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1. Introduction.

For any real function φ(r) which is continuous and monotone decreasing
for r>0 with lim φ(r) = + oo, Frostman [2] defined capacity Cφ with respect to

φ. Let φ0 be a fixed function of the same type and let us consider the following
two properties.

i) //Cψ°CK)=0/or some compact set KcRd, then CΦ(K)=0 and the con-
verse implication is also valid.

ii) M1φQ(r)^.φ(r)^.M2φ0(r)for each 0<r<(50, where Mh i = 1, 2 are posi-
tive constants.

It is evident by the definition of capacity that ii) implies i). If φ0 is such that

rdφ0(r) is monotone increasing with lim rdςf>0(r)=0 and r~d\ φ0(s)sd~lds^
r-»o+ Jo

M3φ0(r) for 0<r<<5, we see that i) implies φ(r)^M4φ0(r) by Theorem 4 and
Remark in S. J. Taylor [6]. Our object in the present note is to show that i)
implies M5φ0(r)^φ(r) for 0< r <δ in case rpφ0(r) is monotone increasing for some
0<jp<d, which is a stronger assumption on φ0 than S. J. Taylor's. Our result
is as follows.

THEOREM. Let φ0(r) and φ(r) be such that they are monotone decreasing,
right continuous with lim φ0(r) = lim φ(r) = + oo and rpφ0(r) is monotone in-

r-*0+ r-»0 +
creasing for some d>p>Q. Then i) implies ii).

2. Definitions and known results.

We set

Φ = {φ', φ(r) is positive, monotone decreasing and right continuous with
lim φ(r) = -f oo},

and

φp = {φeΦl rpφ(r) is monotone increasing for 0<r<6}

For a compact set K in Euclidean d-space Rd we set
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Mκ = {μιμ is a measure defined on K such that μ(K) = i}.

and for μ e Mκ

V*(K) = sup( φ(\x-y\)μ(dy)
xeRdJK

V*(K) = inf V+(K).
μeMκ

Then we define the φ-capacity of K, denoted CΦ(K) by

a) if V+(K) = + oo , then C*(X) = 0

b) if V+(K) < + oo, then φ(C+(K)) = V+(K).

The following is known for φ e Φ.

(2.1) //C*(X)>0, then there exists μeMκ such that \ φ(\x-y\)μ(dy)

<M everywhere for some constant M.

Let us put

Φc={φeΦι φ is continuous on (0, + oo)}, Φc

p = Φp n Φc

For /z such that I/A e Φc, we define the HausdorfF measure Ah by

lim inf

where c/(Cf) denotes the diameter of Q and the infimum is taken over all coverings
of K by sequences {CJ of spheres with diameter less than δ. Then Frostman
[2] shows

(2.2) Λίlφ(K)=0=*C*(K)=Q^

The following result obtained by S. J. Taylor [6] plays an essential role in our
proof.

If </>i(X)ΞΦc, ΐ = l, 2, are swcA ίAaί φ2eΦd with Iimrdφ2(r)=0 and
r-»0

>, and

(2.3) liminf 2 = 0,
r-*o+ Φι(r)

1) It is known by S. Kametani [3] that Λί/φ(K)<oo implies C*(K) = Q. But we do not need

this sharper result in this paper.
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then there exists a compact set KaRd such that

Λί/φί(K)=0, C+*(K)>0.

3. Proof of Theorem.

Throughout this section we always assume that a subset K of Rd is compact
and denote the closed sphere with radius r by Qr. If φ e Φ is such that

Γ 1

\ φ(s)sd~* ds < + oo for some 0 < α ̂  d we define
Jo

In case α = 1, we omit the suffix α. Then we have

(3.1) [</>]« eΦS-«+ι

Indeed by the monotone property of φ it holds that

(3.2) [0]β(r)>_-L_ψ(Γ)

and Mi(r) = r~1{ — (ί/ — α+1) [0]α(r) + ̂ >(r)} almost everywhere. If 0 e Φ is

such that \ φ(s)sd~lds< + oo, then
Jo

(3.3)

This is proved as follows2). If μ is a measure on Qr such that \ φ(\x — y\)μ(dy)
JQr

^ M on Qr, then we have

(3.4) μ(Qr) ^

Indeed it holds that | j 2 r l ~ 1 \ dx\ φ(\x-y\)μ(dy)<^M, where |βr| denotes the
JQr JQr

volume of Qr and

For a given ε>0 we choose a countable number of spheres {Qr} with radii rk such

2) In case φ^Φc L. Carleson [1] proved the sharper result than (3.3) that is Λί/LΦι(K)< +00
i^ CΦ(K) = 0. Since φξΞΦ now, we give the proof here for completeness though the
method is same.
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that Uβ Λ c=A:and

<3 5)

If O(K)>0, there exists μeMκ such that ( φ(\x-y\)μ(dy)^M on Rd by (2.1).
JK

Let μfc be a measure which is the restriction of μ on Qk. Then it follows from
(3.4) that μk(Qk) ̂  2dM\_φ](rkY * . Hence we have by (3.5)

1 = μ(K) ^ Σμk(Qk) ί 2dMΣ

As ε is arbitrary, we can conclude that

Now we prove our Theorem. Choose α0 = d — p + 1 and α such that α0 > α > 1 .
Then we may assume that

because it is easily checked that MQ[φQ]Λ(r)^φQ(r)^M'Q[φo]Λ(r\ 0<r<<5. In
the following we fix α and always assume that (ί) of Theorem holds. Since it
holds that

0o satisfies S. J. Taylor's condition (2.3). Next we show

(3.6) [0](r) ^ M^oW

for 0<r<δ l β If (3.6) did not hold for any M , and δ,, then liminf Φo
r-» 0 +

=0. Hence there exists a compact set KaRd such that C^°(K)>0 and
=0 by (2.3). Using (3.3) we see that O°(K) > 0 and C+(K) =0, which contradicts
to (i). Combining (3.2) with (3.6) we have

(3.7)

f or 0 < r < δ i . Next consider [φ] ̂  f or α > β > 1 . Then

(3.8) [«,6*§-,+ i

^ M2[ψ]/,(r), 0<r<52.

Indeed the first assertion follows from (3.1), because \ φ(s)sd~βds< + oo by (3.7).
Jo

Now we have



A Comparison Theorem on Generalized Capacity 505

which is the second assertion. If liminf [φ]β(r)φ0(r)~l =0, then by (2.3), there
ι->0 +

exists a compact set K such that C[<^(J£)>0 and Λ1/φo(£)=0, which implies

CtΛ(X)>0 and O(K)=0 by (2.2). Hence C*(K)>0 and C*°(K)=0 by (3.2),
which contradicts to (ί). Therefore

(3.9) ίφ ]β(r) ^ M3φ0(r)

for 0< r <δ. On the other hand it holds by (3.7) that

(3.10)

Combining (3.9) with (3.10), we have

(3.11) M400(r) ̂

for 0<r<(54. Note that (3.11) holds for arbitrary β such that <x>β> 1, although
M 3, M4, 54 depend on the choice of β. Choose u>β>βr>\ and fix them. Then

forO<r<55. Hence

0 ^ M5[0]rW

Choosing c==(2M5)-^-^'>"1, we have

O JO Jc

from which we get

- -

for 0<r<(55. Since (rf~)?-h l)[^]/cr)^^(cr), it holds that

(3.12) M7[0]/r) ̂  φ(r) ^ MJ&fr)

for 0<r<^6. Combining (3.11) with (3.12), we can finish the proof of (ii).

4. Remarks.

a) Let X =(xt, ζ, Mt9 Px) be a Markov process and assume that X is a Hunt
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process and it has Green function G(x, y) with respect to Lebesque measure.
Suppose that, for each compact set K, there exists a measure μκ(dy) on Xsuch

that Px(σκ < + oo) = \ G(x, y)μκ(dy)9 where σκ =inf (t > 0, xt e K). Then we can

define the capacity C(K) of K relative to X as usual setting C(K)=μκ(K). If
M1φ(\x-y\)^G(x9y)^M2φ(\x-y\)(Mί^M2>Q) holds on a neighborhood of
the diagonal set and φ(r) is a monotone decreasing function on (0, 4- oo) with
lim φ(r)= + 00, then it is easy to check that C(K)=0 if and only if C^(X)=0.

r-"0 +
Hence we can apply our theorem to Markov processes of the above mentioned type.
For example Theorem 3 in [5] is a corollary of our theorem.

b) We can apply our Theorem to calculate the singularity of Green func-
tions. Consider a Markov process X on Rd (d^3) which is a process subordinate
to Brownian motion by a subordinator whose exponent is Ψ(s) on [0, + oo). It
is known that X has Green function G(x, y) = φ(\χ — y\), where φ(r) is continuous
and monotone decreasing on (0, +00) with lim φ(r) = + oo in case sup{/?^0;

r->0 +
s~β Ψ(s)-+ + oo as s-* + oo} is positive. (See the proof of Corollary [4].) Let

Γα

Xb be such that Ψ(s) = \ b(β)sβdβ, 1 ̂  α > α' ̂  0, where fo(jS) is positive continuous
Jα'

on [α', α]. Then we have, for each sufficiently small r,

(4.1) Mlr
2 -'loellr£φ(r)£M2r

2 -Ίogllr9 M2^Mί>0.

Indeed we proved (4.1) by a direct calculation in case b(β)=\ in §6 [5] and it is
easy to check that Cb(K)=0 if and only if Cι(K)=0 for each compact set K,
where Cb(K) (resp. C^KJ) denotes the capacity of K relative to Xb (resp.X1).
Therefore (4.1) holds by our Theorem.

c) For a certain class of isotropic Levy processes we can show that Green
function G(x, y) = φ(\x — y\) exists, but it is difficult to check whether φ(r) is mono-
tone decreasing or not. It is desirable to extend our theorem in some sense to
the above processes for which φ(r) is not known to be monotonic (in this case
Frostmann's capacity C* is not always defined, and so we denote by Cψ in i) the
capacity defined in a)), although there exists an isotropic Levy process for which
φ(r) is not monotonic and i) does not imply ii) for φ0(r) = ra~d for some fixed α,
0<α<l/2.
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