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Introduction

If/is a C1 -function with compact support on the Euclidean space
then it can be represented by its partial derivatives as follows:

There are many ways to represent a Cm-function (m: positive integer) with com-
pact support on R" (n ̂ 2) in terms of its partial derivatives of m-th order. Among
them, the following two are regarded as generalizations of (1):

(2) 9(x)-Σ a.\ ( * 7 / y > dy
\a\=m J \X y\I

(Yu. G. Reshetnyak [9]), and

Σ cAD*(\x-y\2>»-n)D*φ(y)dy
|αj=m J

if n — 2m>0 or n is odd

and n-2m<0,

Σ c'a[D'(\x-y\2m-"log\x-y\)D*φ(y)dy
| α | = m J

if n is even and n — '*

(3) φ(x) =

\

(H. Wallin [11]).
On the other hand, J. Deny and J. L. Lions [5] studied the space of Beppo

Levi functions, e.g., the space BL(Lp(Rn)) of distributions on Rn whose partial
derivatives belong to Lp(Rn). They showed that any quasi continuous function
/ in BL(L2(Rn))(n^3) is represented as (1) quasi everywhere, with an additional
constant. M. Ohtsuka [8] extended their results to p-precise functions, which
belong to BL(Lp(R3)), and gave many other properties of precise functions in his
lectures at Hiroshima University.

In this paper, we consider the space BLm(Lp(Rn)) of Beppo Levi functions
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of higher order m, that is the space consisting of distributions on Rn whose partial

derivatives of m-th order all belong to Lp(Rn). To obtain fine results, we need

a concept of (m, /?)-capacity. For our purpose, the (m, p)-capacity introduced

by H. Wallin [12], which is denoted by Γmp9 is best suited. However, since we

fail to verify whether it is subadditive or not, we also consider another capacity

Γ+p, which is subadditive, and in fact, a true capacity in the sense of M. Brelot

[2]. We shall see that it is equivalent to Γmp. Through our capacity Γmp,

we shall define (m, p)-quasi continuity of functions.

It is known that functions in the Sobolev space Wm*p(Rn)a.τe represented as

Bessel potentials (cf. [1], [3], [9]). Using Bessel potentials, Yu. G. Reshetnyak

defined (Z, p) capacity and then gave a characterization of (/, p) polar sets (see

[9; Theorem 5.8]). We shall show that in case / is a positive integer m, his ca-

pacity is equivalent to (Γmp)
p and that his characterization can be given by using

our integral representations.

Then we shall show that integral representation of the form (2) is possible

for certain (m, jp)-quasi continuous functions in BLm(U(Rn)). Integral represen-

tation of the form (3) was given by H. Wallin for functions in BLm(Lp(Rn)) with

compact supports (see [11; Lemmas 7 and 8]). We shall extend his result to the

case where supports are not necessarily compact, and in fact we shall prove it in

a way different from his.

In the final section, we shall discuss representation of (m, p)-quasi continuous

functions in BLm(Lp(Rn)) as Riesz potentials of functions in Lp(Rn). It is an ex-

tension of M. Ohtsuka's result for ^-precise functions given in [8]. To obtain

our result we shall make use of the methods in the previous sections.

§1. Preliminaries

Let Rn be the n-dimensional Euclidean space with points x=(xl9 x2,...,
 χ*

>=(yί9 y2,..., yΛ), etc. For a multi-index α = ( α l 9 α2,..., απ), we set | α | = α 1 -
r>2~\~''' ~f"oί|i> ^ α = . x ΐ 1 . x 2

2 * ' ^ « n a n d

We shall use the following notations of L. Schwartz [10]: @(Rn), Sf(Rn).

In this paper, let 1 < / ? < O O . For a non-negative integer m, we denote by

Wm*p{Rn) the Sobolev space, that is, the space of all distributions F such that

DaF E Lp(Rn) for any α with |α| ̂  m. The norm of F in Wm>p(Rn) is defined by

where || |Ldenotes the I/-norm in Rn. It is well-known that Wm>p(Rn) is a reflex-
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ive Banach space if 1 <p< oo (cf. [7]).
J. Deny and J. L. Lions introduced the following spaces ([5]): BLm(Lp(Rn))

is the space of Beppo Levi functions of order m attached to Lp(Rn), that is, the space
of all distributions T such that DΛTeLp{Rn) for any |α|=m with a semi-norm
\T\m,p = IK Σ \D*T\2yi> II,, and BI*•(!/(*»)) is the quotient space of BLm(Lr(R»))

\a\=m

by the space of all polynomials of degree ^ m —1. We note that if FeBLm

(LP(Rn)) has compact support, then FeWm'P(Rn) by [10; Chapitre 6, Theoreme
XV (Kryloff)].

§2. (m, p)-capacity

Let m be a non-negative integer. We introduce the notion of (m, p)-capacity.
First, for a compact set eczRn

9 we define

ΓmtP(e)=mf{\\φ\\my,φe9(R")9 φ^l on e} ,

Γ+>)=inf{||φL>p; φe #+(*"), φ^l on e},

where ^ + (R π ) = {φ6^(Rn); φ^O on R"}. Next, for an open set ωcRn, we
define

Γm,p(ω)= sup ΓWiF(e),
e<=ω,e: compact

Γ:>p(ω)= sup Γί.,(β).
e«=co, e compact

Then we note that Γw>p(β)=inf {Γmp(ω); ^cω, ω is open} and Γ+tP(e)=inf{Γ+tP

(ω); ^c=ω, ω is open}, which allow us to define for an arbitrary set AcRn the fol-
lowing quantities:

ΓmtP(A)= inf Γ m , » ,
Acω,ω:open

Π,.p(Λ)= inf r;.,(e>).
4̂ c ω, to: o p e n

ΓmtP{A) is called the (m, p)-capacity of A (cf. [12]).

REMARK 2.1. It is easy to see that ΓOtP(A)=ΓltP(A)= {outer Lebesgue
measure of A}1 /*. Furthermore, we have Γ l p(A) =Γj>p(^4), because, for FeBL^
(LP(Rn))9 \F\ e BLx(Lr(Rn)) and |grad |F| | = |grad F\ a.e. on Rn (see [5 Theoreme
3.2 in p. 316]).

From the definitions, we can easily prove

LEMMA 2.1. (i) Γmp and Γ + p are monotone increasing and continuous
from the right.
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(ii) Γ+tP is countably subadditive, that is

π t P j ) Σ
j= i j= i

for a countable family {Aj} of sets in Rn.

For relationship between Γmp and Γ + p , we have

LEMMA 2.2. There exists a constant C ^ l such that

Γ+tP(e)^CΓmp(e) for all compact set e in Rn.

From this lemma, the following theorem immediately follows:

THEOREM 2.1. There exists a constant C ^ l independent of A such that

for any set A in Rn.

PROOF OF LEMMA 2.2. On account of Remark 2.1, it suffices to show the

case m ^ 2 . We use the Bessel kernel Gm, which is determined by the following

properties:

(i) Gm is a non-negative function belonging to

(ii) the Fourier transform of Gm is (1 +4π2\x\2)~m/2.

It is known that a distribution F belongs to Wm*p(Rn) if and only if there exists

a function feU{Rn) such that F = Gm*f in Wm>*>(Rn\ and that

(2.1) C - M I / I I ^ I I G ^ / I I ^

for some constant C > 0 independent of/(see [3; Theorem 7]).

Let φ e @(Rn) and φ > 1 o n e . We can write φ = G m * / for some fe S?(Rn).

Then G m * / + is obviously continuous and > 1 one, where f+(x)= max (0,

If we show ΓttP{e)^ | |G m */+| | m > i ,, then

which implies Γ+

Take a function φe^+iR1) which is equal to 1 on a neighborhood of 0.

Set

1 if

fc :
ψ(t-j) if t>j,
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and set ψj(x)=ψj(\x\). It is easy to check that ψjF-+F in Wm*p(Rn) as j->ao
for any Fe Wm>p(Rn). Let {hk} be a sequence of functions belonging to @+(Rn)

such that supp(Λk)c{χ; |χ|g(l/fc)} and \ hk(x)dx = 1. For each j and fc

(^•/^•^e^+ί jR ' 1 ) and for sufficiently large; and fc, we have $
> l o n e . Therefore

Thus Lemma 2.2 is proved.

REMARK 2.2. In the above proof, we have also shown that @+(Rn) is dense
in Wy>p(Rn) = {fe Wm'p(Rn);f^0 a.e.} with respect to the topology of Wm>p(Rn).

A set AczRn is called (m, p)-polar if Γmp(A)=0, or equivalently, Γ+p(A)=0.
If a property is true on a set ^Iczlί11 except for an (m, p)-polar set in A, then we
say that this property is true (m, p)-quasi everywhere or (m, p)-q.e. on A

A function /is called (m,/?)-quasi continuous if given ε>0, there exists an
open set ωczR" such that Γmp(ω)<ε and the restriction of / to Rn — ω is con-
tinuous.

By Lemma 2.1 and Theorem 2.1, we can prove the following lemma in the
same manner as J. Deny J. L. Lions [5].

LEMMA 2.3. For each FeWm>P(Rn), we set Φ(F) = {f; f is (m, p)-quasi
continuous and equals F a.e. on Rn}. Then we have the following assertions:

(i) Φ(F) is non-empty, two functions ofΦ(F) are equal to each other (m, p)-
q.e., and any function which equals some function of Φ(F) (m, p)-q.e. belongs
to Φ(F) (cf [5; Theoreme 3.1 in p. 354]).

(ii) If a sequence {Fj} converges to F in Wm>p(Rn) as j->oo, then there exists
a subsequence {Fjk} of {Fj} such that for any fjkeΦ(Fjk) and any feΦ(F),
{fJk} converges tof(m, p)-q.e. as k-+co (cf. [5; Theoreme 4.1 in p. 357]).

A distribution Te BLm(Lp(Rn)) can be considered as a function / with Dafe
Lp

oc(Rn) for any α with |α| ̂  m. For this/, there exists an (m, p)-quasi continuous
function equal to/a.e. (cf. [5; Theoreme 3.1 in p. 354]).

Let ω be an open set in Rn. Denote by Wm>p(ω) the class of all FeWm*p(Rn)
such that F^.1 a.e. on ω. Then we show

LEMMA 2.4. Γw>p(ω)=inf{||F||w>p; FeiT^p(ω)}.

PROOF. Let e be a compact set in ω, and let {ίj/j} and {hk} be the same as in
the proof of Lemma 2.2. Then for any F eWm*p(ω\ we have Γ ^ ^ ^ l i m ^ ^
limfc_00||(ιAJ F)*/ιk||m,p = | |F| |m, p. Therefore Γm,p(ω)^inf{||F||m>p; Feir*-P(ω)}.
To prove the converse inequality we may assume Γmp(ω)<oo. Take a sequence
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{βj} of compact sets such that βjczthe interior of ej+1<=ω for any j ^ l , and

\jy=ίej=ω. Next, for each j, choose {ψj}c:&(Rn) satisfying φ^l on βj and

\\(Pj\\m,p<Γm,p(ej) + (llJ). Then {ψj} is a bounded set in the reflexive Banach

space Wm*p(Rn). Hence there exists a subsequence {φjk} of {ψj} and Fe Wm'p

(Rn) such that φjk^>F weakly in Wm>p(Rn) as /c-»oo. This implies F ^ l a.e.

on ω and H F L ^ ^ l i m i n f ^ ^ l l φ ^ J l ^ p ^ Γ ^ ω ) . Thus our lemma is proved.

Let A be a set in Λ\ Denote by τΓm p(,4) the closure of the class of all F e

Wm'p(Rn) such that FΞ^l α.e. on a neighborhood of A.

THEOREM 2.2. If Γmp(A)<co9 then there exists a unique Fei^m'p(A)

such that

(a) iffe Φ(F), thenf^ 1 (m, p)-g.e. on A,

(b) | | F L , P = 7 ^ 0 4 ) .

PROOF. By Lemma 2.3, the class of all F e fFm'*'(Rπ) such t h a t / ^ 1 (m, p>

q.e. on ^ for any/eΦ(F) is a closed set in Wm*p(Rn) and includes ^m'P(y4).

Therefore all F e iΓm>p(A) satisfy (a).

On the other hand^*m>p(y4)is a closed convex subset of the reflexive Banach

space Wm p(Rn), and by using Lemma 2.4, we see that ΓW)P(,4)=inf {||F||WiP;

F eiΓm'p(A)}. This infimum is attained at a unique element FeiΓm*p(A) because

of the uniform convexity of Wm>p(Rn) (see [7; Chapitre 1, 3.3]). This F is the

required one.

For any set A in Rn, we set irt>p(A) = {FeWm>p(A); F^O a.e. on Rn}. It

is easy to see that iΓ^p{A) is a closed convex set and consists of all F in

Wm>p(Rn) such that any function of Φ(F) is^O (m, p)-q.e. on Rn and ^ 1 (m, p)-

f̂.̂ . on A.

LEMMA 2.5. Γ^(Λ) =

PROOF. Let F e iT^p(A). Then Γ+p(X) ^ | |F||W > /, can be shown in the same

way as J. Deny and J. L. Lions [5; Lemme 4.1 in p. 356]. Hence we have

Γ+ i P(i4)^inf{||F||m f P; FeW^p(A)}. The converse inequality can be shown

in the same way as in Lemma 2.4 and Theorem 2.2.

By this lemma, we have the following theorem:

THEOREM 2.2'. For an arbitrary set A with Γ^,p(A) <oo, there exists a

unique F e Wm>p(Rn) such that

(a) for any/eΦ(F),/^0 (m, p)-q.e. andf^l (m, p)~q.e. on A,

(b) IIFL,P=r+>p(Λ).

DEFINITION. We shall denote by fA any function in Φ(F) in Theorem 2.2'.
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LEMMA 2.6. Let {Aj} be any increasing sequence of sets in Rn, and set
A = \JJ=ίAj. Then Γ+ίP(Aj) ί Γ+tP(A) asj^co.

PROOF. Take FjG Wm'p(Rn) with the properties in Theorem 2.2' for each
Aj. We may assume that limj^^r^^A^Kco. Then {Fj} is bounded in Wm>p

(Rn). Therefore there exist a subsequence {Fjk} of {F,} and FeWm<p(Rn)
such that FJk->F weakly in Wm>p(Rn) as /c->oo. Moreover we have FeΓ\J=ι
ψ-^p(Aj) =Ψ^ΐ'P(A). Hence

k-*ao j-*oo

which implies that l i m ^ ^ Γ ^ ^ ) =Γ+>p(^).

Lemmas 2.1 and 2.6 mean that Γ^p is a true capacity in the sense of M. Brelot
[2]. Thus we have

THEOREM 2.3. Any analytic set in Rn is capacίtable with respect to Γ+fP.

Yu. G. Reshetnyak defined the (/, p) capacity Cap ( Z p )£ of sets E in Rn in
case / is a positive number and p>l, as follows (see [9]):

Cap ( ί j P ) £=inf{ | |/ | | p ;/6L^«), ^0 and Gt*f^l on E).

As another application of Lemma 2.4 we give

THEOREM 2.4. In case I is a positive integer m and mp^n, there exists a
positive constant C such that

(2.2) C-1 {Γm,p(E)}' ί C a p ( m > p ) £ ^ C{Γ m > p (£)}"

for any set E in Rn.

PROOF. It suffices to show (2.2) for any open set ω in Rn because of the
definition of Γmp and Lemma 2.2 in [9]. Recall that, if feLp(Rn\ then Gm*/
belongs to Wm>p(Rn) and satisfies (2.1). To show the left inequality of (2.2) for
ω, choose a non-negative function/in Lp(Rn) such that G m */^1 everywhere on
ω. (If such an/does not exist, then Cap ( m p )ω = oo.) By (2.1) and Lemma 2.4
we have C~p {ΓmtP(ω)}p ^ Cap(m>p)ω.

To give the right inequality of (2.2), it suffices to show it only for any compact
set e in Rn by the capacitability of e for Caρ(m p) (Theorem 2.1 in [9]) and the
definition of Γm>p. Let us choose φ e &(Rn) so that ( p ^ l o n e . As in the proof
of Lemma 2.2 we write φ=Gm*f for some fe y(Rn) and have

This yields Cap ( m , p ) ^ ̂  Cp{Γm,p(e)}p.
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§ 3. Integral representation I

Hereafter, let m be a positive integer.

Let / be an integer and α a multi-index such that m = |α| — / + n ^ l . We

set κ(x)=xal\x\ι. For a multi-index β with \β\ = ra, we can express

(3.1) o ffi
where each ak(x) is a homogeneous polynomial of degree (/ 4- 2k) — n, or constantly

zero. We shall show that K = Dβκ fulfills the conditions for a kernel listed on

p. 89 of [4]. In our case,

«*(*)
k = o \ χ \ ι + 2 k n a n d K(x)= * θ ( * ) .

\χ\n \\χ\J

Since ΣiΊ!=oak(x)l\χ\ι+2k~n ι s a homogeneous function of degree 0, we can consider

Ω(x) as a function on the unit sphere with center at the origin of Rn. If |x| = \y\ = 1 ,

then

ί Σ \ak(x)-ak(y)\^c\x-y\
k=0

for some positive constant c. Next we show

LEMMA 3.1. { K(x)dS(x)=0.

J\x\ = ί
)\x\ =

PROOF. First we observe

for a multi-index 7, which can be obtained from an elementary calculus.

We prove the lemma by induction with respect to m. Let α, β and I be given

so that |α| — / + n = \β\ = 1. Then we have

Y * Y
. Λ I I A I

where

• v ί Π [β\)= Π o ! ( α - j g ) t i f αf = ^ί f o r a 1 1 /!'

0 otherwise.
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Using (3.2), we have

. / 1 +(-!)«.-»• N /q.

\-iD \ \x\ι ΓS(X) \β) ' =

 Γ/n+\x-β\\

Since |/?| =1., the right-hand side is seen to be zero.

Next we assume that the lemma is true for |α| — l + n = \β\=m. Let α, β and /

be given so that |α| — l + n = \β\ =m + l. Writing β=γ + δ, where | y | = l and

\δ\=m, we have

Here if α — y is not a multi-index, the first term of the right-hand side disappears,

and if otherwise, |α — γ\ — l + n = m. Moreover |α + y|— (/ + 2) + n — m. Con-

sequently, by the assumption of induction, we obtain

L-Λw)dsix)=:0 and

i.e.,

Thus Lemma 3.1 is proved.

Let / be a function in Lp(Rn). For a positive integer j9 we set Kiί/j)(x) =

K(x) if |x |^l// and = 0 if \x\<l/j. Then, we can apply the results of singular

integrals in [4] and obtain:

(i) K ( 1 / y ) */belongs to Lp(jRM)for each j , and converges inLp(JR
n) asj-^oo

([4; Theorems 1 and 7]),

(ϋ)

(3.3) | | X ( 1 / J ) * / | | ^ c o n s t . | | / | | p ([4; Theorem 1]).

Next, we consider κ; < / (x)=x β /( |x | 2 +(l//) 2 ) / / 2 . Let / be a function in
Lp(Rn) satisfying the following condition:

(3.4) j(l + |x|)*-»|/(x)|dx = J(l + \x\)\*\-ι\f(x)\dx< oo,
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or equivalently,

(see Remark in p. 191 of [6] and also Lemma 9.1 of [8]). We set

and Kj*f is similarly defined. By our assumptions, it is easy to see that Kj
and Dβ(Kj*f)=(DβKj)*f for any β. Furthermore we have

LEMMA 3.2. For any multi-index β with \β\=m, Dβ(κj*f) converges in
LP(Rn)asj-+oo.

PROOF. We can write

(Dβ(κj*f))(x) - (K( x m*f)(x) =ήθβ(j(x - y))f(y)dy

where θβ=Dβκι-K(1). We shall show that θβeLι(Rn). First we notice that

for the same ak(x) as in (3.1). Therefore if |x| ^ 1, then

a ( X ) I γ | 2 _ L ] ) ( l + 2 k ) / 2 _

x|2 + iy / + 2 f c>/ 2-|x| ί + 2 f c=O(|x| z + 2 f c- 2)as |x|->oo. Hence θβ(x)=O(\x\-n-2)
as |x|->oo, because each ak(x) is a homogeneous polynomial of degree (/ + 2/c) — n,

or constantly zero. Thus θβeLx(Rn). We set ^ = (θ/λ:)Jx. Then

(Dβ(κj*f))(x) - (K( t ,j )*/)(*) - Aβf(x)

=jn\θβ(j(x - y))f(y)dy - {jθβ(y)f(x)dy

= \θβ(y){f(x-(y/j))-f(x)}dy.

Therefore we have by Holder's inequality,

\\D*(Kj*f)- K
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where (l//>) + (l/q) = l. Noting that θβeLι(R'),

and that \|/(x — (ylj))— f(x)\pdx-*0 locally uniformly as j->oo we obtain

(3.5) \\Di>(κj*f)-Kίllj)*f-Aβf\\p^O

as j->oo by Lebesgue's convergence theorem. This yields Lemma 3.2.

LEMMA 3.3. Let f be a function in Lp(Rn) satisfying (3.4). Suppose \β\ =

m. Then

( i ) Dl>(Kj*f)^DP(κ*f) in LP(R") asj->oo,

(ii) ||D^*/)||p^const.||/||p,

(iii) κ*f is (m, p)-quasi continuous.

PROOF. From Lemma 3.2, it follows that Kj*f is a Cauchy sequence in

BLm(Lp(Rn)). Then there exist a sequence {Pj} of polynomials of degree ^ m - 1

and ueBLm{Lp(Rn)) such that Kj*f->u in BLm{Lp{Rn)) as -^oo and DP'(Kj*f+Pj)

->DP'u in Lp

0C(Rn) as j-+oo for any β' with I β Ί ^ m ( s e e C5; Theoreme 2.1 in

Chap. III]).

First we consider the special case:

κ(x) = \x\m-n and /c/x)=(|x | 2 + ( l //) 2 ) ( m - n ) / 2 .

Since K;*|/|-»κ*|/| pointwise asj-xx), there exists a polynomial Po of degree

such that κ*\f\=u — Po α.e. on Rn. Moreover, for any φe@(Rn), φ

><Kκ*l/D i n ^ m ' p ( ^ M ) as 7-+00. It follows from Lemma 2.3, (ii), that

φ(κ*\f\) is (m, p)-quasi continuous, which means that κ*\f\ is (m, p)-quasi con-

tinuous and that <x; \|x — y\m~n\f(y)\dy = co> is (m, p)-polar.

Now we consider the general case. We observe that Kj*f converges to K*/

except on an (m, p)-polar set, in fact, except on the set <x; \|x-y\m~n\f(y)\dy =

oo >. Therefore, in a way similar to the above, we obtain (i) and (iii). Moreover,

|| DC(κ*f) \\p£

for any j . Letting j-+oo and using (3.3) and (3.5), we have (ii) of the lemma.

LEMMA 3.4. (Yu. G. Reshetnyαk [9; Lemma 6.2]) For φe@(Rn), we

can write
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| α | = m

where α α =(—l) w m/(α! ωw), ωn being the surface area of the unit sphere in Rn.

THEOREM 3.1. Let f be an (m, p)-quasi continuous function belonging to

BLm(LP(Rn)) such that

(3.6) {(l + \x\)m-n\Daf(x)\dx<co for any α with | α | = m .

// there exists a sequence {ψj} of functions in &(Rn) such that <Pj-+f in BLm

(LP(Rn)) asj-^oo, then

(3.7) /(x)= Σ am[ (X~^f

n

(y)dy+P(x) (m9p)-q.e.,
| α | = m J \x~y\|α

where P is a polynomial of degree ^ m — 1.

PROOF. By Lemma 3.4, we have

|α|=m

Here we set

\a\=m

From Lemma 3.3, it follows that Gf is (m, p)-quasi continuous and that ψj-+Gf

in BLm(LP(Rn)) as j-+ao. Therefore G}=f' in BL'm{LP(Rn)). Hence there exists

a polynomial P of degree ^ m - 1 such that f=Gf + P a.e. on K", which implies

Theorem 3.1 by virtue of Lemma 2.3.

REMARK 3.1. Let / be an (m, /?)-quasi continuous function in Wm>p(Rn)

satisfying (3.6). Then we have (3.7), because there exists a sequence {ψj} of

functions in @(Rn) such that <?,->/in Wm>P(Rn) as./->oo (cf. Remark 2.2).

REMARK 3.2. Let / be an (m, p)-quasi continuous function belonging to

BLm(Lp(Rn)). I f / h a s compact support, then we have (3.7). Moreover if (l g)

m<n, then P = 0 .

REMARK 3.3. In Theorem 3.1, if ( m < ) mp<n9 we can omit (3.6). In fact,

in this case,

d X ' <OO
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where q=pl(p-l)

REMARK 3.4. In case m = l, these Remarks and Theorem 3.1 were given by
M. Ohtsuka [8; Theorem 9.11].

As a consequence of Theorem 3.1, we have

THEOREM 3.2. (cf [9; Theorem 5.8] and [12; Theorem 1]) A set A in Rn

is (m, p)-polar if and only if there exists a non-negative function f in Lp(Rn)

satisfying (3.4) such that \\x — y\m~n f(y)dy = co for every xeA.

PROOF. The "if" part was observed in the proof of Lemma 3.3. We prove
the "only if" part. Suppose m<n. First we consider the case where A is bound-
ed. Take a sequence {ωy} of open sets in Rn such that ωγ is bounded, coj =>ωj+ι^>
A and Γ+ p{Wj)<ij2j for eachy^l. Let φ be a non-negative function in
such that (p = lonα) 1 ( By Theorem 3.1 and Remark 3.2, we have

y {m, P)-q.e.

(for the notation fωj see the Definition given after Theorem 2.2'). This implies that

Σ \aa\\\x-y\m-"\D"(φfωj)(y)\dy^l for xecoj.
\a\=m J

We set/=ΣjL 1 {Σ, α | = m | β α | \D«(φfω.) |}. Then /is a non-negative function in

Lp{Rn) with compact support. Moreover, for xeA, we obtain \\x — y\m~n

/OHv = oo.
Next we consider the general case. For each 7, we set Aj=A n {*; \x\^j}.

Then from the above argument, for each j , there exists a non-negative function

fjeLp(Rn) satisfying (3.4) such that \\x-y\m"nfj{y)dy = co for every xeAj. By

Lemmas 3.3 and 2.1, the set B = \JJ=1{x'9 \\x — y\m~nfj(y)dy = 00} is seen to be

(m, p)-ρolar. Hence there exists a point xoφB. Set cj=\\xQ-y\m~nfj{y)dy,

c, =2;max{c;, \\fj\\p9 1} and /=Σ?=i( l/θ)/ , T h e n Jl^o" jlm~M/(y)^ < 00

and \\x — y\m"nf(y)dy = co for any xeA. Thus/is the required function.

If m ̂  n, then A = 0 on account of the next proposition, so that we may take

/=o.

PROPOSITION 3.1. Any non-empty set A in Rn is not (m, p)-polar if and
only if mp>n.
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This can be proved in the same way as H. Wallin [12; Proposition 2].

By using our integral representation, we can prove the following theorem;

cf. Theorem 13.5 in [1].

THEOREM 3.3. Let f be an (m, p)-quasi continuous function belonging to

BLm(Lp(Rn)). Then any partial derivative off of order cc with | α | g m exists

(m —|α|, p)-q.e. and is (m —|α|, p)-quasi continuous.

§ 4. Integral representation II

In this section, we study a representation of the form (3) (see Introduction).

We denote by Am the Laplace operator iterated m times. First we show

LEMMA 4.1. Let H e BLm(LP(Rn)). If AmH=0, then H is a polynomial of

degree ^ m — 1 .

PROOF. Let α be any multi-index with | α | = m , and set T=DaH. By our

assumptions, TeLp(Rn) and ΛmT=0 in the distribution sense. Then the Fourier

transform of T exists and

where ^(T) denotes the Fourier transform of T. Hence ^(T) is supported by

{0}, so that we can write &r(T)=ΣβcβD
βδ, where δ is the Dirac measure and con-

stants cβ are equal to 0 except for a finite number of β. Therefore T is a poly-

nomial. Noting that TeLp(Rn), we have T=0. Thus H is seen to be a poly-

nomial of degree ^ m - 1 .

We note the following well-known representation of φ e @(Rn): If n — 2m >

0 or n is odd and n — 2m <0, then

φ(x)=cyx- y\2m-nAmφ(y)dy

and if n — 2m ^ 0 and n is even, then

- y\2m-n\og\x- y\Amφ(y)dy

where c and c' are certain constants. Furthermore notice that Am is of the form

Σ| α | = m £ α Z) 2 α for suitable constants ca. Setting ca=( — l)mcca and c'Λ—{ — l ) m

c'ca9 we have

LEMMA 4.2. (H. Wallin [11; p. 71]) Let φe@(Rn). If either n-2m>0

or n is odd and n — 2m<0, then
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<P(x)= Σ cAD«(\x-y\2>»-»)D*φ(y)dy9
«l

and if n — 2m ̂ 0 and n is even, then

where cn and c' are constants.

= Σ c'Λ[D"(\x-y\2m-nlog\x-y\)D*φ(y)dy,
\a\=m J

THEOREM 4.1. Let fbe an (m, p)-quasi continuous function in BLm(Lp(Rn))

such that \(l + \x\)m-n\Daf(x)\dx<oo for any α with |α|=m. If either n-2m>0

or n is odd and n — 2m <0, then

/(*)= Σ cλD"(\x-y\2>»-n)D"f(y)dy + P(x) (m, p)-q.e.,
\a\=m J

and if n is even and m<n^2m, then

/(*)= Σ cί(/)«(|x-y|2»-»\og\x-y\)D*f(y)dy + P(x) (m, p)-q.e.,
| α | = m J

where cΛ and c'a are the same constants as in Lemma 4.2 and P is a polynomial
of degree ̂ m - 1 .

PROOF. First, suppose n — 2m >0 or n is odd and n — 2m <0. We set

Gf(x) = Σ\«\=mcJ\D"(\x-y\2m-n)D"f(y)dy. By Lemma 3.3, Gf is seen to be

an (m, p)-quasi continuous function belonging to BLm(Lp(Rn)). Let φ e @(Rn).

In view of our assumption that\(l + |x|)m~II|Da/(x)|Jx<oo for any α with |α| =m,

we can apply Fubini's theorem, and have

[βf(x)Amφ(x)dx= Σ ca[D«f{y)dy[D«{\x-y\2™-»)Δmφ(x)dx
J |α|=m J J

= Σ cx[D*f(y)dyD*y[\x-y\2»>-»Am<p(x)dx
| α | = m J J

= Σ ca\D*f(y)±D*φ(y)dy
| α | = m J C

= \f(y){ Σ (-l)m-^-D
J \a\=m C

where c is the same constant as given after Lemma 4.1. Therefore, Am(f—Gf) =0
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in the distribution sense. By Lemma 4.1, there exists a polynomial P of degree
^ m —1 such that/—Gy=P a.e. on Rn. Thus f=Gf + P (m, p)-q.e. on account
of Lemma 2.3.

The second half of the theorem is similarly obtained, since if m < n and n
is even then Dα(|x|2m~wlog|x|) is a linear combination of functions like K in §3.

To consider the remaining case, we first prove the following lemma similar
to Lemma 3.3.

LEMMA 4.3. Let |α|=m — n^O, and set κ(x)=xαlog|x|. Let f be a non-
negative function in Lp(Rn) such that

(4.1) j(l + |χ|)*-» log(l + \x\)f(x)dx < oo.

Then κ*fis a continuous function belonging to BLm(Lp(Rn)).

PROOF. Set ιc/x)=xβlog(|jc|2+(l//)2)1 / 2. Then Kj*feC°°. Moreover,
recalling the discussions in § 3, we infer that {κj*f} is a Cauchy sequence in
BLm(LP(Rn)). If α =0, then we have

, */)(x) = log2 \ f(y)dy-\0c,

By Lebesgue's convergence theorem, the second term of the right-hand side in-

creases to\ (Iog2/|x-j;|)/(j)dy as j->oo and the last term decreases to
J|*-y|<l

\ log|x — y\f{y)dy asj-^oo because of (4.1). Therefore (K,*f)(x)^(κ*f)(x)
J\x-y\Zl

as;->oo. If | α | ^ l , then since |(x-.y)αlog(|x-<y|2+(l/7)2)1/2 |^const. (l + \y\)m~n

log (2+|^|), (Kj*f)(x)-+(κ*f)(x) as j-^oo by Lebesgue's convergence theorem.
Hence, in a way similar to the proof of Lemma 3.3 /c*/is shown to be (m, p)-quasi
continuous. Because of Proposition 3.1, any (m, jp)-quasi continuous function
is continuous for mp>n. Thus we obtain the lemma.

On account of this lemma we can prove the following theorem in the same
way as Theorem 4.1:

THEOREM 4.2. Let n be even and n^m. Let f be an (m, p)-quasi continu-
ous function in BLm(Lp(Rn)) such that

(l + |x|)m-wlog(l+ \x\)\D"f(x)\dx<oo for any α with |α|=m.
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Then we have the following representation off:

/(*)= Σ c'a[D"(\x-y\2»>-»\og\x-y\)D*f(y)dy + P(x),
\a\=m J

where P is a polynomial of degree ^ra —1, and c'a are the same constants as in

Lemma 4.2.

REMARK 4.1. The function/in the above theorem is continuous by Proposi-

tion 3.1.

§ 5. A representation by Riesz potentials of functions in Lp(Rn)

Given a multi-index α and a number /, we set κ(x)=xa/\x\ι and Kj(x)=xal

(\x\2 +( l//) 2 ) / / 2 f° r e a c h positive integer j . Let β be any multi-index with \β\ = m

and set K=Dβκ. For a function / in Lp(Rn), the convolutions κ*f Kj*f and

K(1/j)*f make sense (see § 3).

Suppose that |α| — / + n = m. Then we see from (i) and (ii) stated after Lemma

3.1 in §3 that K{1/j)*f converges to a function Rβ

aJfin Lp(Rn) as j-»oo such that

(5.1) ll<JIIP^const.||/||p.

First we show

LEMMA 5.1. Let α, I be given so that m^|α| —Z + n<m + 2. If a function

f in Lp(Rn) satisfies \(l + \x\yΛ\~ι\f(x)\dx<co, then κ*f is an (m, p)-quasi con-

tinuous function in BLm(Lp(Rn)) and DP(κ*f)=Rβ

aflf+aβ

atlf for any β with \β\ =

m, where

0

a**ι~ Aβ defined in the proof of Lemma 3.2

if\(x\ — l + n=m.

PROOF. First consider the case |α| — ί-f n = m. From Lemma 3.3, we see

that κ*f is an (m, p)-quasi continuous function in BLm(Lp(Rn)) and that Kj*f^>

κ*f in BLm(Lp(Rn)) as j->oo. In the proof of Lemma 3.2, we showed that Dβ

(κj*f)~^(i/7)*/~α2 // tends to 0 in Lp(Rn) as j-*oo. Hence we have Dβ(κ*f)

Next let us consider the case where m < |α| — Z + n < m + 2. We note

\Dβκ(x)\^C\x\W-ι~m for all x

and
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\D^Kj(x)-D^K(x)\^C\x\^-l-m-2 for all x with |x |^

where C and N are constants. Hence by using Lebesgue's dominated convergence

theorem we have

-»ϋ as y-xx),

so that {κj*f} is a Cauchy sequence in BLm(Lp(Rn)). In a way similar to the

proof of Lemma 3.3, we see that κ*f is an (m, p)-quasi continuous function in

BLm(Lp(Rn)) and that Kj*f converges to κ*/ in BLm(Lp(Rn)) as j-*oo. On the

other hand,

\\D'(κj*f)-Kiim*f\\p

P

The right-hand side tends to 0 as j->oo. Therefore we obtain Dβ(κ*f)=Rβ

alf

and the lemma is proved.

For a number / and a function /, we set

By the above lemma we have

THEOREM 5.1. Suppose that m ^ k m + 2. // a function f in Lp(Rn)

satisfies \(1 + |x|)ί~M|/(x)|ίix < 00, then U{ is an(m, p)-quasi continuous function

in BLm(Lp(Rn)) and

(5.2) -WO=<*-ι/+<--ι/

for any β with \β\ =m.

REMARK 5.1. In case m = l, Theorem 5.1 was given by M. Ohtsuka [8;

Theorem 9.6].

Let 2m<n. As was seen in §4, any φ e @(Rn) is written in the form: φ(x) =

c\\x — y\2m~nAmφ(y)dy, where ^ m = Σ|α|=m^α^2 α By Riesz's composition for-

mula, we have

where
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r(m ) 2 r ( " ~ 2 m )
,m) = π"'2 ^2' V-?—L

Setting Ψ(z) = c(J; m)\\z-y\m-"Δmψ(y)dy, we have by (5.2)

tyrrly lΎl) \<χ\=m

, m) \a\im

For simplicity we write RΛ and aΛ for Ro^n-m and α§> n_m respectively. Then we

obtain

LEMMA 5.2. Let 2m<n, and let φe@(Rn). Then (p = U%l9 where ψ =

LEMMA 5.3. Let m ^ | α | - / + n<m + L // ψeCm satisfies \Dγφ\ =

Odxl"'7'"1) as \x\-+co for each γ with \γ\£m, then

[ (D(>κ)(x-y)φ(y)dy->(κ*Dfiφ)(x)-aβ

atlφ(x) as r - 0
J\χ-y\>r

for all x, where \β\ =m.

PROOF. We write β = ΣΨ=i βi where \βt\ = 1 for j = l, 2,..., m and set y o = 0 ,

Vi = Σ i =i i'j f°Γ ϊ = l,2,.. .,m. Then we have

( (D'κ)(x-y)φ(y)dy
J\x-y\>r

= limί (^/c)(x-^)φ(^)^
Λ-̂ oo Jr<\x-y\<R

= lim \ κ(x — y)Dβφ(y)dy
R-J>-aoLJr<\x-y\<R

- Σ [ (D'-'κ)(x
i=i)iy,\x-y\=r}U{y,\x-y\=R}

κ(x-y)Dl>φ(y)dy
\x-y\>r
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where ny means the outward normal on the boundary of the domain {y; r<\x —

y\ <R}. Hence we obtain

\ (Dβκ)(x — y)φ(y)dy->\κ(x — y)Dβφ(y)dy — cφ(x) as r->0,
J\x-y\>r J

where c = \ (D?>»->κ)(x-y)n βmdS(y) = \ (Dym"κ)(y)yβmdS(y) if | α | -
J\χ-y\=r J | y | = i

l + n=m and =Ootherwise. This c is just equal to aβ

tl. In fact, if |α| — l + n=m9

then

θβ(x)dx
\x\<R

= lim ί KD'-'-Kjix)- (Dβ-β*»κ)(x)lnx'βmdS(x)
R->ooJ\x\=R

)\x\=l

LEMMA 5.4. Let 2m < n. Then for a function f in Lp(Rn) we have

PROOF. It suffices to show (5.3) for f=φe @(Rn) on account of (5.1). We

note that RΛφ = \x\m~n*Daφ-aΛφ e C00 and that \Dy(Raφ)\=O(\x\-m-1) as |x|->oo

for any γ with lyl^m. From Lemma 5.3 it follows that Ra(Raφ) = \x\m~n*Da

(RΛφ) — aaRaφ. Using (5.2) and Riesz's composition formula, we have

2(p=c(m, m)\x\2m-n*D2aφ,

which yields (5.3) w i t h / = φ e@(Rn). Thus the lemma is shown.

THEOREM 5.2. Let2m<n, and let f be an(m,p)-quasi continuous function

such that there exists a sequence {ψj} in @(Rn) converging to f in BLm(Lp(Rn)).

if

I Σ c
|α|=m

(5.4) ((1+W)"—I
J

then there exists a function g e U(Rn) such that

(5.5)

and
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f=U'm + P (m,p)-q.e.

for some polynomial P of degree ^ m — 1 ; actually

Conversely if there exists a function g e Lp(Rn) satisfying (5.5) andf— XJ9

m is equal

(m, p)-q.e. to a polynomial of degree ^ m — 1 , then (5.4) and (5.6) are fulfilled.

PROOF. Assume (5.4). By Lemma 5.2, we can write φj — Ufy, where

Ψj = c ^ m ) Σ|«ι=m^«(^« + ̂ «)^>j> Denote by g the right-hand side of (5.6).

Then geLP(Rn) and by (5.1), | | ^ - 0 | | p tends to 0 as ;->oo. Therefore from

Theorem 5.1, it follows that U9

m is an (m, p)-quasi continuous function in BLm

(LP(Rn)) and that φ. = υi^U9

m in BLm(L?(Rn)) as j - o o . Thus f'=(Ug

m)' in

BL'm(Lp(Rn)), so that there exists a polynomial P of degree ^ m — 1 such that

Conversely suppose that g eLp(Rn) satisfies (5.5) and that/— U9

m is equal (m,

p)-q.e. to a polynomial of degree at most m — 1. By (5.2) and (5.3) we have

Σ a { a a ) f
\<x\=m

= Σ ca{Ra + aΛYg
\a\=m

_c(m9 m)

" c g '

Hence (5.6) is fulfilled and then so is (5.4) by assumption (5.5).

REMARK 5.2. If mp<n, then condition (5.4) is satisfied.

REMARK 5.3. In case the support of / is compact, then condition (5.4) is

satisfied. Moreover, in this case, / = U9

m (m, p)-q.e., where g is the right-hand

side of (5.6).

REMARK 5.4. In case m = l, these Remarks and Theorem 5.2 were given by

M. Ohtsuka [8; Theorem 9.7].
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