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Introduction

In the recent study of infinite-dimensional Lie algebras, an important role
has been played by the notion of coalescent classes of Lie algebras introduced in
[5, 6]. A more general notion, locally coalescent classes, has been introduced
by B. Hartley [5] and investigated by R. K. Amayo [2,3,4]. In this paper
we shall develop a number of characterizations of locally coalescent classes of
Lie algebras and investigate the radicals of Lie algebras defined by such classes.

In Section 2, we shall show several lemmas on locally coalescent and per-
sistent classes for the subsequent sections. In Section 3, we shall show charac-
terizations of locally coalescent classes by making use of the closure operations
M and N. Namely, we show that a class X is locally coalescent if and only if any
class 9) such that 3E<9J<Mΐ is locally coalescent and that, when the basic field
is of characteristic 0 and 3£ is i-closed, X is locally coalescent if and only if MΪ =
NΪ, and if and only if MΪ is persistent (Theorems 3.2, 3.3 and 3.5). We also show
that, if the basic field is of characteristic 0, L(S n 3?) is locally coalescent and
persistent (Proposition 3.7).

In [3] it is stated that, when the basic field is of characteristic 0, B. Hartley
has introduced the radical β*(L) of a Lie algebra L as the subalgebra generated
by all the L$l subideals of L, where L91 is locally coalescent. More generally,
we define the radical Rad£_si(L) of L for any locally coalescent class X in a
similar way and investigate its properties in Sections 4 and 5. We show that if
3E is complete (resp. strongly complete), then Rad£_si(L) is invariant under
every locally finite derivation (resp. every derivation) of L (Theorems 5.1 and
5.5). We also treat of the special case where 3E is 6 n S» 91 or S (Corollaries
5.3 and 5.6).

§ 1. Preliminaries

We shall be concerned with Lie algebras over a field Φ which are not neces-
sarily finite-dimensional. Throughout this paper, L will be an arbitrary Lie
algebra over a field Φ and 3E will be an arbitrary class of Lie algebras over Φ, that
is, an arbitrary collection of Lie algebras over Φ such that (0) e ϊ and if H e 3E
and H^ K then K e 3£, unless otherwise specified.
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We mainly employ the terminology and notations which were used in [8,9].
LΪ is the class of Lie algebras L such that any finite subset of L lies inside

an £ subalgebra of L. M£ is the class of Lie algebras L such that any finite
subset of L lies inside an £ subideal of L [3,9]. N£ is the class of Lie algebras
which are generated by their 3£ subideals. L, M and N are closure operations
in the sense of [7].

3E is i-closed provided every subideal of an £ algebra is always an X algebra.
3E is N0-closed provided the sum of any two X ideals of L is an 3£ ideal of L.

3£ is locally coalescent [3, 5] provided for any £ subideals H, K of L and for
any finite subset F of <H,K> there exists an 3E subideal X of L such that
F^X<<H,K>. X is persistent [4] provided for any 3E subideals H, K of L
<H,K> is an X subalgebra of L. Hence every coalescent class of Lie algebras
is locally coalescent and persistent.

g, 91 and S are the classes of all finite-dimensional, all nilpotent and all
solvable Lie algebras respectively. The universal class O is the class of all Lie
algebras. When the basic field is of characteristic 0, it is known that 91, S, L91,
L5 and O are locally coalescent [3,4] and S is persistent [1].

§ 2. Lemmas

We begin with the following

LEMMA 2.1. Let A and B be closure operations. //A<B, then

AB =BA = B.

PROOF. If A <B, for any class X of Lie algebras we have

[ABΪ1
B£ < < BBΪ = B*

Mi

and therefore

ABΪ = BAΪ = B£ .

We now show the following lemma, the first part of which is stated in [3],

LEMMA 2.2. (1) 7/3E is locally coalescent, then MX=N£<LΪ.
(2) //LΪ is locally coalescent, then MLΪ = NLΪ = LΪ.

PROOF. (1) Assume that LGNΪ. L is then generated by £ subideals Lα

of L. Let F be any finite subset of L. Then there exist Lαι,...,Lαn among
L's such that
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Since 3£ is locally coalescent, there exists an X subideal H of L such that

F<=H <<Lα ι,...,Lα n>.

Therefore L e M£. Thus we have NΪ < MΪ. The converse inclusion is evident.

(2) By the first statement,

LΪ < MLΪ = NLΪ < LLΪ = L£ .

Hence MLΪ = NLΪ = LΪ.

This completes the proof.

LEMMA 2.3. 7/3t is locally coalescent, then MΪ is ^-closed and especial-
ly N0-colsed.

PROOF. By Lemmas 2.1 and 2.2,

N(MΪ) = NΪ = MΪ .

LEMMA 2.4. //3E is i-closed, then L3E αnrf'MΪ 0re i-closed.

PROOF. Assume that L e MΪ (resp. LΪ) and H si L. For any finite subset
F of H, there exists a JC e X such that

F c x si L (resp. < L)

Then HnKsiK. Since X is i-closed, H n K e ϊ. Furthermore

F<= HnKsiH (resp. < H),

whence ff e MΪ (resp. L3E). Thus MΪ (resp. LΪ) is i-closed.

LEMMA 2.5. NΪ is persistent.

PROOF. Assume that H, K are NΪ subideals of an arbitrary Lie algebra
L. Then H (resp. K) is generated by 3E subideals Hα of H (resp. K^ of K). It
follows that Hα and Kβ are X subideals of L and therefore of <H,K> and
generate <H,K>. Hence <H,K> e N£. Thus NΪ is persistent.

§ 3. Characterizations of locally coalescent classes

In this section we shall study local coalescence of classes of Lie algebras and
present several conditions for a class to be locally coalescent.
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THEOREM 3.1. Let ?) be any class such that X<^)<N3E. Then ty is
locally coalescent if and only if, for any finite family {Hίy..., Hn} of£ subideals
of an arbitrary Lie algebra L and for any finite subset F of '<H19...9 Hn>9

there exists a 2) subideal X of L such that

PROOF. If ty is locally coalescent, then the condition is obviously satisfied
since X<2). Conversely assume that the condition is satisfied. Let H and K be
^ subideals of L and let F be any finite subset of <H,K>. Since 9)<NΪ,
H (resp. K) is generated by 3E subideals Ha of H (resp. Kβ of K). Hence there
exists a finite subset {HΛ^...,HΛm,Kβl,...,Kβl} among f/α's and Kβs such that

F ^ < Haι,..., HΛm9Kβl9...9 Kβl > .

It follows that HΛ. si L and Kβj si L. Therefore by our assumption there exists
a 9) subideal X of L such that

F = X<Z<HΛt9...9HΛm9Kβί9...9Kβί>.

Hence

F ^X <<H,K> .

Therefore 9) is locally coalescent.

The proof is complete.

THEOREM 3.2. Let 9) be any class of Lie algebras such that ϊ<9)<MΪ.
Then X is locally coalescent if and only if %) is locally coalescent.

PROOF. Let 9) be locally coalescent. Assume that H and K are £ subideals
of an arbitrary Lie algebra L and put J = <H9K>. Then H and K are 9)
subideals of L. Therefore for any finite subset F of J there exists a 9) subideal
X of L such that

F ^X< J.

Since Xety<MX9 there exists an 3E subideal Y of X containing F. It follows
that Y is an 3E subideal of L such that

Fc y < j.

Thus 3E is locally coalescent.

Conversely if ΐ is locally coalescent, the condition in Theorem 3.1 is ob-
viously satisfied. Therefore by Theorem 3.1 9) is locally coalescent.
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This completes the proof.

THEOREM 3.3. Let the basic field be of characteristic 0. // 3£ is i-closed,
then the following statements are equivalent:

(1) X is locally coalescent.

(2) MΪ=NΪ.

(3) For any X subideals H, K of an arbitrary Lie algebra L, <H, K> e

M£.

PROOF. (1)=>(2). This follows from Lemma 2.2.
(2)=>(3). This is immediate since <H,K> GN£.
(3)=>(1). Assume the statement (3). Suppose that H and K are £ subideals

of L and put J=<H9K>. Then JGM%. Therefore for any finite subset F
of J, there exists an £ subideal X of J containing F. It is known that the universal
class O is locally coalescent. Therefore, regarding H, K as members of O, we
see that there exists a subideal Y of L such that

F<Ξ y< j.

It follows that

XΠ Ys i Y s i L .

Furthermore X n Y si X and X e 3£. Since X is i-closed, .AT n Γe ϊ. Thus

Fc: x n y s iL, e£.

Therefore £ is locally coalescent.

This completes the proof.

As a consequence of this theorem we have the following result which is due to
R. K. Amayo [4].

COROLLARY 3.4. Let the basic field be of characteristic 0. // X is i-closed
and persistent, then 3£ is locally coalescent.

PROOF. If 3E is persistent, then we have the statement (3) of Theorem 3.3,
since £<M£. Hence the statement is immediate from Theorem 3.3.

We now show the following two theorems by using Corollary 3.4.

THEOREM 3.5. // 3£ is locally coalescent, then MΪ is persistent. When the
basic field is of characteristic 0 and X is i-closed, X is locally coalescent if
and only i/MX is persistent.

PROOF. If X is locally coalescent, by Lemma 2.2
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Therefore M£ is persistent by Lemma 2.5.

Now assume that £ is i-closed and M£ is persistent. Then by Lemma
2.4 M£ is i-closed. We now use Corollary 3.4 to see that MΪ is locally coales-
cent. Theorem 3.2 tells us that £ is then locally coalescent.

This completes the proof.

COROLLARY 3.6. //LΪ is locally coalescent, then it is persistent. When
the basic field is of characteristic 0 and L£ is i-closed, L £ is locally coalescent
if and only if it is persistent.

PROOF. If LΪ is locally coalescent, by Lemma 2.2

Therefore the statement follows from Corollary 3.4 and Theorem 3.5.

We here recall the definition of completeness of a class of Lie algebras.
Let L be a Lie algebra over a field Φ of characteristic 0. Let Φ0 be the

field of formal power series

α = Σ ai?> fliΞΦ, me Z
i=m

and L* be the Lie algebra over Φ0 consisting of all formal power series

oo

x = Σ Xit1, X eL, meZ
i=m

[5]. Put

L* = L ® φ Φ o

[7]. L* is a Lie algebra over Φ0 and is naturally embedded as a subalgebra of
L*. Then the elements of L* are of the form

x = Σ *if'
ί=m

where all xf lie in some finite-dimensional subspace of L. For M<L M* (resp.
M*) is the set of all elements x e L* (resp. L*) with xf e M for all i. Then M* <
L* (resp. M*<L*). For K<L* K b is the set of all leading coefficients of ele-
ments of K9 together with 0. Then Xb<L. We have several properties of
M* and K* which are quite similar to those of M* and X b in [5, 8].

A class £ of Lie algebras is said to be complete [3] provided the following
conditions are satisfied
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( ί ) If L e X, then L* e £ as a Lie algebra over Φ0.
(ii) If //<L* and H e 3E as a Lie algebra over Φ0» then #b e X.

The classes $» ̂  ®» L^ί an^ L$ are known to be complete [3]. Now we
show the following

PROPOSITION 3.7. // the basic field Φ is of characteristic 0, L(<5 Π 5)
is complete, locally coalescent and persistent.

PROOF. Assume that LeL(SnS). For any finite subset {x l 5...,xw} of

Xi = Σ *ί./ ® Ay, Xy € L, Ay 6 ΦQ .

There exists an ® Π 5 subalgebra H of L such that

Then

{*!,..., x n } £ f / * < ; L *

and since S n 5 is complete,

H* e 6 n g .

Therefore L* e L(Sn3r).
Conversely, assume that H<L* and //GL(® n 5) F°r any finite subset

{^iv j ^ m } °f ^b» there exists y/eH with ^ as its leading coefficient. Since
// e L(6 n 5), there exists a X e S n ff such that

{^/,...,j;m '}^X<//.

Then

{ y l 9 . . . , y m } < = K * < Z H >

and since ® n 5 is complete,

X b e S n 5.

Therefore #b6L(S n S) Thus we see that L(® n 5) is complete.
L(S n 5) is obviously i-closed and also N0-closed. In [3] it has been

shown that if ϊ is complete and {i, N0}-closed and if 3£<Lg then X is locally
coalescent. Therefore L(S n 5) is locally coalescent. By Corollary 3.6 L(£> n 5)
is also persistent.
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Thus the proof is complete.

§ 4. Rad£_si(L) over fields of arbitrary characteristic

In this section we shall first define Rad£_si(L) for a locally coalescent
class 3£ in the same way as we did it in [8, 10] for a coalescent class, and we shall
show its properties which are analogous to the properties of the corresponding
radical defined for a coalescent class in Section 3 in [9].

DEFINITION 4.1. // ϊ is locally coalescent, we denote by Radx>.si(L) the
subalgebra generated by all the X subideals of L.

PROPOSITION 4.2. // 3£ is locally coalescent, then RadMΪ(L) is the unique
maximal MΪ ideal of L.

PROOF. MΪ is N0-closed by Lemma 2.3. Hence RadM3e(L) is defined as
the sum of all the MΪ ideals of L [8]. Since RadM3e(L) belongs to N(MΪ), it
belongs to MΪ by Lemma 2.3. Therefore it is the unique maximal M£ ideal.

PROPOSITION 4.3. // 3E is locally coalescent, then Rad£_si(L) is the union
of all the 3E subideals of L and belongs to MΪ.

PROOF. By Lemma 2.2

Let x be any element of Radj_si(L). Then there exist X subideals H^...,
of L such that

xe

Since X is locally coalescent, there exists an 3E subideal K of L such that

xεK <<Hί9...,Hn> .

Thus Rad£_si(L) is contained in the union of 3E subideals of L. The converse
inclusion is evident and the proof is complete.

PROPOSITION 4.4. Let X be locally coalescent. //Rad^-s^L) is a subideal
of L, then it is the unique maximal MΪ subideal of L. If Rad£_si(L) is an
ideal of L, then it is the unique maximal MΪ ideal of L.

PROOF. By Proposition 4.3 Radx_si(L) is an MΪ subalgebra of L. Lemma
3.3 in [9] says that every MΪ subideal of L is a union of ϊ subideals of L. There-
fore if Rad$_si(L) is a subideal (resp. an ideal) of L, then it is the unique maximal
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MΪ subideal (resp. ideal) of L.

§ 5. Rad£_si(L) over fields of characteristic 0

Through this section, we assume that the basic field Φ is of characteristic 0
and study further properties of the radical Rad$_si(L).

THEOREM 5.1. // £ is complete and locally coalescent, then Rad£_si(L)
is invariant under any locally finite derivation of L.

PROOF. Let H be any £ subideal of L and D be any locally finite derivation
of L. Put α =exp tD. Then α is an automorphism of H*. Since £ is complete,
H* is an 3£ subideal of L*. It follows that H*α is an X subideal of L*. Hence

<#*,#*«> < Radx_si(L*) .

Let x be any element of H. Then xD is either 0 or the leading coefficient of
x* — x. By Proposition 4.3, there exists a K e £ such that

x*-xeKsiL*.

Hence

xDeK* siL.

Since £ is complete, K* e £. Therefore

Thus Rad:g_si(L) is invariant under D. The proof is complete.

COROLLARY 5.2. //3E is complete and locally coalescent and i/LeL(5 5

Rad^_si(L) < L.

J/3E is furthermore N-closed,

PROOF. If LeL(55 any inner derivation of L is locally finite. Hence
Rad;£_si(L) < L by Theorem 5.1. If X is furthermore N-closed,

Radx_si(L)eN3£ = 3E

and Radx_si(L) is an 3£ ideal of L. Hence Rad£_si(L)^Rad£(L). The con-
verse inclusion is evident and the proof is complete.
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COROLLARY 5.3. RadL((Sns)_si(L) and RadL^_si(L) are invariant under any
locally finite derivation of L. Especially if Le Lg,

) < L >

L.

PROOF. By Proposition 3.7, L(Θ n S) is complete and locally coalescent.
It is also known that L$l is complete and locally coalescent. Hence by Lemma
2.2, they are N-closed. Therefore the statement follows from Theorem 5.1 and
Corollary 5.2.

REMARK. RadLSJZ_si(L) is /J*(L) and the result on RadLΏ_si(L) in Corollary

5.3 is in [3].
For convenience sake we now introduce the new concept of strong com-

pleteness which is stronger than completeness, in the following

DEFINITION 5.4. We say a class X of Lie algebras to be strongly complete
provided the following conditions are satisfied:

(i) //Leϊ, then L*e3E as a Lie algebra over Φ0.
(ii) If H<L* and //e£ as a Lie algebra over Φ0, then H* e£.

Owing to Lemmas 6.4 and 6.5 in [8] we see that 91 and S are strongly
complete. By making use of strong completeness we prove the following

THEOREM 5.5. Let 3£ be strongly complete and locally coalescent. Then
(1) Rads_si(L) is a characteristic ideal of L.
(2) Radx_s i(L) is the unique maximal M£ subideal and the unique maxi-

mal MΪ ideal of L.
(3) It holds that

RadMΪ_si(L) = RadM3e(L) = Rads_si(L).

PROOF. (1) Let H be an 38 subideal of L and D be a derivation of L. Put
α=expίD. Then α is an automorphism of ZΛ Since X is strongly complete,
H* is an X subideal of L*. It follows that H*« is an ϊ subideal of L*. Let x be
any element of H. Then

Since X is locally coalescent, there exists an £ subideal K of L* such that

{Λ:, x«} £ K< <H\H*«> .

xD is either 0 or the leading coefficient of xα — x. Hence
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xDeK* siL.

Furthermore K*eX since X is strongly complete. Therefore

Thus Radg-siCL) is invariant under D.

(2) The statement is immediate from (1) and Proposition 4.4.

(3) M£ is locally coalescent by Theorem 3.2 and N0-closed by Lemma
2.3. Therefore (3) follows from (2) and Proposition 4.2.

This completes the proof.

COROLLARY 5.6. Rad@_si(L) (resp. Rad^_si(L)) is a characteristic ideal,
the unique maximal M£> (resp. M91) subideal and the unique maximal
(resp. M91) ideal of L. And it holds that

RadM3_sί(L) = RadM@(L) = Rads_si(L),

RadM9;_sί(L) =

PROOF. S and 91 are strongly complete and locally coalescent. There-
fore the statement is immediate from Theorem 5.5.

REMARK. Rad^_si(L) is the Baer radical β(L) of L and the statement on
unique maximality for Rad^^L) in Corollary 5.6 is Theorem 4.1 in [9],
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