HirosHiMA MATH. J.
5 (1975), 223-250

Extremum Problems on an Infinite Network

Maretsugu YAMASAKI
(Received January 16, 1975)

Introduction

Network problems are discussed usually on a finite graph. Duffin [5]
investigated the extremal length of a network on a finite graph and suggested a
relation between potential theory and network theory. Derrick [4] and Ohtsuka
[6] generalized Duffin’s results to the continuous case without using network
theory.

We shall study in this paper the extremal length of a network on an infinite
graph which has a countably infinite number of nodes and arcs. We use some
techniques which are standard in potential theory (for instance [1], [2] and [3])
and go along Duffin’s arguments.

Some definitions and notations related to network theory are given in §1.
The extremal length of a network is studied in §4 with the aid of the functional
spaces defined in §2 and the fact in §3 that max-potential equals min-work.
The duality relation between the max-flow problem and the min-cut problem,
which is investigated in § 6, does not hold in general for infinite linear program-
ming problems. We shall treat three kinds of the extremal widths of a network
in §7 by using some results in §5 and §6. The reciprocal relation between the
extremal length and one of the extremal widths is also studied in §7. We shall
be concerned with Duffin’s path-cut inequality in § 8.

§1. Notations and network definitions

A graph is intuitively a geometric figure consisting of points (which we shall
call nodes) and line segments (which we shall call arcs) connecting a node to
another. To each arc we assign a direction. Denote by X the set of nodes and
by Y the set of arcs. Since we always consider the case where X and Y consist
of a countably infinite number of elements, we put for simplicity

X ={0,1,2,.,n,..},
Y={1,2,.,n,..}.

Define the node-arc incidence matrix K=(K,;) by K, ;=1 if arc j is directed toward
node v, K, ;= —1if arc j is directed away from node v and K,;=0 if arc j and node
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v do not meet.

In the formal terminology, we define an infinite graph as follows.

DEefFINITION 1. An infinite graph G is the triple <X, Y, K> which satisfies
the following conditions:

(1.1) {jeY;K,; # 0} is a finite set for each ve X.
(1.2) {ve X; K,; # 0} consists of two nodes for each je Y.

Let L(X) and L(Y) be the sets of all real-valued functions on X and Y re-
spectively. For ue L(X) and we L(Y), we put

u, = u(v) and w; = w(j).

A path P from node « to node f is the triple (Cx(P), Cy(P), p) of a finite
ordered set Cx(P)={vg, v4,..., v,} of nodes, a finite ordered set C,(P)={j;,jz2s--+»
Jju} of arcs and a function p=p(P) on Y called the index of P such that

vo=0, v, =B, v # v (i#Kk),
{veX;K,;, # 0} = {v;_1, vi},

pi=0 if j¢CyP),

pj=—K,;, with v=v,_; if j=j.

Intuitively a path from node o to node f is a finite set of nodes and arcs which
forms a simple curve. Denote by P,; the set of all paths from node « to node f.
For simplicity, we set P,,={a}. Let A and B be mutually disjoint nonempty
subsets of X. A path P from A to B is a path from some node « € 4 to some node
B € B such that

Cx(P)N A = {a} and Cy(P)n B = {f}.
Denote by P, the set of all paths from A to B.

DEerFINITION 2. We say that the pair (G, r) of an infinite graph G=<X,
Y, K> and a function re L(Y) is an infinite network if the following conditions
are fulfilled:

(1.3) G is connected, i.c., P,y # ¢ for any «, fe X .
(1.4) r;>0 forall jeY.

The infinite network (G, r) is denoted by <X, Y,K,r> or <X, Y,r> or <X,
Y > if there is no confusion from the context. In this paper we always consider
extremum problems on an infinite network <X, Y, K, r>.
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DEFINITION 3. We say that a subset F of X is connected if for any a, fe F
there is P e P,; such that Cy(P)<F.

We say that <X, Y, K,r>=<X',Y'> is a finite subnetwork of <X,
Y,K,r> if X’ and Y’ are finite subsets of X and Y respectively, if conditions
(1.2) and (1.3) are fulfilled replacing X and Y by X’ and Y’ respectively and r;=r;
for each je Y'.

DEFINITION 4.  We say that a sequence { < X, Y(" >} of finite subnetworks
of <X, Y> is an exhaustion of <X, Y> if

(15) X=UX®W and Y= U Y™,
n=1

n=1
(1.6) {jeY;K,;#0} =« Y**D foreach veX®,
We have by definition
XM= uy{{veX;K,;#0};je Y},
X)) = X(nt1) and Y®) < Y(tl)

A sequence { <X, Y(" >} of finite subnetworks of <X, Y> is said to be
the elementary exhaustion of <X, Y> starting from a finite connected subset
A of X if

1.7) YO = {jeY;K,; #0 for some ve A},
(1.8) XM ={yveX;K,; # 0 for some je Y} (n=1,2,..),
(1.9) Y™ = {jeY;K,; # 0 for some ve X(»~ 1} (n=2,3,.).

Let A and B be mutually disjoint nonempty subsets of X. We say that a
subset Q of Y is a cut between A and B if there exist mutually disjoint subsets
Q(A4) and Q(B) of X such that A<=Q(4), B=Q(B), X=0(A) U Q(B) and the set

Q(A)eQB) = {jeY;K,;K,; = —1 for some ve Q(4) and pe Q(B)}

is equal to Q. The pair of Q(A) and Q(B) is called a dissection of X. Denote
by Q45 the set of all cuts between 4 and B and put

QY7 = {QeQ,p;Q is a finite set}.

A circuit is a finite set of nodes and arcs forming a simple closed curve. To
each circuit we assign a direction. Let C,; be the circuit-arc incidence matrix.
Namely C,;=1 if arc j lies on circuit C; in the same direction, C;;= —1 if arc j
lies on circuit C, in the opposite direction, and Cy;=0 if arc j does not lie on cir-
cuit C,.
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For any u e L(X) and we L(Y), let us put
Su={ieX;u; # 0}, Sw={jeY;w;#0},

(1.10) D) = 1 r7'(¥ Kou)?,
(1.11) Hw) = 3% ryw3.
2

The Laplacian du € L(X) of u € L(X) is defined by
(1.12) (Au)l = —'jg:l r;lKij(vgo vauv).

We shall use the following classes of functions on X and Y.
Ly(X) = {ue L(X); Su is a finite set},
Ly(Y) = {we L(Y); Sw is a finite set},
L*(Y) ={weL(Y); w; 20forallje Y},
L3(Y) = Lo(Y) n LX(Y),
Ly(Y;r)={weL(Y); H(w) < o},

L3(Y;r) = Ly(Y;r) n L*(Y).

L,(Y;r) is a Hilbert space with the norm [H(w)]!/? and the inner product

<w, w' > defined by
(1.13) <w,w'> = Ozo‘, FiWwh.
i=1

If H(w—w(™)—0 as n— oo, then w{” —w; as n— oo for each j.

Let A and B be mutually disjoint nonempty finite subsets of X.

we L(Y) is a flow from A to B of strength I(w) if

(1.14) Iw)y= -3 ¥ K,jwij=3% 3 K,jw;,
ved j=1 veB j=1
(1.15) S K,w=0 (véAU B).
=

We say that

Denote by F(A, B) the set of all flows from A4 to B and by Fy(4, B) the closure of
F(A, B)n Lo(Y) in L,(Y;r). Thus for any we Fo(A, B), there exists a sequence
{wtmyc=F(A, B)n Ly(Y) such that Hw—w™)-0 as n—oo. It follows that

Fo(A, By=F(A, B) and I(w(™)—I(w) as n— 0.
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We often use the following well-known theorem to assure the existence of
an optimal (or extremal) solution of an extremum problem.

THEOREM A. Let Z be a Hilbert space with the norm |z| and the inner
product (z,z") and C be a nonempty closed convex set in Z. Then there exists
a unique 2 € C such that

(1.16) [£] = min{||z|;ze C}.
The element 2 € C is characterized by the relation
1.17) 1212 < (2, 2)
forallzeC. If2+zeC, then

(1.18) (8,2)=0.

§2. Functional spaces D and D,

Beurling and Deny constructed a Dirichlet space on a finite set of points and
arcs which can be interpreted as a finite network ([1], p. 223). Analogously to
their method, we shall introduce a functional space on an infinite network <X,
Y,r>. Let A be a nonempty subset of X and put

By(X) = B4(X) = {ue Lo(X);u =0 on 4},
D=D4={uel(X);D(u) < o and u =0on 4},

where D(u) is defined by (1.10). It is easily seen that D is a real linear space and
contains By(X). For u, ve D, we define |u|| and (u, v) by

lull = [DW)]'/?,
W)= ¥ 71 ($ Ku)( 3 K,p,).
j=1 v=0 v=0
Then we have

lutoll = llull+loll  and |leu] = ¢ |lu]

for any u, ve D and any real number t.
First we shall prove

LEMMA 1. There exists a constant M, such that

n
2z luil = M, lul]
5
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for all ueD.

Proor. Let aeAd,let{<X™, Y(" >} be the elementary exhaustion of <X,
Y > starting from {a} and let ueD. From the relation

o0
ul?> = _;mr;‘ ( ZOKv,-uv)2 > rjlu
Jje v=

for all ve X(» and je YV such that K,;#0, we derive
lu,| < a,llull with a; = max{r}/?;je Y1}

for all ve X(1), We have by induction
ul < (3 allull with a, = max {r}/2;je Y® - yt-1)
k=1

for all ve X, Given {0,1,...,n} =X, we can find m such that {0,1,...,n}c
X(,  Then we have

> fu,) < M,Jul with M,=n3 a,.
v=0 k=1

It is clear by our construction that M, is independent of u.
CorROLLARY 1. If |u|| =0, then u=0.

COROLLARY 2. Assume that u®), ueD and |lu—u®|—>0 as k—»co. Then
u>u; as k—oo for each ie X.
From these facts we obtain

THeoREM 1. D is a Hilbert space with the norm ||u|| and the inner product
(u,v).

DEFINITION 5. We call a function T on the real line R into itself a normal
contraction of R is T0=0 and

[Tx;—Tx,| S [x1— %,
for any x,, x, e R. Define Tu € L(X) for u € L(X) by
(Tu); = Tu,.
We have

LemMMA 2. Let T be a normal contraction of R and ueD. Then TueD
and | Tu| < |ul.

Proor. For ved, we have (Tu),=Tu,=T0=0. If {veX;K,;#0}=
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{a, b}, then
0 00
| £ KTl = 1Ty T < luty—l = | $ Ko,
= y=
so that

”Tu”2 = Z r]_'l (vgovaTuv)z §

Jj=1

e

0
it (X Kyu)? = Jul?.
1 v=0

N
]

CoROLLARY 1. Let ueD and ¢ be a non-negative real number and define
min(u, ¢) e L(X) by (min(u, c));=min(u;,¢). Then min(u,c)eD and |min (u,
= ul.

COROLLARY 2. If ueD, then u*=max(u,0) and u~=max(—u,0) belong
to D and |lu™| = |lul, llu=| < [lull.

DEFINITION 6. Denote by Dy=D{§ the closure of B4(X) in D4 and set
H=H"= {ueD4;(4u); =0 for i¢ A}.
We have
LEmMMA 3. LetueD and fe Bo(X). Then
w,f) = —igo(du)ifi = - Eoui(df)i-

Proor. Since Sfis a finite set,
@f) = £ 7 (5 K, Kuf)
= 5 ME T K(E Kyu) = — 3 f(du),.
=0 j=1 v=0 i=0

CoRrROLLARY 1. Let ueD and veD,. If {ie X;(4u); # 0} is a finite set,
then

(u,v) = — iio (4u);.

Proor. There exists a sequence {f(™} in By(X) such that |[v—f™[ -0 as
n—oo. We have by Lemma 3 and Corollary 2 of Lemma 1

(,0) = lim (u,f®) = —lim $% (4u)f " = — 3 (du)o;.

CorROLLARY 2. H is the orthogonal complement of D, in D, i.e.,
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H={heD;(h,v) =0 forall veD,}.
CorOLLARY 3. Every ueD can be decomposed uniquely in the form
u=v+h, where veD, and heH.

Proor. Since D, is a closed linear subspace of a Hilbert space D and H
is the orthogonal complement of D, in D, our assertion follows from the orthogo-
nal decomposition theorem (cf. [7], p, 82, Theorem 1).

TueoreM 2. (Dirichlet principle) Let ue D and let B be a subset of X such
that AnB=¢. Then SE={veD;v=u on B} is a closed subset of D and there
exists a unique 4% € SB such that

[42] = min {Jjv]};ve SJ}.
It is valid that
2.1) (408),=0 if i¢A and i¢B,
2.2) 482 = (4B,v) for all veSE.
The function 4® is characterized by (2.2).

Proor. It is clear that S? is a nonempty closed convex set. Then the
existence of 18 follows from Theorems 1 and A. For any fe By(X) such that
f;=0 for ie B, we have 6i®+fe SE, so that (48,f)=0 by (1.18) of Theorem A.
Thus (2.1) follows from Lemma 3. If ve SE, then

N8+ (4B—v)e SB

and (48,48 —v)=0 by (1.18). This shows (2.2). If @t € SB satisfies ||i||?2= (&, v)
for all ve SB, then

lal? = (@, v) < il |l

and hence ||| < |lv[|. Thus u=18,

§3. Max-potential equals min-work

We shall generalize a Duffin’s theorem which assures that max-potential
equals min-work.

Let ce L*(Y) and A and B be mutually disjoint nonempty subsets of X.
We shall be concerned with the following two extremum problems on an infinite
network <X, Y>.
(3.1) (Min-work problem) Find
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N(A,B;c) =inf{} c;; Pe P,p},
P

where 3 c; is an abbreviation of 3 c;.
P Cy(P)

(3.2) (Max-potential problem) Find
N*(A, B; c) = sup {inf{u,; ve B} —sup {u,; ve A}; u e S*},
where
S* = {ue L(X);| 3 K,u,| < c; on Y}.
v=0

We have

THEOREM 3. N(A, B;c)=N*(A, B; c¢) holds and there exists an optimal
solution u of (3.2) such that u=0 on A.

Proor. Let us put
R(4,B;¢) = inf{T¢;; Pe Py},
P

where P,p= U{P,y;acA, feB). Then P,cP,; and N(4, B; )=N(4,
B; ¢), since every Pei’“ contains some P'€ P,p and ¢;=0. Let us show that

N(A, B;c)=N*(4,B;c). Let Pef’uﬂ with € A and feB and put Cy(P)=
{Vos Viseeer Vup and Cy(P)={j,,...,jn}- If u € S*, then

v

n
C. = C;
; y ;;1 It

n
Zl |uv1—uv1-1| = Ug—U,
i=

= inf{u,;ve B} —sup{u,;ve A}.

Therefore N(A, B;c)=N*(A, B;¢). On the other hand, let us define fi e L(X)
by i,=0if ve 4 and

8, =inf{Yc;;PeP,,} if v¢A.
P
We show that 41 € S*, i.e.,
(3.3) IvgoKvkavl S

foreach keY. LetkeYand {veX;K,#0}={a,b}. IncaseacA4 and beA4,
we have f1,=1,=0. Then (3.3) is clear. In case ae 4 and b ¢ A4, let us consider

the path P e P,,c P, defined by
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Cx(P) = {a,b}, Cy(P)={k},
piP)=0(j#k) and p(P)= —Kg.
Then we have

0

IIA

fy

IIA

;Ci = Ck,

and hence |1, —i,| =fi, < c;, which shows (3.3). In case a¢ A and b € A, we have
(3.3) similarly. Finally we consider the case where a¢ A and b¢ A. For any

PeP,,, let us define PeP,, by Cy(P)=Cyx(P)U{b}, Cy(P)=Cy(P)U {k},
p(P)=pyP) if j#k and py(P)=—K,. Then

12,, é ch = ch+ck’
P P
so that 4,<1,+c,. Interchanging the roles of node a and node b in the above
discussion, we obtain 4,=<14,+ ¢, and hence |8,—1,|<c,. Therefore @i € S* and
N*(4,B;c) = inf{fi,;ve B} —sup{fl,; ve A}
=inf{fi,;ve B} = N(4, B; ¢).

Thus N(A4, B;c)=N*(4,B;c) and @ is an optimal solution of max-potential
problem.

There is no optimal solution of min-work problem in general. This is shown
by

ExAMPLE 1. Let us consider an infinite graph such as shown in Fig. 1, where
we number nodes and arcs. To each arc of the graph a direction is assigned.

1 3 2n+1
— e pa &
~ ~ N
3 6 3n+3
1 4 3n+1
2 3n+2
> S 5. A
7 7 7 7
0 2 2n

Fig. 1. An infinite graph.

Denote this infinite graph by G=<X, Y, K>. If reL(Y) is defined by r;=1
on Y, then (G, r) is an infinite network.

Let A={0} and B={1} and define ce L*(Y) by
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=1, 341 =47" (n#0), Cins2 = C3p43 =47""1 (n20).

Then we have N(A, B;c)=2/3 and Y .¢;>2/3 for any Pe P,5. Namely there is
P

no optimal solution of min-work problem.

§4. The extremal length of a network

Let A and B be mutually disjoint nonempty subsets of X and define the ex-
tremal length EL=EL(A, B) of an infinite network <X, Y, r> relative to two sets
A and B as the value of the following extremum problem.

(4.1) Find EL™' = inf{H(W); WeE g},
where

Ep={WeLi(Y;r); ;erj > 1 forall PeP,y}.

We use the convention in this paper that the infimum of a real-valued function
on the empty set ¢ is equal to co. If E,z# ¢, then there is a unique We E
such that EL~'=H(W) by Theorem A, since E 5 is a nonempty closed convex
subset of L,(Y;r). Note that inf{;erj; PeP,}=1.

In connection with (4.1), we consider the following extremum problem.
(4.2) Find

d = inf{D(v);ve L(X),v =0 on A and v =1 on B}.
We have
THEOREM 4. EL"! = (.

Proor. First we shall prove EL~'<d. We may suppose that d is finite,
i.e., there is g € D4 such that g=1 on B. There exists =428 € S? such that d=
D(§)=1§4]|* by Theorem 2. Define We L*(Y) by

Wy =171 5 K.
Let Pe P,g and Cx(P)={vg, vy,..., V,} With vp=0e 4 and v,=feB. Then
S = 3 10— vl 2 15— 00 = 1

and

HW)=D(g)=d < .



234 Maretsugu YAMASAKI

Therefore We E, p and EL"'<H(W)=d. Next we shall show d<EL~!. We
may suppose that EL™! <0, i.e., E,z#¢. Then there is We E 45 such that EL™!
=H(W). Define ce L*(Y) by c;=r;W;. Then N(4,B;c)=1. By means of
Theorem 3, we have the existence of u € L(X) such that u=0 on 4, u=1 on B
and

)

™
x
~.
=
=
IA
o
<
I
g\‘
-,

Observing that
Dw) = ¥ 7' (¥ K,u)?* < HW) = EL™! < oo,
Jj=1 v=0
we have by Corollary 1 of Lemma 2

v =min(u,1)e D and D(v) £ D(u).

Since v=0 on A and v=1 on B, we have d<D(v)<EL~!. Therefore EL"!=d.
It is easily seen that d < oo if either A or B is a finite set.

§5. A fundamental equality for a double series

First we have
Lemma 4. {5 wil1 £ Kyul)? < HD@)
Jj=1 v=

for every u e L(X) and we L(Y).

Proor. We have

(5, w1 5 Kol)? = {5, 0320051721 5 Ko)?

< (8, rwiX 8,77 (5, Kyu)®) = HOODG@).
THEOREM 5. If A and B are finite sets, then
(5.1 2wi(X K,u) =2 u(3 K,w)
Jj=1 v=0 v=0 ji=1

for every we Fy(A, B) and u e L(X) such that D(u)< .

Proor. Let we Fo(A4, B) and u € L(X) such that D(u)<oo. There exists a
sequence {w™} in Ly(Y) such that w® e F(4, B) and H(w—w(™)—0 as n—oo0.
We have
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o) . @ o) © (n
2 wi( X Kyu))= 2 ul 2 K,w)
ji=1 v=0 v=0 ji=1

00 0
=Y u(Y KW+ ¥ u, (X K, ;wi")
ved j=1 veB Jj=1

- X u( X Kyw) + X u( X Kyw)
ved j=1 veB Jj=1

as n— oo, since w{”—>w; as n— oo for each j and 4 and B are finite sets. On the
other hand, we have

(2, 115, Kowl}? < HOD(W) < o0,

{3 wj—w|] 3 K,u,l}? < Hw—w™)D(u)
ji=1 v=0

by Lemma 4. It follows that
S wi( S Ku)=1lm ¥ wr(S K, u,)
Jj=1 v=0 n—oo j=1 v=0

= S u(S Kw).
v=0 Jj=1
This completes the proof.

REMARK 1. We also have (5.1) if any one of the following conditions is
fulfilled :

(i) weLy(Y)oruelLy(X).

(ii) j)‘:il [w;|< oo and {u,} is bounded.

(iiiy ueD, and we Ly(Y;r) such that {ve X; 3 K,;w;#0} is a finite set.
i=1

Let Q € Q 45 and Q = Q(A4)© Q(B), where the pair of Q(A4) and Q(B) is a dissec-
tion of X such that A= Q(A) and BcQ(B). We define the characteristic function
u=u(Q) € L(X) of Q and the index s=s(Q) e L(Y) by

u,=0 if veQ(4) and u,=1 if veQ(B),
(5.2)
§; = ﬁoKvi“v'

v
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We have s;=0if j¢Q and |s;]=1if jeQ. If jeQ and {veX;K,;#0}={a, b}
with a € Q(A) and b € Q(B), then
(5.3) s; = Kpj = =K,
We have

COROLLARY 1. Let A and B be finite sets, we Fo(A, B), Qe QY7 and s=5(Q)
be the index of Q. Then

25wy = I(w).
[7)

ProoF. Since Q is a finite set, u=u(Q)eD. It follows from Theorem 5
that

. s = 3 o 3 K )3 " —3 S 3 . .
%slwl jgl w_/(vgo \]u\) v§0 uv(jgl vaw_])

=3 Z K, w; = I(w).
veB j=1
COROLLARY 2. If A and B are finite sets and we Fo(A, B), then

Thwil 2 I(w)
Q

for all Qe QYy .
Theorem S and its corollaries do not hold in general if we replace Fy(A4, B)

by F(A4, B). This is shown by

ExAMPLE 2. Let us consider an infinite graph such as shown in Fig. 2, where
we number nodes and arcs. Denote this infinite graph by G=<X, Y, K>.

2n+1

0 —<—O—<—0—&—

2n+1

[§8)
W

2n 4

—4P—<—O—<——<—0—<—@ ® ®
1

2n 4 2 0

w @

Fig. 2. An infinite graph.

Define re L(Y) by r;=1 on Y. Then (G,r) is an infinite network. Let A={0}
and B={1} and define u € L(X) and we L(Y) by

u,=1 if v=2n+1 and u,=0 if v=2n
for n=0, 1, 2,... and
w; =1 on Y.

J

It is clear that we F(4, B) and u is the characteristic function of Q={1} e QYy.
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We have

Ms

le(vg,ovauv) =w; =1,

J

I

8

uv(z vawj) = Z Kl.iw.i = 2’
0 Jj=1 Jj=1

v

Iw)=2>1=3|w;] = Xs;w;.
Q Q

§6. Max-flows and min-cuts

Let A and B be mutually disjoint nonempty finite subsets of X and We
L*(Y). We consider the following extremum problems on an infinite network
<X,Y, r>.

(6.1) (Max-flow problem) Find
M(W; Fy(A, B)) = sup {I(w); we Fo(A4, B) and |w;| < W; on Y}.
(6.2) (Min-cut problem) Find
M*(W; Q) = iﬂf{%Wj; Qe QYy}.
We can define M*(W; Q ,p) similarly. Let us put
G(A,B) = Fo(4,B) n Lo(Y) = F(A,B) n Ly(Y)
and consider one more extremum problem.
(6.3) (Weak max-flow problem) Find
M(W; G(A4, B)) = sup {I(w); we G(A, B) and |w;| = W; on Y}.
We have
LEMMA 5. M(W; G(4, B)) £ M(W; Fo(4, B)) £ M*(W; QY3).

Proor. Since G(A, B)cFy(A, B), we have M(W; G(A, B))SM(W; Fy(A,
B)). Let Qe QYR and we Fy(A4, B) such that [w;/<W; on Y. Then we have by
Corollary 2 of Theorem 5

Iw) = 2wl = W,
Q Q
which leads to the desired inequality M(W ; Fo(A, B)) S M*(W; QY3).

LemmA 6. If WeL3(Y;r), then there exists We Fo(A, B) such that |W;| = W;
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on Yand M(W; Fo(A, B))=I(W), i.e., W is an optimal solution of (6.1).

Proor. There exists a sequence {w(™} in Fo(4, B) such that [w{”|<W, on Y
and I(w™) converges to M(W; Fo(A, B)). Since {weFy(A4, B);|w;|<W,; on Y}
is weakly compact in L,(Y;r), we may assume that {w(®} converges weakly to
we Fy(A, B) with [W,/]<W, on Y. Then w{”—>W; as n—oo for each j. Since
{jeY;K,;#0} is a finite set for each v, we have

=3 $K,®=lmY ¥ K,

veB j=1 n—-owveB j=1

= lim I(w™) = M(W; Fo(A, B)).

This completes the proof.
Problem (6.3) has no optimal solution in general. This is shown by Example
5 below. But by the same method as in the above proof, we can prove

LemMmA 7. If WeLj(Y;r), then there exists We Fo(A, B) such that |W;|< W,
on Y and M(W;G(A, B))=I(W). This w is called a weak optimal solution of
6.3).

Let we Fy(A4, B) with |[w;|<W;on Y. Define a subset Q(4; w) of X as follows.
Node v belongs to Q(4; w) if and only if either ve A or there exist Pe P, and a
positive number ¢ such that

6.4
wi—t= —W; if pj=-1,
where p is the index of P. Let Q(B; w)=X—0Q(4;w).
We have

LEMMA 8. Let W be a weak optimal solution of (6.3) and set Q(4)=Q(A; W)

and Q(B)=Q(B;W). Then Q=0(A)0Q0(B)eQ 5 We say that Q is the cut
determined by W.

Proor. It suffices to show that B= O(B). If we suppose the contrary, there
is B € B such that fe 0(4). We can find P € P, and a positive number ¢t which
satisfy (6.4). There exists a sequence {w(™} in G(4, B) such that lw(j")lg W;onY
and w{"—>W; as n—co for each j. For any ¢ with 0<e<1/2, there is n, such that

Wi —w;| <e forall jeCy(P)
and

Hw™)—I(W)| < &
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whenever n=n,. Taking w'=w(#0), we have
wi+t2 < W, if p;=1,
wi—tl2 Zz =W, if pj=-—1.
Thus w'+(t/2)p e G(4, B) and |w;+(t/2)p;| < W; on Y, so that
M(W; G(4, B)) 2 I(w'+(t/2)p) = I(w)+(¢/2)I(p)
=I(W)+1t/2 > I(W)—e+1/2 > I(W).
This is a contradiction. Therefore B< Q(B).

ReEMARK 2. If W is an optimal solution of (6.1), then we have Q(A4; W)©

Q(B; W) e Q 4p.

LEMMAO. Let W be a weak optimal solution of (6.3), Q be the cut determin-
ed by W and $=s(Q) be the index of Q. Then 8;#;=W, for each je Q.

Proor. Let keQ and {ve X; K,,#0}={a, b} with ae §(4) and b e O(B).
Suppose that §,W,# W,. In the case where §,=— K, =1, we have w,<W,. If
ae A, then there exist Pe P,y and a positive number ¢ such that w,+t<W,,
p(P)=1 and p/(P)=0 if j#k. In fact, we may take t=W,—wW,, Cx(P)={a, b},
Cy(P)={k} and p(P)=1. This implies be Q(4), which is a contradiction. If
ae Q(A)— A, then there exist P e P, and a positive number ¢t which satisfy (6.4).
Let t,=min(t, W,—W,) and P be the path from A4 to {b} which is generated by P
and {k}, i.e.,

Cx(P) = Cx(P) U {b},  Cy(P)=Cy(P) U {k},
pi(P)=p; if j#k,
pP)= —K, = 1.
Then we have
Witto = W; if p(P)=1,
Wi—te2 —W;, if p(P)= —1.

This implies b € O(4), which is a contradiction. In the case where §,= —1, we
can arrive at a contradiction similarly. Therefore §,w,=W,.

CoroLLARY 1. If jeQ and {veX;K,;#0}={a, b} with aeQ(A) and
b € Q(B), then

'_Kajo = KbJWJ = VVJ-.
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CorROLLARY 2. If Q € QYy, then M(W ; G(A, B))=M(W ; Fo(A, B))=M*(W;
Q%Y.

ProoF. In view of Lemma 5, it suffices to show that M*(W; Q{p) S M(W;
G(4, B)). Since Q € QY3 by our assumption, we have by Corollary 1 of Theorem
5 and Lemma 9

M(W; G(A4, B)) = I(W) = %s,wj = zW = M*(W; QY.

CorOLLARY 3. If WelL§(Y), then M(W;G(A, B)=M(W; Fy(A, B))=
M*(W; Q4D).

Proor. Since We L{(Y)=L3(Y;r), there exists a weak optimal solution W
of (6.3) by Lemma 7. We have W;=0 whenever W;=0. It follows from (6.4)
that Q(A) is a finite set, so that Q € Qf/). Our assertion is now an immediate
consequence of the above corollary.

COROLLARY 4. If WeL3(Y;r) and Q.=QY3, then M(W;G(A, B))=
M(WaFO(A9B)) M*(W’Q(f))'

We shall prove

LeEmMMA 10. There exists Q € Q5 such that M*(W ; Q)= 2 W;.
7

Proor. There exists a sequence {Q,} in Q5 such that

ng—l/n < M*(W;Q4p)-

Denote by u(® the characteristic function of Q,. Since u{® =0 or 1, we may assume
that {u{”} converges to u, for each v, by using the diagonal method. Then u,=0
or 1. Let us put

0A4) ={veX;u,=0} and Q(B) = {veX;u,=1}.
Then the pair of Q(A) and Q(B) is a dissection of X. Since u™=0o0n 4 and u™
=1 on B for all n, we have AcQ(A) and BcQ(B). Thus Q=0(4)©Q(B)e Q5
and

M*(W;Qup) 2 lim X W, = i i i3 K, u|
n—0 Qn j=1 v=0

*ia

n

8

J

z 3 Wl vgovauJ = %Wi = M*(W;Qup).

Namely we have M*(W; Q)= W
[}
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THEOREM 6. M(W;G(4, B)) = M*(W; Q4p).

Proor. We have (5.1) for any we G(4, B) with |w;|<W,on Y and any char-
acteristic function u(Q) of Q € Q5 by Remark 1 (i). It follows that M(W; G(4,
B)SM*(W; Q4p) (cf. the proof of Lemma 5). On the other hand, let {<X®,
Y >} be an exhaustion of <X, Y> such that AU Bc X® for all n. Define
W e L§(Y) by

W(ju) =W,

J

if jeY® and W@ =0 if jeY—Y®™,
We have by Corollary 3 of Lemma 9
(6.5) M(W; G(4, B)) 2 M(W™; G(4, B))
= M¥(W®; QY9) = M¥(W™; Q).
By Lemma 10, we can find Q, € Q 45 such that

(6.6) M*(W®; Q) = X W,

Let u(™ be the characteristic function of Q,. We may assume that {u{”} conver-
ges to u, for each v by using the diagonal method. There exists Q € Q45 such
that u is the characteristic function of Q (cf. the proof of Lemma 10). We
have by (6.5) and (6.6)

M(W;G(4,B)) 2 lim ¥, W = lim z wm| z K, ulm|

n—-w Qn n-ow j=1

>

Wil Z K,ju,| = ZW Z M*(W;Qp).

Tl[vjs

This completes the proof.

COROLLARY. M*(W;Q,5) £ M(W; Fo(4, B)) £ M*(W; QYd).
We have

THEOREM 7. Let WeL3(Y;r) and {<X™,Y™ >} be an exhaustion of
<X,Y>, and put Z,=YW YD (YO =¢) and p,=3r;! (n=1,2,...). If
Zn

Z ;' =00, then M(W; G(4, B))=M*(W; QY3).
Proor. Let us put for simplicity
a=MW;G(4,B) and b= M*(W;QD)

In view of Lemma 5, it suffices to show that a=b. There is a weak optimal solu-
tion W of (6.3) by Lemma 7. Let Q be the cut determined by w. If 0 eQY},
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then a=b by Corollary 2 of Lemma 9. We consider the case where 0 ¢ QYp.
There exist Q, € Q3 such that

6.7 OnYrbHecQ,cyY™

for large n. In fact, let O(4) and Q(B) be as in Lemma 8. For large n such that
AUBc X 1) set

0,(4) = 0(A) n X1,
0,B) = (O(B) n X»~1) y (X =X (1),

Then Q,=Q,(4)©Q,(B) satisfies (6.7). We have Y} W;=b. Let s("=s(Q,) be

A Qn
the indrix of Q,. Then s{”=3; if j belongs to @ n Y*~1), and hence W;=5{""W;
for jeQnY® =0 nY®" 1 by Lemma 9. On the other hand,

a=IWw = QZS(J-”)WJ-
by Corollary 1 of Theorem 5. Hence

0<b—a <X W—XsPw,
Qn Q'l

LT (W=sP0) S W+ 1) S 2 TW,.

It follows that
(b=a) S 4T W)? SUTri'NTrWD = (S r W),
so that for any m =0

n+m o0
(b—a)? kZ Ul < 4kZ >riW?=4H(W) < .
=n =1 Zg
Since f U, 1=o00, we conclude b=a. This completes the proof.
n=1

CorOLLARY. If WeL3(Y;r) and if there exists an exhaustion {<X™,
YW>) of <X,Y> such that 3 u;'=o0, then M*(W;Q,p)=M(W; Fo(A,
n=1
B)=M*(W; Q).

RemaArk 3. If u= i rj!<oo, then f u, =00 for any exhaustion { <X,
Jj=1 n=1

Y®>1Yof <X,Y>. In fact, ;' =u~1>0.
We show by examples that there is a duality gap between the max-flow
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problem and the min-cut problem in general. First we show that Theorem 7
does not always hold if W¢ Li(Y; r).

ExampPLE 3. Let us consider the infinite network (G, r) defined in Example
1 and let A={0} and B={1}. Define We L*(Y) by

(6.8) Wiwe1 =0 and W, = Wi,z =1 (n20).
Then we have W¢ L1(Y; r) and
(6.9 M(W; Fo(4, B)) = M*(W;Qup) = 0 < 1 = M¥(W;Q%)).

In fact, w e Fo(A, B) satisfies |w;| < W; on Yif and only if w=0, so that M(W ; F(A,
B))=0. Since Q={3n+1;n=0}eQ 5, we obtain M*(W;Q,=0. If Qe
QY3, then Q must contain either arc 3n+2 or arc 3n+3 for some n. Hence
M*(W;QY3)=1. Note that

< -1
2 Uyt =00
n=1

for the elementary exhaustion of (G, r) starting from A.

Next we show that the condition Z U, =00 can not be omitted in Theorem

ExaMPLE 4. Consider the infinite graph G defined in Example 1 and define
re L(Y) by
Pan+1 = Tags2 = F3pe3 =277 (nz0).

Consider We L(Y) defined by (6.8). Then WeL%(Y;r) and (6.9) holds with
A={0} and B={1}. We remark that Z U, ' <oo for any exhaustion of (G, r).

Finally we show that each of problems (6.2) and (6.3) has no optimal solution
in general.

ExampPLE 5. Let (G, r) be the infinite network defined in Example 1 and let
A={0} and B={1}. Define We L+(Y) by

Wapey =47" and Wipyy = W33 =2""  (n20).

Then M(W;G(A, B))=M*(W;Q{2)=4/3. 1t is easily seen that I(w)<4/3<
S W, for any w € G(A, B) such that |w;| < W, on Y and any Q € Q3.
[}

§7. The extremal widths of a network

Let A and B be mutually disjoint nonempty finite subsets of X and define the
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extremal widths EW=EW(A, B), EW,=EW (A, B) and EW*%=EW%¥(A, B) of an
infinite network <X, Y, r> relative to two sets 4 and B as the values of the
following extremum problems.

(7.1) Find EW-! = inf {H(W); We E%g},
where

E%p = {WeL}f(Y;r);QZW =1 forall QeQ 5} .

(7.2) Find EW3; = inf {H(W); We EX{"},
where

EX) = {(WeL{(Y;r); >W; 21 for all Qe QYR}.
Q
(7.3) Find EW% ' = inf {H(W); We G%5},

where G*%j denotes the closure of the intersection of EXY and Lo(Y)in Ly(Y ;7).
It is clear that EW<EW, and EW%<EW,. Since EX{’ and G%jp are non-
empty closed convex subsets of L,(Y; r), each of problems (7.2) and (7.3) has a
unique optimal solution by Theorem A.
In connection with the above problems, we consider the following two ex-

tremum problems.
(7.4) Find

d¥ = inf {H(w); we Fo(A4, B) and I(w) = 1}.
(7.5) Find

d* = inf {H(w); we F(4, B) and I(w) = 1}.

It is clear that d*<d§. Since the sets {we Fy(4, B); I(w)=1} and {we
F(A, B); Hw)< oo and I(w)=1} are nonempty, convex and closed in L,(Y;r),
each of problems (7.4) and (7.5) has a unique optimal solution by Theorem A.

We shall prove

THEOREM 8. d¥§=EW%~1.

Proor. Let W be the optimal solution of problem (7.4), i.e., W e Fy(A, B),
IW)=1 and d¥=H(W). There exists a sequence {w(™} in F(A4, B) such that w® e
Lo(Y)and HWw—w()—>0asn—oco. We note that I(w(™)—I(W) as n—»o. Hence
we may assume that I(w™)>0. Define Wand W by

W, =|w;] and WP = [w@|/I(w™).
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Then W™ e L§{(Y) and W™ e EX{) by Corollary 2 of Theorem 5. Since
H(W—W®m) < 2HW—w®™)+2(1 = 1/I(w™))2H(w™) — 0
as n— o0, we derive that We G% and
EW%~' < HW) = H(W) = d§.

On the other hand, let W be the optimal solution of problem (7.3), i.e., We G%p
and EW* '=H(W). There exists a sequence {W®} in E%y’ such that W(e
L§(Y) and HW—W™)—>0 as n—»o. We have by Corollary 3 of Lemma 9

M(W®; Fy(A, B)) = MX(W™; QY = 1.

There exists W™ € Fo(4, B) such that [w{”|<W{ on Y and I(Ww")=M(W™;
Fy(4, B)) by Lemma 6. Then

d§ < H(W(n)/l(w(n))) < H(W(n)) < H(W(")),
Therefore we have
d% <lim HW™) = H(W) = EW% 1,

and hence d§=EW%~ 1.
For the relation among EW?*, EW, and EW, we have first of all

THEOREM 9. EW=EW?*.

ProoF. First we shall prove EX$ n Lo(Y)<E%,. Let W be an element of
EX{Yn Ly(Y). Consider a finite subnetwork <X’, Y'> of <X, Y> such that
AUBcX' and SWcY'. Let QeQ,p and Q=0(A4)© Q(B). In case Qe QY},
we have % W;21 by our assumption that We E%Y’. In case Q ¢ Q43, we put

Q'(4) =0Q(4) n X',
Q'(B) =(Q(B) n X') U (X—-X').
Then Q'=Q'(A)©Q'(B)eQY2 and QnY'=Q'nY’. We have
1§§m=e'r§'%=er§'m=%m'

Therefore We E%5. Now we shall show that EW$<EW. Let W be the optimal
solution of (7.3). There exists a sequence {W(™} in E%{/) n Ly(Y) such that
H(W—-W®)-0 as n—»o. Then W e E¥%; by the above observation, so that
EW-1<H(W™). Thus

EW-1 < lim HW®™) = H(W) = EW%~!.
n—oo
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On the other hand, let We E%p. There exists we Fy(A4, B) such that |w;| S W,
on Y and I(w)=M(W; Fy(A4, B)) by Lemma 6. Since M(W; Fo(A, B))= M*(W;
Q=1 by the Corollary of Theorem 6 and our assumption that We E%5, we
have

EW3~! = d§ < Hw/I(w)) £ H(w) = H(W)

by Theorem 8. By the arbitrariness of We E%p, we obtain EW¥"!<EW-!,
This completes the proof.

THEOREM 10. Let W be the optimal solution of (1.2), i.e., We EXY’ and
EW3'=H(W). If M(W;Fy(4,B))=M*(W;QY3), then EW%=EW=EW,.

ProOF. By Theorem 8, d§=EW¥ 1ZEW7;!. On the other hand there
exists w € Fo(4, B) such that |w,|< W, on Y and I(w)=M(W; Fo(A, B)) by Lemma
6. Since M(W; Fy(A, B))= M*(W; Q%3)=1 by our assumption, we have I(w)=1
and

d% < H(w) < HW) = EW3!.
Therefore d§=EW7}!. Thus EW%=EW=EW, by Theorem 9.
By the Corollary of Theorem 7 and Theorem 10, we have

COROLLARY 1. If there exists an exhaustion {<X™ YW >} of <X, Y >
such that

Ms

Ha! =0,

n=1

then EW%=EW=EW,.
By Corollary 4 of Lemma 9 and Theorem 10, we have

COROLLARY 2. If Q,3=Q%3, then EW%=EW=EW,.
Next we shall investigate relations among d, d§ and d*.

LeEmMA 11. Let W be the optimal solution of problem (7.4) or (7.5). Then
W is a passive flow, i.e.,

0
(7.6) ,;1 rwCy; =0
for any circuit C,, where C,; is the circuit-arc incidence matrix defined in §1.

ProoF. Let C; be a circuit and define w'®) e Ly(Y) by w{¥’=C,;. Then
W+ w® belong to Fo(4, B) or F(A, B) and I(W+w®)=1, so that <w, w{¥)> =0
by Theorem A. This leads to (7.6).



Extremum Problems on an Infinite Network 247

Let w be the optimal solution of problem (7.4). For ae A, we define v(¥e
L(X) by

(1.7) v@ =0 and o® = ,21 rip PW; (v # a)

for some P e P,,, where p(P) is the index of P. It follows from Lemma 11 that
v® is uniquely determined by w and independent of the choice of Pe P,,. De-
fine 9 e L(X) by
(7.8) p, = inf {|v\®|; x € A} .

We have

LeEMMA 12. Let W be the optimal solution of problem (7.4) and D be the
function defined by (7.7) and (7.8). Then =0 on A, ¥=d¥ on B and

79 |5 Kutil < 1yl
for each jeY.

Proof. It is clear that =0 on A, since v{*=0 for any acA. Let aeA4,
peBand PeP,, Then p(P)eFy(A,B)and I(p(P))=1. We have by Theorem
A and (7.7)

(7.10) a5 = H®) = <9, p(P)> = £ r;p,(P)B; = vf,

and hence 0y=d§. Therefore 6=d¥§ on B. Next we show (7.9). Let ke,
K, ,=—1 and K;;=1. In case ae A and be A, we have 9,=0,=0, and hence
|0,—Dp| =0=Zr,IW,|]. In case ae A and b¢ A, we consider Pe P, defined by
Cx(P)={a, b}, Cy(P)={k}, p(P)=01if j#k and p(P)=1. Then we have v{® =
W, and hence 0=0,<rw,|. Thus |0,—0,|=0,<rW.]. In case a¢ A and
be A, we have (7.9) similarly. Finally we consider the case where a¢ A and
b¢ A. There exists ae A such that 9,=|v{?)|, since 4 is a finite set. Consider
PeP,, and let P be the path from node « to node b which is generated by P and
{k} (cf. the proof of Lemma 9). Then

© _ ©
vga) = j;l "ij(P)Wj = j;l rjpj(P)wj +rw, = U&u) + Wy,
so that

Oy S WO+ 1| S O]+ W] = 0,4 Wil -

Interchanging the roles of node a and node b in the above discussion, we obtain
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9,0, +re/W|. Therefore |0,—D,| <r,Ww]. This completes the proof.
We shall prove

THEOREM 11. ddi=1.

Proor. First we show 1<dd§. Forany v e D4 such that v=1 on B and any
w e Fy(A, B) such that I(w)=1, we have by Theorem 5 and Lemma 4

(1) 1=10) = § 0§ Kw) = 5wl 5 Koo) < DOHW),

which leads to the desired inequality. Next we show dd§<1. Let W be the op-
timal solution of problem (7.4) and # be the function defined by (7.7) and (7.8).
Then we have by (7.9)

(7.12) D) = 3 171 (5 K,0)? < 313 = HOY) = df.
ji= v= j=1
Writing 6 =9/d¥, we have i=0 on A and #=1 on B by Lemma 12, so that
d < D(#)) = D(®)/(dF)* < d§/(d5)* = 1/d}

by (7.12). Hence dd§<1. This completes the proof.
On account of Theorems 4, 8, 9 and 11, we have

THEOREM 12. (ELYEW)=1.
For the relation between d* and d§, we have
THEOREM 13. If DA=DY}, then d*=d}.

Proor. In view of the inequality d* <d§ and Theorem 11, it suffices to prove
that dd*=1. For any ve D4 such that v=1 on B and any w € F(A, B) such that
I(w)=1 and H(w)<oo, we have (7.11) by Lemma 4 and Remark 1 (iii), since
D4=D¢ and A and B are finite sets.

It is not always valid that d*=d§. This is shown by

ExAMPLE 6. Let us consider the infinite graph G defined in Example 2. Let
A={0} and B={1} and define r € L(Y) by

ri=1 and r,,=r, ., =4" (nz=1).

We see easily that w e Fyo(A4, B) and I(w)=1 if and only if w; =1 and w;=0 (j#1).
Therefore d§=1. On the other hand, consider w e L(Y) defined by

Wl = 0 and WZ" = W2n+1 = 1 (n g 1).

Then w e F(A4, B), I(w)=1 and
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d* < HW) =235 4 =2/3.
n=1

§8. The path-cut inequality

Duffin showed a path-cut inequality on a finite network by using his theorem
which states that the extremal length and the extremal width are reciprocals to
each other. We are concerned with the inequality on an infinite network in this
section.

Let A and B be mutually disjoint nonempty finite subsets of X, We L*(Y)
and Ve L*(Y).

We have

THEOREM 14, Assume that We L%(Y ; r) and i r;'Vi<o. Then
Jj=1

@.1) 5 WV 2 N4, B VMW Q).
or equivalently,
S WV, 2 (nf (3 V) PePud)nf (3 W: 0 € Qun)).
Proor. There exists u € L(X) such that
u=0 on A, |§0vauv| <V, on Y and
N(A, B; V) = N*(4, B; V) = inf{u,; ve B}

by Theorem 3. Let v=min(u, N(4,B;V)). Then v=0 on A, v=N(4, B; V)
on B and

| f vavvl .—<: | i vauvl é Vl on Y.
v=0 v=0
Note that
D(v) = f‘, rii( i K,p)?* = i r;lVi <.
j=0 v=0 j=1

There exists we Fy(A4, B) such that [w;|<W; on Y and M(W; Fy(4, B))=I(w)
by Lemma 6. We have by Theorem 5 and the Corollary of Theorem 6

(8.2) N(A4, B; VIM*(W; Q 4p) = N(A, B; VIM(W; Fo(A4, B))

Z Uv( Z vawj)
veB Jj=1

J

0 00 Q0
Wj( Z vauv) é E I/VJV.I
=1 v=0 Jj=1
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This completes the proof.
By using Remark 1 (ii) instead of Theorem 5 in the proof of (8.2), we have

THEOREM 15. If 3% W,< 0, then (8.1) holds.
j=1

Similarly we can prove

THEOREM 16. If We L{(Y), then

8.3) 5 WV, 2 N(A, B; VIMH(W; Q43).

THEOREM 17. Assume that WeL%(Y;r) and ir;1V§<oo. If M(W,;
j=1

Fo(A, B))=M*(W ; QY3), then (8.3) holds.
We remark that (8.3) does not hold in general. In fact, we give

ExampLE7. Consider the infinite network (G, r) defined in Example 1 and
let A={0} and B={1}. Define Wand V by

Wint1 =0, Wipio=W;i3=1,

Vint1 =1, Vapy2 = V3y3=0.

Then we have

jgl vVJVJ =0<1= N(A,B’ V)M*(W,Qaf") )

Note that M(W; Fo(A4, B))=0<1=M*(W; QYy) (cf. Example 3).
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