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Introduction

It has been found in our course of study on the design of balanced file organi-

zation schemes of order two [2] that, in the terminology of graphs, the decomposi-

tion of a complete graph into a union of line disjoint claws or stars provides us

an optimal file organization scheme in the sense such that it has the least re-

dundancy among the schemes of order two for every probability distribution of

records having property of invariance in the permutation of attributes. As far

as the present authors know, no information about such a claw-decomposition

problem of complete graphs has yet been obtained. In this paper, a complete

answer to the problem which may be called the claw-decomposition theorem of

complete graphs will be given. A similar theorem of complete bigraphs will

also be given.

In processing those decomposition theorems, it has been found useful to

provide an existence theorem and a construction algorithm of bigraphs having

preassigned degrees of points. The existence of bigraphs having preassigned de-

grees is equivalent to that of 0-1 matrices having preassigned row and column

sum vectors. In the terminology of the latter, a necessary and sufficient condition

for the existence of a 0-1 matrix has been given by Ryser [1]. In this paper,

a straightforward construction algorithm to decide the existence of a 0-1 matrix

will be given. An alternative proof of Ryser's theorem will also be given.

§ 1. Existence of bigraphs

A bigraph (or bipartite graph) Gmn is an (unordered) graph whose point set

can be partitioned into two subsets Vx and V2 with m and n points each, such that

every line of G m π joins V1 with V2. If it contains every line joining Vt and V29

then it is called a complete bigraph and denoted by Kmtn. Specifically, a com-

plete bigraph Kίc is called a claw or a star with c lines.

Upon labelling those points in V1 and V2 of Gmn by uί9 u2,~',um and υl9

v29~ 9 vn, the adjacency of points in Gmn can be represented uniquely by an m x n

0-1 matrix A = \\ atj || in which ai} = 1 if uf is adjacent with Vj and au = 0 otherwise.
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The set of row and column sum vectors

(1.1) {(dl9d29-,dj9(el9e29-9ej}

of A corresponds to an arrangement of the degrees of points of the corresponding
n m

bigraph GOTjn, where d{ = Σ fly and βj = Σ <*ij- We may note that permutation

of the labels in Vί and in V2 and the interchange of Vί and V2 are, of course,

irrelevant to Gmn; they correspond to permutation of the rows, of the columns,

and transposition of the matrix A, respectively.
m n

Since the number of lines in GmjMis given by N= Σ dt= Σ eρ (l l) c a n a l s o

ί= 1 j=1

be considered as a pair of m and n partitions of a nonnegative integer N.

A pair of m and n partitions
(1-2) Πm%n = {(rl9 r2,—, rm), (s l 5 s2,--, sn)}

of a nonnegative integer N will be called bigraphίcal if there exists a bigraph

Gmn whose arrangement of degrees is Πmn or, equivalently, if there exists a 0-1

matrix A of size mxn whose set of row and column sum vectors is Πmn9 where
m n

r* and s, are nonnegative integers and satisfy JV= Σ ri— Σ 5/
i = l j=l

The following theorem provides us an algorithm to decide whether Πmn is

bigraphical or not.

THEOREM 1.1. (Algorithm) A pair of m and n partitions

(1.3) Πmtn = {(r l5 r2,.. , rw), (s l 5 s2,.. , 5Π)}

of a nonnegative integer N with sί>s2>~ >sn is bigraphical if and only if a

modified pair ofm — 1 and n partitions

(1.4) Πm_Un = {(r 2,r 3,...,rM),(s 1-l,...,s r i-l,s r i + u~ ,sn)}

of the nonnegative integer N — rί exists and is bigraphical.

PROOF. If i7m_ 1>n in (1.4) exists and is bigraphical, a 0-1 matrix having Πmn

in (1.3) can be obtained by adding a row which has rt ones followed by n — rx

zeros to the 0-1 matrix having (1.4). Πmn in (1.3) is, therefore, bigraphical.

Conversely, suppose Πmn in (1.3) to be bigraphical. If the first row of

A = Hαyll corresponding to (1.3) is a vector composed of rί ones followed by n — rx

zeros, then Πm-ίn in (1.4) exists and a 0-1 matrix having (1.4) can be obtained

from A by deleting the first row. If aίj=0 for some j satisfying 1 <j<Lru then

there exists some / satisfying r 1 < y / < n such that a1y—l. In this case there

exists some i for which 0^ = 1 and air =0, since Sj>Sy. Interchanging zeros and

ones with those four elements in A, & 0-1 matrix A* with the same Πmn is obtained,
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in which a\j = \ and a\y =0. Repeated application of such an interchange will

yield a 0-1 matrix A with Πmn in which the first row is composed of r t ones

followed by n — rx zeros. Removing the first row of A, a 0-1 matrix Άx of size

( m - l ) x n having Πm__ίn in (1.4) is obtained. The modified pair of partitions

Πm_ίn exists and is bigraphical.

This completes the proof.

Note: The family of 0-1 matrices having Πmn, if it exists, is essentially unique

in that any two are transformable each other by repeated interchange of zeros and

ones.

THEOREM 1.2. (Ryser) A pair of m and n partitions

(1.5) ΠmiH = {(rl9 r 2 , . . , r m ), (sl9 s2,- ., sn)}

of a nonnegative integer N with r1>r2> - >rm is bigraphical if and only if

the inequalities

(1.6) Σrt< Σ mm(k,Sj)
i=l 7 = 1

hold for all fc = l, 2,—, m.

PROOF. If Πmn in(1.5) is bigraphical, then there exists a0-1 matrix A of size

m x n having Πmn. Consider a submatrix Ak composed of the first k rows of A

for each fc = l, 2, , m. The number of ones in the j-th column of Ak is not

greater than min(/c, Sj) for each j = l, 2, , m. The total number of ones in Ak,
k n

Σ ^p is, therefore, not greater than Σ min(/c, s. ). This implies that the in-
i=ί 7=1

equalities (1.6) are necessary.
The sufficiency of (1.6) will be proved by induction on m.

n n n n

For m = l, since Σ sj = r1< Σ min(l ,s . ) and Σ sf > Σ min(l,S;) hold
j=i j=i j=i y=i

by assumption, it follows that Sj = l or 0 for all j = l9 2, , n. A 0-1 matrix

A = WayW of size 1 x n, in which α υ = 1 if s7- = 1 and α tj = 0 otherwise, has the re-

quired set of row and column sum vectors. Hence, i 7 l w is bigraphical.

Suppose (1.6) to be sufficient for any pair of partitions Πmn with m = ί,

and assume that the inequalities

(1.7) Σrt< Σ min(/c, Sj)
i= 1 7 = 1

hold for all fc = l, 2, , f + 1 with respect to a pair of ί + 1 and n partitions

(1-8) Πt+Un = {(rl9 r2,-.., r ί + 1 ) , ( s l 5 5 2 , . .,sπ)}.

Without loss of generality, we may rearrange Sj in a way such that they satisfy
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sί>s2^-~>sn. Since it follows from (1.7) that r± < Σ min (1, Sj), sΓi must

be a positive integer. Thus a modified pair of t and n partitions

(1.9) JlM = {(ri,r'2,-.,r{),(5i,5i,-,ei)}

can be constructed from (1.8), where r'i=ri+ί for i = l, 2, , ί; s} =Sj—1 for
j = l92, ~,rί and sfj=Sj for j = rt + l9—9 n.

For every fc satisfying 1 <;fc<sΓi, it follows that

(1.10)

= Σ min(fc, s}) < Σ min(fc,s})

and for every k satisfying sΓi <k<t, it follows that

(1.11)

f!

< Σ min(fc+l,Sι) —rx

= Σ m i n (fe + h Sj) + Σ min (fc +1, s •) -
l J = r + 1Σ ^ } ) ^ = Σ ^ } ) ^

n

= Σ min(fc, s'. )

The inequalities (1.10) and (1.11) show that Πtn in (1.9) is bigraphical by the
induction hypothesis. So is Πt+ίn in (1.8).

This completes the proof.

COROLLARY 1.3. A pair of m and n partitions

(1.12) Πmtn = {(rί9 r 2,..., rOT), (s, s , - , s)}

o/α nonnegatiυe integer Nwith rί>r2>' - >:rm is bigraphical if and only if

(1.13) r1<in.

PROOF. It is sufficient to show that (1.13) is equivalent to (1.6) with s1 =
s2 = ..-=sn=s. The latter can be reduced to

(1.14) Σ rt ^ nmin(fc,s)

for all fc = l, 2,. , m.
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From (1.14) with fc = l, we have rί<nmin(l,s)<n. Hence we have (1.13).
Conversely, for every k satisfying 1 </c<s, it follows that

nmin(k, s) = nk > rγk > r1 + r2Λ \-rk,

and for every k satisfying s + 1 <k<m, it follows that

nmin(/c,s) = ns = rί + r2 + ~ + rm > ri + r2 + — + rk.

This completes the proof.

§ 2. Claw-decomposition theorems

Now we shall state the claw-decomposition theorem of complete graphs:

THEOREM 2.1. A complete graph, Kb with I points andi^Λ lines can be

decomposed into a union of line disjoint (Λjc claws, K[a^c9 with c lines each if

and only if

(i) (2) ι s a n integral multiple of c, and

(ii) l>2c.

PROOF. (Necessity) The condition (i) is obviously necessary. Suppose
l<2c and assume that Kt can be decomposed into a union of line disjoint b =

\y)lc claws. Since b<l—l, there exists a point which cannot be the root (or a

point of degree c) of any claw. Its degree must be less than I —1. This con-
tradicts the fact that Kt is regular of degree Z — 1. The condition (ii) is, therefore,
necessary.

(Sufficiency) The set of [2) n n e s °f a complete graph Kt can be identified

with the triangular set

(2.1) T={

of ( ί ) lattice points (i,j). The set of c lines of a claw Klc which is a subgraph

of the Kι can be identified with a subset of T composed of c lattice points standing
together on the same ί-th row and/or i-th column. Such a subset may be called
a claw-type subset of T. The proof of sufficiency will be completed by giving an

algorithm of the decomposition of Tinto mutually disjoint b^Λjc claw-type

subsets assuming that (i) and (ii) hold. This algorithm will be given by dividing
it into the subsequent three cases.

Case 1. 2c<l<3c
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Put l=2c + r and b=(2)lc=2c-l + 2r+bί. Since 0 < r < c and bi =

r(r — l)/(2c), bx is zero if r = 0 o r 1 and an integer satisfying 0<b 1<—y— otherwise.

The set Tof (Λ lattice points will be decomposed into the following subsets

A, B, C, D a n d E :

(2.2) C = {(ίJ

D = {(ίj)\l <ί<c, c + 2 <j < c + r+1}

E = {(U)|l < i <c + r, c + r + 2 < j < 1} .

Among those subsets, D can be decomposed into r claw-type subsets by divid-

ing it into r rows. In order to decompose the remaining T-D into claw-type sub-

sets, every point in E will first be classified into those either labelled (r) or labelled

(c) in a way such that the number of points labelled (r) in each column ranging

from the 1st to the (c + r)-th column will be c— 1, c — 2, , 1, 0, r —1, r — 2, ,

1, 0, respectively and that the number of points labelled (r) in each row ranging

from the (c + r + 2)-nd to the /-th row will be c - 1 , c-2, , fei + 1, &i + c, bί-

l + c, , 1 + c, respectively. The remaining points will be labelled (c). This

labelling will be performed by the algorithm given in Theorem 1.1. As will be

seen presently, the pair of c — 1 and c + r partitions

(2.3) {(c-l,c-2,. , Z?1 + l,fc1 + c, ,

(c- l ,c-2 , . . . , l ,0 , r- l , r -2 , . . , 1,0)}

of c(c —1)/2 + r(r —1)/2 satisfies the condition of Theorem 1.2.

Since c + fc1>c + b 1 - l > >c + l > c - l > c - 2 > .• > 6 1 + 1, the sum of

the largest k integers, Rk, of the left hand member of (1.6) will be

for \<k<b,

for

The right hand member of (1.6), Sk, will be

, k(r + c-k-l) for l < / c < r - l

\ for
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When r=0 or 1, since b1 =0, we have Sk-Rk=0 for all 1 <fe<c-l . When

2<r<c, since 0<fo1 < -̂y— <r— \<c— 1, we have

for \<k<bi

for

for r<k<c-l.

Thus we have Sk — Rk>Q for all fc = l, 2, , c—1, and, consequently, (2.3) is

bigraphical.

After labelling the points in E, the subsets A and B are divided vertically

into c subsets containing c, c—1, , 1 points, respectively and r subsets containing

r, r—1, , 1 points, respectively. Combining those points labelled (c) in E

which are standing on the corresponding columns to the above subsets, we have

c + r claw-type subsets, since there are 0, 1, , c— 1, c — r, c — r + l , , c — 1 points

labelled (c) in the corresponding columns of £, respectively.

The subset C is divided horizontally into c— 1 subsets. These subsets

contain 1, 2, ,c—1 points, respectively. Combining those c— 1, c — 2, , 2,

1 points labelled (r) in £ to the corresponding subsets, we have c — 1 claw-type

subsets. The remaining bxxc points labelled (r) can easily be divided into bt

claw-type subsets. This completes the decomposition of Tinto b =2c + 2r—l + bx

claw-type subsets.

Case 2. 3c<l<4c

Put Z=3c + r and b=Γ2)lc=4c + 3r-l + b2. Since 0 < r < c and b2 =

c— 1
{c(c-l) + r(r-l)}/(2c), b2 is a positive integer satisfying —γ-<b2<c — l. In

this case, T will be divided into the following subsets:

Av={(Uj)\\<i<j<c + \}

A2 = {(ίJ)\c+l <i<j <2c + l}

B ={(ϊ,;)12c+l

(2.4) C ={
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i <c,2c + 2 <j

< i <2c,2c + 2 <j <

The subsets Dl9 D2 and D 3 can be divided horizontally into c + 2r claw-type sub-

sets. As in Case 1, the labelling of points in E will be performed first by de-

termining a 0-1 matrix of size (c — l)x(2c + r) with row totals c — 1, c —2, ,

ft2 + l> c + b2, c + b2 —!,-••, c + 1 and column totals c—1, c —2, , 1, 0, c—1,

c —2, , 1, 0, r —1, r —2, , 1, 0, respectively. It can be shown that the labelling

is possible by the similar manner shown in Case 1, since those totals satisfy the

condition (1.6) of Theorem 1.2. Those subsets Au A2 and B will be divided

vertically into 2c + r subsets and combining those points labelled (c) of correspond-

ing columns, we have 2c+ r claw-type subsets. The subset C will be divided

horizontally into c — 1 subsets and combining those points labelled (r) of corre-

sponding rows we have c —1 claw-type subsets. The remaining b2xc points

labelled (r) will easily be divided into b2 claw-type subsets. This completes the

decomposition of Tinto b=4c + 3r— l + b2 claw-type subsets.

Case 3. l>4c

There exist positive integers n and l0 satisfying l—2nc + l0 and 2c<lo<4c.

In this case, Γcan be divided into 2n + l subsets:

(2.5) Up = {(ϊ,j) | l < i <

Vp = {(i,j)\lo + 2(p-l)c <i<j < lo + 2pc}; p = 1, 2 , - , n.

Since 2c<lo<4c, the decomposition of To will be reduced to Case 1 or Case 2

described above. The decomposition of Vp can be performed by the method

described in Case 1 since it is the same with that of I = 2 c + 1 . The decomposition

of Up can be performed by dividing them vertically since there stand 2c points

vertically in each of the columns.

This completes the proof of Theorem 2.1.

The claw-decomposition theorem of complete bigraphs will be given in the

following:

THEOREM 2.2. A complete bigraph, Kmn, with m and n points and mn lines

can be decomposed into union of mnjc line disjoint claws, K^c, with c lines each

if and only if m and n satisfy one of the following three conditions:

( i ) n = 0 (mod c) when m < c

(ii) m = 0 (mode) when n < c

(iii) mn Ξ= 0 (mode) when m > c and n > c.
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Before entering the proof of Theorem 2.2, we may note that the set of ran

lines of a complete bigraph Knhn with ra and n points can be identified with the

rectangular set

(2.6) R = {(ί,j)\l < i < ra, 1 <j < n}

of ran lattice points (i j). The set of c lines of a claw KίfC which is a subgraph

of the Km>n can, in this case, be identified with a subset of R composed of c lattice

points standing together on the same row or the same column. Such a subset

of R may be called a claw-type subset. The claw-decomposition problem of a

complete bigraph X w n is, therefore, equivalent to the decomposition problem

of the rectangular set R of mn lattice points into the union of mnjc mutually dis-

joint claw-type subsets with c points each. The proof of Theorem 2.2 will, there-

fore, be performed by using the latter expressions.

PROOF of Theorem 2.2.

When ra < c and n < c, there is no claw-type subset in R, since the number of

points on the same row or the same column is less than e. Hence the claw-

decomposition of R is impossible in this case.

When ra < c and n > e, since the lattice points of any claw-type subset of R

must be on the same row, the condition n = 0 (mode) is necessary. Evidently,

this is also sufficient for the claw-decomposition.

When n<c and ra>c, the condition ra = 0 (mode) is also necessary and suffi-

cient.

When ra>c and n>c, the condition ran = 0 (mode) is necessary, since the

number of lattice points of R must be an integral multiple of c. The condition

is also sufficient, as will be seen presently.

Let m = mo + pc and n = no + qc where p and q are nonnegative integers and

ra0 and n 0 are positive integers satisfying the inequalities c < r a 0 < 2 e and c<no<

2c. Then R can be decomposed into the union of three mutually disjoint subsets

Ro, Rt and R2:

#o = {(U) 11 < i < m0,1 < j < n0}

(2.7) Rx = {(i,j)\l < i < rao,no + l <j < no + qc}

#2 = {(hj)\mo + ί < i < mo + pc,l <j < no + qc}.

Since the number of lattice points in each row of R2 as well as in each column of

# ! is an integral multiple of e, both Rt and R2 can be decomposed into unions of

mutually disjoint claw-type subsets. Thus it is sufficient to show that Ro with

raoxno lattice points is claw-decomposable when raono = 0 (mode).

If either ra0 or n0 is equal to e, Ro is clearly claw-decomposable by dividing

it horizontally or vertically. If ra0>e and n0>e, then t=m°^n°~c' is a positive
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integer. In this case Ro will be divided into two subsets ROί and J R 0 2 :

* O I = { ( U ) | 1 < i < m o , l <j <t}
(2.8)

#02 = { ( U ) | 1 <i<mo,t+l <j <n0}.

Each of the ra0 x t points in ROί can be labelled (r) or (c) in a way such that the

column sum vector of the number of points labelled (r) is (no — c, n0 — c, , n0 — c)

and the row sum vector of them is (c, c, , c), since the set of these vectors satisfies

the condition of Corollary 1.3. After labelling those points in Rou R02 will be

divided vertically into m 0 subsets with n0 — t points each. Adding t — no + c

points labelled (c) on the corresponding column of ROί to each of the ra0 subsets,

we have m 0 claw-type subsets in Ro. The remaining points labelled (r) in ROί

can be divided horizontally into t claw-type subsets. This completes the claw-

type decomposition of Ro. The condition is, therefore, sufficient.
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