} \varphi(y) d y
$$

and if $n-2 m \leqq 0$ and $n$ is even, then

$$
\varphi(x)=c^{\prime} \int|x-y|^{2 m-n} \log |x-y| \Delta_{m} \varphi(y) d y
$$

where $c$ and $c^{\prime}$ are certain constants. Furthermore notice that $\Delta_{m}$ is of the form $\sum_{|\alpha|=m} \tilde{c}_{\alpha} D^{2 \alpha}$ for suitable constants $\tilde{c}_{\alpha}$. Setting $c_{\alpha}=(-1)^{m} c \tilde{c}_{\alpha}$ and $c_{\alpha}^{\prime}=(-1)^{m}$ $c^{\prime} \tilde{c}_{\alpha}$, we have

Lemma 4.2. (H. Wallin [11; p.71]) Let $\varphi \in \mathscr{D}\left(R^{n}\right)$. If either $n-2 m>0$ or $n$ is odd and $n-2 m<0$, then

$$
\varphi(x)=\sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha}\left(|x-y|^{2 m-n}\right) D^{\alpha} \varphi(y) d y
$$

and if $n-2 m \leqq 0$ and $n$ is even, then

$$
\varphi(x)=\sum_{|\alpha|=m} c_{\alpha}^{\prime} \int D^{\alpha}\left(|x-y|^{2 m-n} \log |x-y|\right) D^{\alpha} \varphi(y) d y
$$

where $c_{\alpha}$ and $c_{\alpha}^{\prime}$ are constants.
Theorem 4.1. Let $f$ be an ( $m, p$ )-quasi continuous function in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ such that $\int(1+|x|)^{m-n}\left|D^{\alpha} f(x)\right| d x<\infty$ for any $\alpha$ with $|\alpha|=m$. If either $n-2 m>0$ or $n$ is odd and $n-2 m<0$, then

$$
f(x)=\sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha}\left(|x-y|^{2 m-n}\right) D^{\alpha} f(y) d y+P(x) \quad(m, p)-q . e .,
$$

and if $n$ is even and $m<n \leqq 2 m$, then

$$
f(x)=\sum_{|\alpha|=m} c_{\alpha}^{\prime} \int D^{\alpha}\left(|x-y|^{2 m-n} \log |x-y|\right) D^{\alpha} f(y) d y+P(x) \quad(m, p)-q . e .,
$$

where $c_{\alpha}$ and $c_{\alpha}^{\prime}$ are the same constants as in Lemma 4.2 and $P$ is a polynomial of degree $\leqq m-1$.

Proof. First, suppose $n-2 m>0$ or $n$ is odd and $n-2 m<0$. We set $G_{f}(x)=\sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha}\left(|x-y|^{2 m-n}\right) D^{\alpha} f(y) d y$. By Lemma 3.3, $G_{f}$ is seen to be an ( $m, p$ )-quasi continuous function belonging to $B L_{m}\left(L^{p}\left(R^{n}\right)\right.$ ). Let $\varphi \in \mathscr{D}\left(R^{n}\right)$. In view of our assumption that $\int(1+|x|)^{m-n}\left|D^{\alpha} f(x)\right| d x<\infty$ for any $\alpha$ with $|\alpha|=m$, we can apply Fubini's theorem, and have

$$
\begin{aligned}
\int G_{f}(x) \Delta_{m} \varphi(x) d x & =\sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha} f(y) d y \int D_{y}^{\alpha}\left(|x-y|^{2 m-n}\right) \Delta_{m} \varphi(x) d x \\
& =\sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha} f(y) d y D_{y}^{\alpha} \int|x-y|^{2 m-n} \Delta_{m} \varphi(x) d x \\
& =\sum_{|\alpha|=m} c_{\alpha} \int D^{\alpha} f(y) \frac{1}{c} D^{\alpha} \varphi(y) d y \\
& =\int f(y)\left\{\sum_{|\alpha|=m}(-1)^{m} \frac{c_{\alpha}}{c} D^{2 \alpha} \varphi(y)\right\} d y \\
& =\int f(y) \Delta_{m} \varphi(y) d y,
\end{aligned}
$$

where $c$ is the same constant as given after Lemma 4.1. Therefore, $\Delta_{m}\left(f-G_{f}\right)=0$
in the distribution sense. By Lemma 4.1, there exists a polynomial $P$ of degree $\leqq m-1$ such that $f-G_{f}=P$ a.e. on $R^{n}$. Thus $f=G_{f}+P(m, p)$-q.e. on account of Lemma 2.3.

The second half of the theorem is similarly obtained, since if $m<n$ and $n$ is even then $D^{\alpha}\left(|x|^{2 m-n} \log |x|\right)$ is a linear combination of functions like $\kappa$ in $\S 3$.

To consider the remaining case, we first prove the following lemma similar to Lemma 3.3.

Lemma 4.3. Let $|\alpha|=m-n \geqq 0$, and set $\kappa(x)=x^{\alpha} \log |x|$. Let $f$ be a nonnegative function in $L^{p}\left(R^{n}\right)$ such that

$$
\begin{equation*}
\int(1+|x|)^{m-n} \log (1+|x|) f(x) d x<\infty \tag{4.1}
\end{equation*}
$$

Then $\kappa * f$ is a continuous function belonging to $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$.
Proof. Set $\kappa_{j}(x)=x^{\alpha} \log \left(|x|^{2}+(1 / j)^{2}\right)^{1 / 2}$. Then $\kappa_{j} * f \in C^{\infty}$. Moreover, recalling the discussions in $\S 3$, we infer that $\left\{\kappa_{j} * f\right\}$ is a Cauchy sequence in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$. If $\alpha=0$, then we have

$$
\begin{array}{r}
\left(\kappa_{j} * f\right)(x)=\log 2 \int_{|x-y|<1} f(y) d y-\int_{|x-y|<1} \log \frac{2}{\sqrt{|x-y|^{2}+(1 / j)^{2}}} f(y) d y \\
+\int_{|x-y| \geqq 1} \log \sqrt{|x-y|^{2}+(1 / j)^{2}} f(y) d y
\end{array}
$$

By Lebesgue's convergence theorem, the second term of the right-hand side increases to $\int_{|x-y|<1}(\log 2 /|x-y|) f(y) d y$ as $j \rightarrow \infty$ and the last term decreases to $\int_{|x-y| \geqq 1} \log |x-y| f(y) d y$ as $j \rightarrow \infty$ because of (4.1). Therefore $\left(\kappa_{j} * f\right)(x) \rightarrow(\kappa * f)(x)$ as $j \rightarrow \infty$. If $|\alpha| \geqq 1$, then since $\left|(x-y)^{\alpha} \log \left(|x-y|^{2}+(1 / j)^{2}\right)^{1 / 2}\right| \leqq$ const. $(1+|y|)^{m-n}$ $\log (2+|y|),\left(\kappa_{j} * f\right)(x) \rightarrow(\kappa * f)(x)$ as $j \rightarrow \infty$ by Lebesgue's convergence theorem. Hence, in a way similar to the proof of Lemma $3.3 \kappa * f$ is shown to be ( $m, p$ )-quasi continuous. Because of Proposition 3.1, any ( $m, p$ )-quasi continuous function is continuous for $m p>n$. Thus we obtain the lemma.

On account of this lemma we can prove the following theorem in the same way as Theorem 4.1:

Theorem 4.2. Let $n$ be even and $n \leqq m$. Let $f$ be an $(m, p)$-quasi continuous function in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ such that

$$
\int(1+|x|)^{m-n} \log (1+|x|)\left|D^{\alpha} f(x)\right| d x<\infty \quad \text { for any } \alpha \text { with }|\alpha|=m
$$

Then we have the following representation of $f$ :

$$
f(x)=\sum_{|\alpha|=m} c_{\alpha}^{\prime} \int D^{\alpha}\left(|x-y|^{2 m-n} \log |x-y|\right) D^{\alpha} f(y) d y+P(x)
$$

where $P$ is a polynomial of degree $\leqq m-1$, and $c_{\alpha}^{\prime}$ are the same constants as in Lemma 4.2.

Remark 4.1. The function $f$ in the above theorem is continuous by Proposition 3.1.

## §5. A representation by Riesz potentials of functions in $\boldsymbol{L}^{p}\left(\boldsymbol{R}^{\boldsymbol{n}}\right)$

Given a multi-index $\alpha$ and a number $l$, we set $\kappa(x)=x^{\alpha} /|x|^{l}$ and $\kappa_{j}(x)=x^{\alpha} /$ $\left(|x|^{2}+(1 / j)^{2}\right)^{1 / 2}$ for each positive integer $j$. Let $\beta$ be any multi-index with $|\beta|=m$ and set $K=D^{\beta} \kappa$. For a function $f$ in $L^{p}\left(R^{n}\right)$, the convolutions $\kappa * f, \kappa_{j} * f$ and $K_{(1 / j)} * f$ make sense (see § 3).

Suppose that $|\alpha|-l+n=m$. Then we see from (i) and (ii) stated after Lemma 3.1 in $\S 3$ that $K_{(1 / j)} * f$ converges to a function $R_{\alpha, l}^{\beta} f$ in $L^{p}\left(R^{n}\right)$ as $j \rightarrow \infty$ such that

$$
\begin{equation*}
\left\|R_{\alpha, l}^{\beta} f\right\|_{p} \leqq \text { const. }\|f\|_{p} . \tag{5.1}
\end{equation*}
$$

First we show
Lemma 5.1. Let $\alpha, l$ be given so that $m \leqq|\alpha|-l+n<m+2$. If a function $f$ in $L^{p}\left(R^{n}\right)$ satisfies $\int(1+|x|)^{|\alpha|-l}|f(x)| d x<\infty$, then $\kappa * f$ is an $(m, p)$-quasi continuous function in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ and $D^{\beta}(\kappa * f)=R_{\alpha, l}^{\beta} f+a_{\alpha, l}^{\beta}$ f for any $\beta$ with $|\beta|=$ $m$, where

$$
a_{\alpha, l}^{\beta}= \begin{cases}0 & \text { if } m<|\alpha|-l+n<m+2 \\ A_{\beta} & \text { defined in the proof of Lemma } 3.2 \\ & \text { if }|\alpha|-l+n=m\end{cases}
$$

Proof. First consider the case $|\alpha|-l+n=m$. From Lemma 3.3, we see that $\kappa * f$ is an ( $m, p$ )-quasi continuous function in $B L_{m}\left(L^{p}\left(R^{n}\right)\right.$ ) and that $\kappa_{j} * f \rightarrow$ $\kappa * f$ in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ as $j \rightarrow \infty$. In the proof of Lemma 3.2, we showed that $D^{\beta}$ $\left(\kappa_{j} * f\right)-K_{(1 / j)} * f-a_{\alpha, l}^{\beta} f$ tends to 0 in $L^{p}\left(R^{n}\right)$ as $j \rightarrow \infty$. Hence we have $D^{\beta}(\kappa * f)$ $=R_{\alpha, l}^{\beta} f+a_{\alpha, l}^{\beta} f$.

Next let us consider the case where $m<|\alpha|-l+n<m+2$. We note

$$
\left|D^{\beta} \kappa(x)\right| \leqq C|x|^{|\alpha|-l-m} \quad \text { for all } \quad x
$$

and

$$
\left|D^{\beta} \kappa_{j}(x)-D^{\beta} \kappa(x)\right| \leqq C|x|^{|\alpha|-l-m-2} \quad \text { for all } x \text { with }|x| \geqq N
$$

where $C$ and $N$ are constants. Hence by using Lebesgue's dominated convergence theorem we have

$$
\int\left|D^{\beta} \kappa_{j}-D^{\beta} \kappa\right| d x \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty,
$$

so that $\left\{\kappa_{j} * f\right\}$ is a Cauchy sequence in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$. In a way similar to the proof of Lemma 3.3, we see that $\kappa * f$ is an ( $m, p$ )-quasi continuous function in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ and that $\kappa_{j} * f$ converges to $\kappa * f$ in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ as $j \rightarrow \infty$. On the other hand,

$$
\begin{gathered}
\left\|D^{\beta}\left(\kappa_{j} * f\right)-K_{(1 / j)} * f\right\|_{p}^{p} \\
\leqq 2^{p-1}\left\{\left(\int\left|D^{\beta} \kappa_{j}-D^{\beta} \kappa\right| d x\right)^{p}+\left(\int_{|x| \leqq 1 / j}\left|D^{\beta} \kappa\right| d x\right)^{p}\right\}\|f\|_{p}^{p} .
\end{gathered}
$$

The right-hand side tends to 0 as $j \rightarrow \infty$. Therefore we obtain $D^{\beta}(\kappa * f)=R_{\alpha, I}^{\beta} f$ and the lemma is proved.

For a number $l$ and a function $f$, we set

$$
U_{l}^{f}(x)=\int|x-y|^{l-n} f(y) d y
$$

By the above lemma we have
Theorem 5.1. Suppose that $m \leqq l<m+2$. If a function $f$ in $L^{p}\left(R^{n}\right)$ satisfies $\int(1+|x|)^{l-n}|f(x)| d x<\infty$, then $U_{l}^{f}$ is an (m, p)-quasi continuous function in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ and

$$
\begin{equation*}
D^{\beta}\left(U_{l}^{f}\right)=R_{0, n-l}^{\beta} f+a_{0, n-l}^{\beta} f \tag{5.2}
\end{equation*}
$$

for any $\beta$ with $|\beta|=m$.
Remark 5.1. In case $m=1$, Theorem 5.1 was given by M. Ohtsuka [8; Theorem 9.6].

Let $2 m<n$. As was seen in $\S 4$, any $\varphi \in \mathscr{D}\left(R^{n}\right)$ is written in the form: $\varphi(x)=$ $c \int|x-y|^{2 m-n} \Delta_{m} \varphi(y) d y$, where $\Delta_{m}=\sum_{|\alpha|=m} \tilde{c}_{\alpha} D^{2 \alpha}$. By Riesz's composition formula, we have

$$
\varphi(x)=\frac{c}{c(m, m)} \int|x-z|^{m-n} d z \int|z-y|^{m-n} \Delta_{m} \varphi(y) d y
$$

where

$$
c(m, m)=\pi^{n / 2} \frac{\Gamma\left(\frac{m}{2}\right)^{2} \Gamma\left(\frac{n-2 m}{2}\right)}{\Gamma\left(\frac{n-m}{2}\right)^{2} \Gamma(m)}
$$

Setting $\psi(z)=\frac{c}{c(m, m)} \int|z-y|^{m-n} \Delta_{m} \varphi(y) d y$, we have by (5.2)

$$
\begin{aligned}
\psi(z) & =\frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha} \int|z-y|^{m-n} D^{2 \alpha} \varphi(y) d y \\
& =\frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha}\left\{\left(R_{0, n-m}^{\alpha} D^{\alpha} \varphi\right)(z)+a_{0, n-m}^{\alpha} D^{\alpha} \varphi(z)\right\}
\end{aligned}
$$

For simplicity we write $R_{\alpha}$ and $a_{\alpha}$ for $R_{0, n-m}^{\alpha}$ and $a_{0, n-m}^{\alpha}$ respectively. Then we obtain

Lemma 5.2. Let $2 m<n$, and let $\varphi \in \mathscr{D}\left(R^{n}\right)$. Then $\varphi=U_{m}^{\psi}$, where $\psi=$ $\frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha}\left(R_{\alpha}+a_{\alpha}\right) D^{\alpha} \varphi$.

Lemma 5.3. Let $m \leqq|\alpha|-l+n<m+1$. If $\varphi \in C^{m}$ satisfies $\left|D^{\gamma} \varphi\right|=$ $O\left(|x|^{-|\gamma|-1}\right)$ as $|x| \rightarrow \infty$ for each $\gamma$ with $|\gamma| \leqq m$, then

$$
\int_{|x-y|>r}\left(D^{\beta} \kappa\right)(x-y) \varphi(y) d y \rightarrow\left(\kappa * D^{\beta} \varphi\right)(x)-a_{\alpha, l}^{\beta} \varphi(x) \quad \text { as } \quad r \rightarrow 0
$$

for all $x$, where $|\beta|=m$.
Proof. We write $\beta=\sum_{i=1}^{m} \beta_{i}$ where $\left|\beta_{i}\right|=1$ for $i=1,2, \ldots, m$ and set $\gamma_{0}=0$, $\gamma_{i}=\sum_{j=1}^{i} \beta_{j}$ for $i=1,2, \ldots, m$. Then we have

$$
\begin{aligned}
& \int_{|x-y|>r}\left(D^{\beta} \kappa\right)(x-y) \varphi(y) d y \\
& \quad=\lim _{R \rightarrow \infty} \int_{r<|x-y|<R}\left(D^{\beta} \kappa\right)(x-y) \varphi(y) d y \\
& =\lim _{R \rightarrow \infty}\left[\int_{r<|x-y|<R} \kappa(x-y) D^{\beta} \varphi(y) d y\right. \\
& \left.\quad-\sum_{i=1}^{m} \int_{\{y ;|x-y|=r\} \cup\{y ;|x-y|=R\}}\left(D^{\gamma_{i}-1} \kappa\right)(x-y)\left(D^{\beta-\gamma_{i}} \varphi\right)(y) n_{y} \cdot \beta_{i} d S(y)\right] \\
& =\int_{|x-y|>r} \kappa(x-y) D^{\beta} \varphi(y) d y \\
& \quad-\sum_{i=1}^{m} \int_{|x-y|=r}\left(D^{\gamma_{i}-1} \kappa\right)(x-y)\left(D^{\beta-\gamma_{i}} \varphi\right)(y) n_{y} \cdot \beta_{i} d S(y),
\end{aligned}
$$

where $n_{y}$ means the outward normal on the boundary of the domain $\{y ; r<\mid x-$ $y \mid<R\}$. Hence we obtain

$$
\int_{|x-y|>r}\left(D^{\beta} \kappa\right)(x-y) \varphi(y) d y \rightarrow \int \kappa(x-y) D^{\beta} \varphi(y) d y-c \varphi(x) \quad \text { as } \quad r \rightarrow 0
$$

where $c=\int_{|x-y|=r}\left(D^{\gamma_{m-1}} \kappa\right)(x-y) n_{y} \cdot \beta_{m} d S(y)=\int_{|y|=1}\left(D^{\gamma_{m-1}} \kappa\right)(y) y^{\beta_{m}} d S(y)$ if $|\alpha|-$ $l+n=m$ and $=0$ otherwise. This $c$ is just equal to $a_{\alpha, l}^{\beta}$. In fact, if $|\alpha|-l+n=m$, then

$$
\begin{aligned}
a_{\alpha, l}^{\beta}= & \lim _{R \rightarrow \infty} \int_{|x|<R} \theta_{\beta}(x) d x \\
= & \lim _{R \rightarrow \infty} \int_{|x|=R}\left[\left(D^{\beta-\beta_{m}} \kappa_{1}\right)(x)-\left(D^{\beta-\beta_{m}} \kappa\right)(x)\right] n_{x} \cdot \beta_{m} d S(x) \\
& +\int_{|x|=1}\left(D^{\beta-\beta_{m}} \kappa\right)(x) x^{\beta_{m}} d S(x) \\
= & c .
\end{aligned}
$$

Lemma 5.4. Let $2 m<n$. Then for a function $f$ in $L^{p}\left(R^{n}\right)$ we have

$$
\begin{equation*}
\frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha}\left(R_{\alpha}+a_{\alpha}\right)^{2} f=f . \tag{5.3}
\end{equation*}
$$

Proof. It suffices to show (5.3) for $f=\varphi \in \mathscr{D}\left(R^{n}\right)$ on account of (5.1). We note that $R_{\alpha} \varphi=|x|^{m-n} * D^{\alpha} \varphi-a_{\alpha} \varphi \in C^{\infty}$ and that $\left|D^{\gamma}\left(R_{\alpha} \varphi\right)\right|=O\left(|x|^{-m-1}\right)$ as $|x| \rightarrow \infty$ for any $\gamma$ with $|\gamma| \leqq m$. From Lemma 5.3 it follows that $R_{\alpha}\left(R_{\alpha} \varphi\right)=|x|^{m-n_{*}} D^{\alpha}$ $\left(R_{\alpha} \varphi\right)-a_{\alpha} R_{\alpha} \varphi$. Using (5.2) and Riesz's composition formula, we have

$$
\left(R_{\alpha}+a_{\alpha}\right)^{2} \varphi=c(m, m)|x|^{2 m-n} * D^{2 \alpha} \varphi,
$$

which yields (5.3) with $f=\varphi \in \mathscr{D}\left(R^{n}\right)$. Thus the lemma is shown.
Theorem 5.2. Let $2 m<n$, and let $f$ be an ( $m, p$ )-quasi continuous function such that there exists a sequence $\left\{\varphi_{j}\right\}$ in $\mathscr{D}\left(R^{n}\right)$ converging to $f$ in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$. If

$$
\begin{equation*}
\int(1+|x|)^{m-n}\left|\sum_{|\alpha|=m} \tilde{c}_{\alpha}\left(R_{\alpha}+a_{\alpha}\right) D^{\alpha} f\right| d x<\infty, \tag{5.4}
\end{equation*}
$$

then there exists a function $g \in L^{p}\left(R^{n}\right)$ such that

$$
\begin{equation*}
\int(1+|x|)^{m-n}|g(x)| d x<\infty \tag{5.5}
\end{equation*}
$$

and

$$
f=U_{m}^{g}+P \quad(m, p)-q . e .
$$

for some polynomial $P$ of degree $\leqq m-1$; actually

$$
\begin{equation*}
g=\frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha}\left(R_{\alpha}+a_{\alpha}\right) D^{\alpha} f . \tag{5.6}
\end{equation*}
$$

Conversely if there exists a function $g \in L^{p}\left(R^{n}\right)$ satisfying (5.5) and $f-U_{m}^{g}$ is equal ( $m, p$ )-q.e. to a polynomial of degree $\leqq m-1$, then (5.4) and (5.6) are fulfilled.

Proof. Assume (5.4). By Lemma 5.2, we can write $\varphi_{j}=U_{m}^{\psi_{j}}$, where $\psi_{j}=\frac{c}{c(m, m)} \sum_{|\alpha|=m} \tilde{c}_{\alpha}\left(R_{\alpha}+a_{\alpha}\right) D^{\alpha} \varphi_{j} . \quad$ Denote by $g$ the right-hand side of (5.6). Then $g \in L^{p}\left(R^{n}\right)$ and by (5.1), $\left\|\psi_{j}-g\right\|_{p}$ tends to 0 as $j \rightarrow \infty$. Therefore from Theorem 5.1, it follows that $U_{m}^{g}$ is an ( $m, p$ )-quasi continuous function in $B L_{m}$ $\left(L^{p}\left(R^{n}\right)\right)$ and that $\varphi_{j}=U_{m}^{\psi_{j}} \rightarrow U_{m}^{g}$ in $B L_{m}\left(L^{p}\left(R^{n}\right)\right)$ as $j \rightarrow \infty$. Thus $f^{\cdot}=\left(U_{m}^{g}\right)$ in $B L_{\dot{m}}^{\dot{m}}\left(L^{p}\left(R^{n}\right)\right.$ ), so that there exists a polynomial $P$ of degree $\leqq m-1$ such that $f=U_{m}^{g}+P(m, p)$-q.e.

Conversely suppose that $g \in L^{p}\left(R^{n}\right)$ satisfies (5.5) and that $f-U_{m}^{g}$ is equal ( $m$, $p$ )-q.e. to a polynomial of degree at most $m-1$. By (5.2) and (5.3) we have

$$
\begin{aligned}
\sum_{|\alpha|=m} \tilde{c}_{\alpha}\left(R_{\alpha}+a_{\alpha}\right) D^{\alpha} f & =\sum_{|\alpha|=m} \tilde{c}_{\alpha}\left(R_{\alpha}+a_{\alpha}\right) D^{\alpha} U_{m}^{g} \\
& =\sum_{|\alpha|=m} \tilde{c}_{\alpha}\left(R_{\alpha}+a_{\alpha}\right)^{2} g \\
& =\frac{c(m, m)}{c} g .
\end{aligned}
$$

Hence (5.6) is fulfilled and then so is (5.4) by assumption (5.5).
Remark 5.2. If $m p<n$, then condition (5.4) is satisfied.
Remark 5.3. In case the support of $f$ is compact, then condition (5.4) is satisfied. Moreover, in this case, $f=U_{m}^{g}(m, p)$-q.e., where $g$ is the right-hand side of (5.6).

Remark 5.4. In case $m=1$, these Remarks and Theorem 5.2 were given by M. Ohtsuka [8; Theorem 9.7].

## References

[1] N. Aronszajn, F. Mulla and P. Steptycki, On spaces of potentials connected with $L^{p}$ classes, Ann. Inst. Fourier 13 (1963), 211-306.
[2] M. Brelot, Lectures on potential theory, Tata Institute of Fundamental Research, Bombay, 1960.
[3] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV, Amer. Math. Soc., 1961, 33-49.
[4] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
[5] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1955), 305-370.
[6] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
[7] J. L. Lions, Problémes aux limites dans les équations aux dérivées partielles, Sém. Math. Sup. Univ. Montréal, No. 1, 1962.
[8] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture notes, Hiroshima University, 1973.
[9] Yu. G. Reshetnyak, The concept of capacity in the theory of functions with generalized derivatives, Siberian Math. J. 10 (1969), 818-842.
[10] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
[11] H. Wallin, Continuous functions and potential theory, Ark. Math. 5 (1963), 55-84.
[12] H. Wallin, Riesz potentials, $k$, p-capacity and p-modules, Mich. Math. J. 18 (1971), 257-263.

## Department of Mathematics, Faculty of Science, Hiroshima University

