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Statement of results

In the stable homotopy groups G, of spheres, two non-trivial families of p-
primary elements, called «- and S-series, are known [6] (cf. [12]). These are
constructed from the attaching classes « and f of the spectra V(1) and V(2) [12],
whose cohomology groups are certain exterior algebras over the Steenrod algebra
modp [11]. In asimilar way, the existence of the spectrum V 2% assures to

define an element called y,[12; § 5], which is the first element of the third family.
The purpose of this paper is to prove the following result.

MAIN THEOREM. For every prime p25, the element y,€Gp2_1y4-3, =
2(p—1), is non-trivial.

The result is an answer to a problem proposed by one of the authors [12;
p. 237], and P. E. Thomas and R. Zahler [7] [13] also have obtained the same
result in a quite different method. Our result states that y, is a non-zero multiple
of the element a,f,_; [12;(5.12)]. Also, one of the authors recently has proved
more strict relation y;=o,8,_;.

Originally, this paper was intended to prove y,=0 (cf. [4; II, Remark in
p. 1471, [7; §0]), but the publication has been postponed by a contradiction to
the result of P. E. Thomas and R. Zahler. We have re-examined our original
proof, and after crucial investigations we have concluded the opposite result.

CoRrOLLARY 1 (p=5). The following relations hold in G,:
%fp-1Bs=0  for 523,
and hence
o BiB=01B28k-1=0 for k# —2modp and k=p+1,
BB =01B1B2Bi-1 =0  for kzp+l.

This is an easy restatement of Proposition 5.9 of [12]. Also, by Corollary
5.7, Theorem 5.1 and (5.4) of [12], we obtain the parallel relations in the algebra
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o (M) [5][12] of the Moore space mod p.
COROLLARY 2 (p=5). The following relations hold in <7 (M):
0f,-1y0By =0  for s=3,
and hence
0P 1)0Bwy = @0P(2)0B -1y =0 for k£ —2modp and k=p+1,

a(6f(1))20Bw) = 0B 1)0B2y0Bxk-1y=0 for k= p+1.

§1. A secondary composition

Throughout this paper, p denotes a prime integer with p=5, and set g=
2(p—1). n denotes a sufficiently large integer so that all spaces and maps con-
sidered are in the stable range.

For finite CW-complexes (spectra) X and Y, [X, Y] denotes the set of ho-
motopy classes of maps: X—Y, and n§(X; Y) the limit group lim,[2"*k¥X, Z"Y]
of stable classes of maps, where X* denotes the t-fold suspension. Also denote by
,(X) the group n§(X; X). The direct sum & (X)= Y,/ (X) forms naturally
a graded ring, and in particular G,=.74(S°) is the stable homotopy ring of
spheres. A map and its stable class are written by the same letter.

There exist the following sequences of cofiberings of the spectra V(0), V(1)
and V(2) [12; p. 217]:

Sn_ P, gn_t  pqntl _® | gn+l R
Mrra o M, V(1) B MUttt
etvep(1), Lo v(1), — V(2), — Z@tLatip(]),
Here the Moore space
Mnr=Sn"1y e

is the (n—1)-th component of the spectrum V(0), and V(k), denotes the n-th
component of the spectrum V(k).

In this paper, the notations and the results of the rings G,, &«(V(0))(=
o (M™)) and o 4(V(1)) are referred to [12](cf. [4], [5], [8]). In particular, the
families {a,} and {B,} in G, and {B,)} in &74(V(0)) are defined from the elements
o and g by

o, = ma'i, B = m:fiy, Br = 7B

Also our element y, is defined by
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Y1 = TPk Yay = %1V
where y[;;€ & p2,-1(V(1)) is the element defined from the attaching class of
V<2 —;—), and the following formula is Theorem 5.5 of [12].
(.n Yay = X((B(1)9)? +(0B1))") + yB(p- 1y0
for some integers x#0 modp and y.

Here we put
0 =inesl_(V(0)).
Now we consider the secondary composition
C = {nBuy ai, B} = Gp2+ pyg—3-

From the results on G, and & 4(V(0)), we see that C is well defined and consists of
a single element. Hence we have

C= {nﬂ(l)’ o, ifh}
by the formula in [9; Prop. 1.2].
PROPOSITION 1.2.%)  The element v, is non-trivial if and only if
{mB1y, i, i} # 0 (mod zero).
Proor. For x in (1.1), choose an integer x’ such that xx’=1 mod p, and put
A= moB and u = x'(y;1y+yBP~1a)ig,

where my=nmn,, ip=1i;i and o'=0y; Alyy, [12; pp. 218-219]. Then, Ai; =np,,
and 7 u=x"(y1)y—YBp-1y00)i=(6P)Pi=ip4, since o'i;=—i;éa [12;(3.11)].
Therefore C=Au by the definition of C [9; p. 9]. By (5.11) of [12], the element
Y117 satisfies By;7=0, and so

C = pu = x'ynofra’io = x"ypa, .

The element f,x; is non-trivial by Theorem A of [4; II] and by the fact f,#0
of L. Smith [6]. Hence, C+#0 if and only if y#0 mod p, which is equivalent to
¥, #0 by (5.12) of [12]. Q.E.D.

§2. Extended powers of complexes

For a space X and a map f, we denote by X® and f(*) the t-times smash

*) The foot-note on p. 147 of [4; II] is incomplete. The tertiary composition {8, p¢, @y, B3}
has full indeterminancy, so this should be replaced by {z8,, @i, 3} above.
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products X A---AX and fA---Af. Let @y M™"— M™ A M" be the map such
that (T A Ly)ou =1y AM)@yy=1,,[12; Lemma 1.3]. We define

(Pil: M(t+1)n N (Mn)(t+1)

by of=0¢y and @4 =(0ir! Al)@y. Consider the operation 6: o/ (M")—
o4 1(M") of [12].

PropPOSITION 2.1. For any element &e st (M") satisfying 6(£)=0, the
relations

(nE) Ot = ng!
hold.

Proor. If 6(&)=0, then (1, AnE)py=¢E by [12; Th.2.2, Lemma 1.3]. So
we have inductively

(@) Vo4 = (RO O(1pger A TEN PN A 11Oy
= (D1 (1y A Ty = mEHL,
Q.E.D.

We consider the extended p-th power functor ep’( ) in [10]. In particular,
ep® is the p-times smash product. Since the element a € &7 ,(M") lies in Ker0,
we have

2.2) ep°(na) Pyt = moP.

The (mod p) cell decomposition for ep”(S”) is studied in [10; Lemmas 1-2].
For r=q—1, g+1, we have

LeMMA 2.3. ep?1(S") has a modp summand S"?vV S*r*te~1  If n=0
mod p, so is ep?t1(S™).

Here we say that X has a mod p summand Y if X is p-equivalent to a wedge
YV Z for some Z.

Next we consider the complex ep'(M"). Let aeH,_;(M";Z,) and be
H,(M";Z,) be the generators corresponding to the cells of M". Then a Z,-basis
for H,(ep"(M™); Z,) is given by the following cycles [2; pp. 45-47][10]:

(2'4) (1) ei®uap’ ei®nbp for Oélér’
(11) €g ®1z(x1 ®'"®xp):
(ill) a(er+1 ®n(xl ®® xp))’
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where n=Z,, x’=x®---®@x (p-times), x;=a or b, x;#x, for some j, k, and in
(ii) and (iii) for odd r (resp. (iii) for even r), (x,,..., X,) runs representatives of the
classes obtained by the cyclic permutations; one representative (resp. p—1 repre-
presentatives) being chosen from each class.

We consider the operation P}: H;—H;_,, the dual to the reduced power
P!, on H,(ep'(M™);Z,). By using [10; Th. 1] (cf. [3]), we can calculate P} on
(2.4)(i). For example, we have

0 for i<gq,
P}t{ei ®nap} =
—(n—1)/2{e; ®@,a*}  for i=gq,
0 for eveni<gq,
Pi{ei ®1|: bp} = ﬂ{ei—p+2 ®nap}9 I’l$0 mod b for odd i < q,
—n/2{e, ®, b?} fori=gq.

By dimensional reason, P} on (2.4)(ii) is trivial. Since the elements (2.4)(iii)
vanish in Hy(ep™'(M"); Z,), it follows from the naturality of P} that P} on (2.4)
(iii) is also trivial.

For the homology Bockstein operation 4, the following relations are verified,
up to sign ([10], [1; §5]):

0 for odd i and fori =0,
A{ei ®1|:ap} =

{e;-, ®,ar} for eveni >0,

0 foroddi<randfori=0,
A{ei ®1rbp} =

{e;-1 ®,bP} for even positivei<r,

A{e, ®,b?} = {0(e,+1 ®.(abP~1))}  foroddr,
4{eo ®,b?} = {eo ®,(ab?~ 1)},

where 4,: Ker A—Coker 4 is the secondary Bockstein operation.
We use the following notations of complexes:

(2.5) N"=S""1U je",
L'Il=an—1 u a&Can+p_29 L”=an—1 U aienp+q—1 .
P,=(N""V M"P"1) U (4205,0y CM"P+a"1
(= (an \% Ln) U (nlai,ﬁ)e"p+q) ’

where A: M"— N" is the map of degree 1 on the top cells [5; §§2-3], and p:
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Srrta-1 ], is the coextension of p.
From the above discussion of the operations 4, 4, and P} on ep"(M"), we
obtain the following three lemmas.

LEMMA 2.6. ep?!(M") has a mod p summand N"PV L},

In fact, the summands N"? and L, are obtained from the elements e, ®abP~1,
e,®,b? and e,_,®,.a?, e,_;®,a®, d(e,® abP~1), e,_ ®,b?, respectively.

LeEMMA 2.7. ep?~1(M™) is p-equivalent to a wedge
L,VX,VY,,

where X,=M"~3 Uy ,CM"?*4=3 and Y, is (np— p— 1)-connected and of dimension
np+q-3.

In fact, X, is obtained from the elements e,_,®,a’, e,_;®.a?, ¢,_;®,b?
and e,_,®,b?, and the complementary summand Y, has the bottom cell cor-
responding to e,®a? and the top cells corresponding to the elements (2.4) (iii)
with x;=x;=a, x,=b (k#1, j) for some i#j.

LEMMA 2.8. ep?*'(M") has a modp summand P,. The inclusion
ep?~Y(M™)cep™1(M™) is identical on N"P and is the following composition on
L;,:

L, L,cP,,

where h is the map smashing the subcomplex S"P*9~2 of L to the base point
(vertex).

In fact P, is obtained from N"?v M"P=! by removing d(e,®.ab?~!) and
adding e,®,b".

Now we notice that the complex ep®(M")=(M")(»> has a mod p summand
MrP and the map ¢%,~! in (2.2) is the inclusion to this summand. Furthermore,
by considering the induced homomorphism of the inclusion ep®(M™)<ep’(M™),
we see that the following diagram is commutative for r=qg—1, g+1:

an A ) an
(2.9) jw;;‘ lf
ep®(M") - ep"(M™) ,
where j and k are the inclusions.

For the complexes L;, and L, of (2.5), we have the following commutative
diagram of the cofiberings:
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Smp+q—2 - Smp+q-2

1 I

Mmp—l L"" - Mmp+q—1
“ lh ln
Mmp—1 i Lm qaL Smp+q—1

Applying [ , S"?] to this diagram, we obtain the following lemma, from the
known results on G4 and o7, (M™) ([4], [5], [8], [12]).
LeMMA 2.10. Let m=n+q. Then

h*. [L,, S"] —> [L},, S""],
ii: [Lm’ S"p] — [Mmp—l > Snp]

are isomorphisms of the p-components, and the p-component of the group [L,,
S"P] is isomorphic to Z,+Z,, generated by ¢ and n satisfying ifé=np,, and
i¥n=mnar~14a.

Also we obtain

LEMMA 2.11. Let l=m+pq—2. Then the p-primary part of m,.,—1(L,,)
is isomorphic to Z, generated by { satisfying q,4{=p".

Now we consider the map ep?~i(na). Set m=n+gq and
¢’ = reept™(ma)ej': Ly, —> ept™ (") —> ept™}(S") —> 5%,

where r and j' are the retraction and the inclusion obtained from Lemma 2.3 and
Lemma 2.6 respectively. By Lemma 2.10, there exists

(2.12) ¢:L,—> S
such that ¢ =¢'h and we can put
¢ = a&+bn. a,beZ,.
LeEMMA 2.13. The coefficient a is +1.

Proor. The lemma means that the restriction ¢|S™?~2=¢’|S™P~2 represents
+B,. This is proved quite similarly as [10; Lemma 4] by calculating the func-
tional PP-operation for ep?=1(ma). Q.E.D.

For the complex N" of (2.5), let

Sn— 1 i N* n’ Sn
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be the cofibering. N is a Moore space mod p2, and hence by [5; §4, §7], the
group 7, (N™) is generated by an element o’ of order p? satisfying a’A=Aa? and
pa’=aPp, where A: M*—N" and p: N*—>M" satisfy n'A=mn, Ai=pi’, pi'’=i and

[P

np=pn’. The element a,=n'a'i’ generates the p-component of G,_, and
satisfies pa,=a,, and o' is determined up to pa’.

LeMMA 2.14. Let m=n+q. Fort=q—1, q+1, the composition
Nme L, ept(M™) £22x), opt(Sn) £, S"P
(j is the inclusion and r is the retraction) represents n'a’ for some choice of o'.
Proof. Let k: ep®(M™)—ep'(M™) be the inclusion. Then we have
roept(ma)ojod = roep*(ma)okois ! by (2.9)
= ep°(na)oplir
= mo? by (2.2)
=n'a'A.
The sequence
[Mme, Sp] 22, [ NmP, S"P] 2, [ M™P, S"P]

is exact since M™?— N™P— M™? is the cofibering. The groups [M™?,S"F]and [N™?
SnP] are generated by maP and n'a’, and p*(maP)=pn'a’. So, replacing o’ we
obtain the lemma. Q.E.D.

PrROPOSITION 2.15. Let m=n+q and assume that n=0 mod p. Then we
have a= +1 and b= —2 in the equality ¢ =a&+bn.

Proor. By Lemma 2.13, we only prove b=—2. By Lemma 2.10, ¢|Mmr~1
=¢'|Mm™P~1 represents ¢"=anpf,+bnaP~1éa, and the composition

Nmp\ pMmp—1 epq—l (Mm) ep?~1(na) epq-*l (S”) Snp

represents n'o’ V ¢” by Lemma 2.14. N™? vy M™r~1 is the subcomplex of P,, in
(2.5), which is the mapping cone of (miad, o). By Lemma 2.8, ep?t!(M™) has a
summand P,, and by Lemma 2.3, ep?*1(S*) has a summand S"? if n=0 mod p.
Let ¢: P,,—S"? be the component of ep?*!(nx) with respect to these summands.
By Lemma 2.14, the element n'a’ V ¢’ is the component of ep?~1(nx), and so we
have the commutative diagram:



Non-triviality of an Element in the Stable Homotopy Groups of Spheres 123

Nmey L, —Ah y Nmoy/ [

1n'a’V¢' 1

(2

gw—2= __p,

by Lemma 2.8, where the right vertical arrow is the inclusion. Since n'a’ V ¢’ =
(1v h)*(x'a’V ¢) and (1V h)* is isomorphic by Lemma 2.10, we see that the ele-
ment 7'a’V ¢ has an extension ¢. Therefore n'a’ V ¢” is extensible to P, if n=
0 mod p, and so

0= (n'’ V ¢")(—2/0,0) = —2n'o’Aad +(anfyy+ bnoP~1dot)o
= —(2+b)nar*tis.
Since naP*15#0, we obtain b= —2 as desired. Q.E.D.
Finally we consider ep?=1(B;)i). Set I=m+ pg—2 (m:large), and put
W' =roept= (B 1yi)oj: S - epi=i(ST) — eptt(M™) > Ly,
(2.16) Yy=hy St~ —— Ir — L.
PROPOSITION 2.17. The element \ represents +(.

Proor. By Lemma 2.11, ¢ is a multiple of {. We see easily that g,y is the
component of ep?~!(m)ep?~!(B,)i)=ep?~'(B;) between the top cells. Hence
quy is a suspension of ep®(B,)=(B,)®, which is equal to B4 up to sign (cf. [9:
Prop. 3.1]). Thus, y=+{ by Lemma 2.11. Q.E.D.

§3. Proof of the main theorem

Henceforward, we put
m=n+gq, l=m+pg-2.

These integers are large so that one can work in the stable range. Since (na)(B ;i)
=0: S'>Mm™—S", we have

FG = 0: S'7ta=1 — ept=1(M™) — S"7,
where
F =roep™i(na), G = ep? *(By)i)oj,

for the retraction r: ep?~1(S”)—S"? and the inclusion j: S'P*1~1 »epa-1(S?).
LeMMA 3.1. For the elements ¢ of (2.12) and ¥ of (2.16), their composi-
tion
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¢y Sera-t — 1 —— S
is trivial.

Proor. By using the decomposition in Lemma 2.7, we can write F=¢'+
F,+F, and G=y'+G,+ G,, where F,e[X,, S""], F,e[Y,, S*?], G,e€
Tip+q-1(Xp) and Gy ey, ,_4(Y,), and we have

¢"/l'+FlGl+F2G2 = FG = 0.

From the results on n,(M"), we have n;,,,_;(X,)=0 and so G;=0. Since
the p-component of G, is trivial for pg—p<k=<pq—3 and for (p2—1)g<k=
p2q—2, F,G, is homotopic to a composition SP+4-1 Y mp=2/ymp=3_,gnp,
where Yk denotes the k-skeleton of Y,, and so Y7P~=2/Ymp=3 is a wedge of copies
of Smr=2, The p-components of G,,_, and G,.,_, are generated by B, and the
element o, which lies in the image of the J-homomorphism. Hence f,a,.=0
and so F,G,=0. Therefore we have ¢yy=¢'y'=0. Q.E.D.

Now we shall prove our main theorem.

ProoF oF MAIN THEOREM. By the definition of the secondary composition,
we have

&0 = {mB1y, i, B} mod zero,
n{ = {na?~1da, ai, 5} mod zero,

for the elements &, # and { in Lemmas 2.10-2.11. The second composition is
equal to {a}, o0y, i} ={BY, o;, a,} up to sign by the relation na?~!da= +a,n and
the formula [9; (3.9), i)]. By [5; Prop. 8.1], we have n{= ta,¢,_, #0, where
€,—1 is a non zero multiple of $, and generates the p-component of G,z 4 - 1)4-2-

By Propositions 2.15, 2.17 and Lemma 3.1, there is a relation (£ &—2#9){=0.
Hence,

{mB1y i, B} = &l = +2n{ = +2m4e,_; # 0.

Thus, y, #0 follows from Proposition 1.2. Q.E.D.
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