A Comparison Theorem on Generalized Capacity

Mamoru Kanda

(Received May 2, 1974)

1. Introduction.

For any real function $\phi(r)$ which is continuous and monotone decreasing for r>0 with $\lim_{r\to 0+} \phi(r) = +\infty$, Frostman [2] defined capacity C^{ϕ} with respect to ϕ . Let ϕ_0 be a fixed function of the same type and let us consider the following two properties.

- i) If $C^{\phi_0}(K) = 0$ for some compact set $K \subset \mathbb{R}^d$, then $C^{\phi}(K) = 0$ and the converse implication is also valid.
- ii) $M_1\phi_0(r) \ge \phi(r) \ge M_2\phi_0(r)$ for each $0 < r < \delta_0$, where M_i , i = 1, 2 are positive constants.

It is evident by the definition of capacity that ii) implies i). If ϕ_0 is such that $r^d\phi_0(r)$ is monotone increasing with $\lim_{r\to 0^+} r^d\phi_0(r) = 0$ and $r^{-d} \int_0^r \phi_0(s) s^{d-1} ds \le M_3\phi_0(r)$ for $0 < r < \delta$, we see that i) implies $\phi(r) \le M_4\phi_0(r)$ by Theorem 4 and Remark in S. J. Taylor [6]. Our object in the present note is to show that i) implies $M_5\phi_0(r) \le \phi(r)$ for $0 < r < \delta$ in case $r^p\phi_0(r)$ is monotone increasing for some $0 , which is a stronger assumption on <math>\phi_0$ than S. J. Taylor's. Our result is as follows.

THEOREM. Let $\phi_0(r)$ and $\phi(r)$ be such that they are monotone decreasing, right continuous with $\lim_{r \to 0+} \phi_0(r) = \lim_{r \to 0+} \phi(r) = +\infty$ and $r^p \phi_0(r)$ is monotone increasing for some d > p > 0. Then i) implies ii).

2. Definitions and known results.

We set

 $\Phi = \{\phi; \phi(r) \text{ is positive, monotone decreasing and right continuous with} \\ \lim_{r \to 0+} \phi(r) = +\infty\},$

and

$$\phi_p = \{\phi \in \Phi; r^p \phi(r) \text{ is monotone increasing for } 0 < r < \delta\}$$

For a compact set K in Euclidean d-space R^d we set

^{*)} This research was supported by the Matsunaga Science Foundation.

Mamoru KANDA

 $M_{K} = \{\mu; \mu \text{ is a measure defined on } K \text{ such that } \mu(K) = 1\}.$

and for $\mu \in M_{K}$

$$V^{\phi}_{\mu}(K) = \sup_{x \in \mathbb{R}^d} \int_{K} \phi(|x-y|) \mu(dy)$$
$$V^{\phi}(K) = \inf_{\mu \in M_K} V^{\phi}_{\mu}(K).$$

Then we define the ϕ -capacity of K, denoted $C^{\phi}(K)$ by

- a) if $V^{\phi}(K) = +\infty$, then $C^{\phi}(K) = 0$
- b) if $V^{\phi}(K) < +\infty$, then $\phi(C^{\phi}(K)) = V^{\phi}(K)$.

The following is known for $\phi \in \Phi$.

(2.1) If
$$C^{\phi}(K) > 0$$
, then there exists $\mu \in M_K$ such that $\int_K \phi(|x-y|)\mu(dy) < M$ everywhere for some constant M .

Let us put

$$\Phi^{c} = \{\phi \in \Phi; \ \varphi \text{ is continuous on } (0, +\infty)\}, \ \Phi_{p}^{c} = \Phi_{p} \cap \Phi^{c}$$

For h such that $1/h \in \Phi^c$, we define the Hausdorff measure Λ_h by

$$\Lambda_h(K) = \lim_{\delta \to 0} \left[\inf_{\substack{\bigcup C_i \supset K \\ d(C_i) < \delta}} \sum_{i=1}^{\infty} h[d(C_i)] \right],$$

where $d(C_i)$ denotes the diameter of C_i and the infimum is taken over all coverings of K by sequences $\{C_i\}$ of spheres with diameter less than δ . Then Frostman [2] shows

(2.2)
$$\Lambda_{1/\phi}(K) = 0 \Longrightarrow C^{\phi}(K) = 0.1^{1/2}$$

The following result obtained by S. J. Taylor [6] plays an essential role in our proof.

If
$$\phi_i(t) \in \Phi^c$$
, $i=1, 2$, are such that $\phi_2 \in \Phi_d$ with $\lim_{r \to 0} r^d \phi_2(r) = 0$ and
 $r^{-d} \int_0^r \phi_2(s) d^{d-1} ds \leq M \phi_2(r)$ for $0 < r < \delta$, and
(2.3) $\lim_{r \to 0^+} \inf \frac{\phi_2(r)}{\phi_1(r)} = 0$,

502

¹⁾ It is known by S. Kametani [3] that $\Lambda_{1/\phi}(K) < \infty$ implies $C^{\phi}(K) = 0$. But we do not need this sharper result in this paper.

then there exists a compact set $K \subset \mathbb{R}^d$ such that

$$\Lambda_{1/\phi_1}(K) = 0, \qquad C^{\phi_2}(K) > 0.$$

3. Proof of Theorem.

Throughout this section we always assume that a subset K of R^d is compact and denote the closed sphere with radius r by Q_r . If $\phi \in \Phi$ is such that

$$\int_{0}^{1} \phi(s) s^{d-\alpha} ds < +\infty \qquad \text{for some } 0 < \alpha \le d \text{ we define}$$
$$[\phi]_{\alpha}(r) = \frac{1}{r^{d-\alpha+1}} \int_{0}^{r} \phi(s) s^{d-\alpha} ds.$$

In case $\alpha = 1$, we omit the suffix α . Then we have

$$[\phi]_{\alpha} \in \Phi^{c}_{d-\alpha+1}$$

Indeed by the monotone property of ϕ it holds that

$$[\phi]_{\alpha}(r) > \frac{1}{d-\alpha+1}\phi(r)$$

and $[\phi]'_{\alpha}(r) = r^{-1}\{-(d-\alpha+1)[\phi]_{\alpha}(r) + \phi(r)\}$ almost everywhere. If $\phi \in \Phi$ is such that $\int_{0}^{1} \phi(s)s^{d-1}ds < +\infty$, then

(3.3)
$$\Lambda_{1/[\phi]}(K) = 0 \Longrightarrow C^{\phi}(K) = 0$$

This is proved as follows²). If μ is a measure on Q_r such that $\int_{Q_r} \phi(|x-y|)\mu(dy) \le M$ on Q_r , then we have

(3.4)
$$\mu(Q_r) \leq \frac{2^d M}{\lfloor \phi \rfloor(r)}.$$

Indeed it holds that $|Q_r|^{-1} \int_{Q_r} dx \int_{Q_r} \phi(|x-y|) \mu(dy) \leq M$, where $|Q_r|$ denotes the volume of Q_r and

$$\inf_{\mathbf{y}\in Q_r}|Q_r|^{-1}\int_{Q_r}\phi(|x-y|)dx\geq \frac{1}{2^d}[\phi](r).$$

For a given $\varepsilon > 0$ we choose a countable number of spheres $\{Q_r\}$ with radii r_k such

 ²⁾ In case \$\phi \in \mathcal{O}^e\$ L. Carleson [1] proved the sharper result than (3.3); that is \$\Lambda_{1/[\u03c6]}(K) < +∞\$ \$\Rightarrow\$ \$C^\u03c6(K)=0\$. Since \$\u03c6 \u2206 \u03c6 \u0

Mamoru KANDA

that $\cup Q_k \subset K$ and

(3.5)
$$\sum_{k=1}^{\infty} \frac{1}{[\phi](r_k)} < \varepsilon.$$

If $C^{\phi}(K) > 0$, there exists $\mu \in M_K$ such that $\int_K \phi(|x-y|)\mu(dy) \leq M$ on R^d by (2.1). Let μ_k be a measure which is the restriction of μ on Q_k . Then it follows from (3.4) that $\mu_k(Q_k) \leq 2^d M[\phi](r_k)^{-1}$. Hence we have by (3.5)

$$1 = \mu(K) \leq \Sigma \mu_k(Q_k) \leq 2^d M \Sigma \frac{1}{[\phi](r_k)} \leq 2^d M \varepsilon.$$

As ε is arbitrary, we can conclude that $C^{\phi}(K) = 0$.

Now we prove our Theorem. Choose $\alpha_0 = d - p + 1$ and α such that $\alpha_0 > \alpha > 1$. Then we may assume that

$$\phi_0 \in \Phi^c_{d-\alpha+1},$$

because it is easily checked that $M_0[\phi_0]_{\alpha}(r) \leq \phi_0(r) \leq M'_0[\phi_0]_{\alpha}(r), 0 < r < \delta$. In the following we fix α and always assume that (i) of Theorem holds. Since it holds that

$$[\phi_0](r) = \frac{1}{r^d} \int_0^r \phi_0(s) s^{d-\alpha+1} s^{\alpha-2} ds \leq \frac{1}{\alpha-1} \phi_0(r) ,$$

 ϕ_0 satisfies S. J. Taylor's condition (2.3). Next we show

$$[\phi](r) \le M_1 \phi_0(r)$$

for $0 < r < \delta_1$. If (3.6) did not hold for any M_1 and δ_1 , then $\liminf_{\substack{r \to 0^+ \\ r \to 0^+}} \phi_0(r)([\phi](r))^{-1}$ =0. Hence there exists a compact set $K \subset \mathbb{R}^d$ such that $C^{\phi_0}(K) > 0$ and $\Lambda_{1/[\phi]}(K)$ =0 by (2.3). Using (3.3) we see that $C^{\phi_0}(K) > 0$ and $C^{\phi}(K) = 0$, which contradicts to (*i*). Combining (3.2) with (3.6) we have

$$(3.7) \qquad \qquad \phi(r) \le dM_1 \phi_0(r)$$

for $0 < r < \delta_1$. Next consider $[\phi]_{\beta}$ for $\alpha > \beta > 1$. Then

$$[\phi]_{\beta} \in \Phi_{d-\beta+1}^{c}$$

$$[[\phi]_{\beta}](r) \leq M_2[\phi]_{\beta}(r), \qquad 0 < r < \delta_2.$$

Indeed the first assertion follows from (3.1), because $\int_0^1 \phi(s) s^{d-\beta} ds < +\infty$ by (3.7). Now we have

504

A Comparison Theorem on Generalized Capacity

$$[[\phi]_{\beta}](r) = \frac{1}{r^d} \int_0^r [\phi]_{\beta}(s) s^{d-\beta+1} s^{\beta-2} ds \leq \frac{1}{\beta-1} [\phi]_{\beta}(r),$$

which is the second assertion. If $\liminf_{\substack{r \to 0^+ \\ r \neq 0^+}} [\phi]_{\beta}(r)\phi_0(r)^{-1} = 0$, then by (2.3), there exists a compact set K such that $C^{[\phi]_{\beta}}(K) > 0$ and $\Lambda_{1/\varphi_0}(K) = 0$, which implies $C^{[\phi]_{\beta}}(K) > 0$ and $C^{\phi_0}(K) = 0$ by (2.2). Hence $C^{\phi}(K) > 0$ and $C^{\phi_0}(K) = 0$ by (3.2), which contradicts to (i). Therefore

$$[\phi]_{\beta}(r) \ge M_3 \phi_0(r)$$

for $0 < r < \delta$. On the other hand it holds by (3.7) that

(3.10)
$$[\phi]_{\beta}(r) \leq \frac{dM_1}{r^{d-\beta+1}} \int_0^r \phi_0(s) s^{d-\alpha+1} s^{a-\beta-1} ds \leq \frac{dM_1}{\alpha-\beta} \phi_0(r) \, .$$

Combining (3.9) with (3.10), we have

$$(3.11) M_4\phi_0(r) \ge [\phi]_\beta(r) \ge M_3\phi_0(r)$$

for $0 < r < \delta_4$. Note that (3.11) holds for arbitrary β such that $\alpha > \beta > 1$, although M_3 , M_4 , δ_4 depend on the choice of β . Choose $\alpha > \beta > \beta' > 1$ and fix them. Then

$$M_5[\phi]_{\beta'}(r) \ge [\phi]_{\beta}(r) \ge M_6[\phi]_{\beta'}(r)$$

for $0 < r < \delta_5$. Hence

$$0 \leq M_{5}[\phi]_{\beta'}(r) - [\phi]_{\beta}(r) = \int_{0}^{1} \phi(rt) t^{d-\beta} [M_{5}t^{\beta-\beta'} - 1] dt \equiv \int_{0}^{1} dt.$$

Choosing $c = (2M_5)^{-(\beta-\beta')^{-1}}$, we have

$$0 \leq \int_0^1 \cdot = \int_0^c \cdot + \int_c^1 \cdot \leq -\frac{1}{2} \int_0^c \phi(rt) t^{d-\beta} dt + M_5 \int_c^1 \phi(rt) t^{d-\beta} dt,$$

from which we get

$$\frac{M_5}{d-\beta+1}\,\phi(cr) \ge \frac{1}{2}\,c^{d-\beta+1}[\phi]_{\beta}(cr)$$

for $0 < r < \delta_5$. Since $(d - \beta + 1)[\phi]_{\beta}(cr) \ge \phi(cr)$, it holds that

(3.12)
$$M_{\gamma}[\phi]_{\beta}(r) \ge \phi(r) \ge M_{8}[\phi]_{\beta}(r)$$

for $0 < r < \delta_6$. Combining (3.11) with (3.12), we can finish the proof of (ii).

4. Remarks.

a) Let $X = (x_t, \zeta, M_t, P_x)$ be a Markov process and assume that X is a Hunt

process and it has Green function G(x, y) with respect to Lebesque measure. Suppose that, for each compact set K, there exists a measure $\mu_K(dy)$ on K such that $P_x(\sigma_K < +\infty) = \int G(x, y)\mu_K(dy)$, where $\sigma_K = \inf(t>0, x_t \in K)$. Then we can define the capacity C(K) of K relative to X as usual setting $C(K) = \mu_K(K)$. If $M_1\phi(|x-y|) \le G(x, y) \le M_2\phi(|x-y|)$ ($M_1 \ge M_2 > 0$) holds on a neighborhood of the diagonal set and $\phi(r)$ is a monotone decreasing function on $(0, +\infty)$ with $\lim_{r\to 0^+} \phi(r) = +\infty$, then it is easy to check that C(K) = 0 if and only if $C^{\phi}(K) = 0$. For example Theorem 3 in [5] is a corollary of our theorem.

b) We can apply our Theorem to calculate the singularity of Green functions. Consider a Markov process X on R^d $(d \ge 3)$ which is a process subordinate to Brownian motion by a subordinator whose exponent is $\Psi(s)$ on $[0, +\infty)$. It is known that X has Green function $G(x, y) = \phi(|x - y|)$, where $\phi(r)$ is continuous and monotone decreasing on $(0, +\infty)$ with $\lim_{r\to 0+} \phi(r) = +\infty$ in case $\sup \{\beta \ge 0; s^{-\beta} \Psi(s) \to +\infty$ as $s \to +\infty\}$ is positive. (See the proof of Corollary [4].) Let X^b be such that $\Psi(s) = \int_{\alpha'}^{\alpha} b(\beta) s^{\beta} d\beta$, $1 \ge \alpha > \alpha' \ge 0$, where $b(\beta)$ is positive continuous on $[\alpha', \alpha]$. Then we have, for each sufficiently small r,

(4.1)
$$M_1 r^{2\alpha-d} \log 1/r \le \phi(r) \le M_2 r^{2\alpha-d} \log 1/r, \quad M_2 \ge M_1 > 0.$$

Indeed we proved (4.1) by a direct calculation in case $b(\beta) \equiv 1$ in §6 [5] and it is easy to check that $C_b(K) = 0$ if and only if $C_1(K) = 0$ for each compact set K, where $C_b(K)$ (resp. $C_1(K)$) denotes the capacity of K relative to X^b (resp. X^1). Therefore (4.1) holds by our Theorem.

c) For a certain class of isotropic Lévy processes we can show that Green function $G(x, y) = \phi(|x - y|)$ exists, but it is difficult to check whether $\phi(r)$ is monotone decreasing or not. It is desirable to extend our theorem in some sense to the above processes for which $\phi(r)$ is not known to be monotonic (in this case Frostmann's capacity C^{ϕ} is not always defined, and so we denote by C^{ϕ} in i) the capacity defined in a)), although there exists an isotropic Lévy process for which $\phi(r)$ is not monotonic and i) does not imply ii) for $\phi_0(r) = r^{\alpha-d}$ for some fixed α , $0 < \alpha < 1/2$.

References

- [1] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, N. J., 1967.
- [2] O. Frostman, Potentiel d'équilibre et capacité des ensembles, avec quelques applications à la théorie des fonctions. Medd. Lunds Univ. Mat. Semin. 3 (1935).
- [3] S. Kametani, On Hausdorff's measures and generalized capacities with some of their applications to the theory of functions. Japanese J. Math. 19 (1944), 217–257.
- [4] M. Kanda, On the singularity of Green functions in Markov processes II. Nagoya Math. J.

37 (1970), 209–217.

- [5] M. Kanda, Comparison theorems on regular points for multi-dimensional Markov processes of transient type. Nagoya Math. J. 44 (1971), 165-214.
- [6] S. J. Taylor, On the connection between Hausdorff measures and generalized capacity. Proc. Camb. Phil. Soc. 57 (1961), 524–531.

Department of Mathematics, Faculty of Science, Hiroshima University