Dirichlet Integral of Product of Functions on a Self-adjoint Harmonic Space

Fumi-Yuki MAEDA

(Received January 16, 1975)

Introduction

In the previous paper [2], the author defined a notion of gradient measures for functions on a self-adjoint harmonic space. In case the harmonic space is given by solutions of a second order elliptic partial differential equation of the form

$$\sum_{i,j=1}^{k} \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial u}{\partial x_{j}} \right) - qu = 0$$

on a Euclidean domain, the mutual gradient measure $\delta_{[f,g]}$ of functions f and g is given by

$$\delta_{[f,g]} = \left(\sum_{i,j=1}^{k} a_{ij} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}\right) dx \qquad (dx: \text{the Lebesgue measure}).$$

Thus, in this case, the equality

(*)
$$\delta_{[fg,\phi]} = f \delta_{[g,\phi]} + g \delta_{[f,\phi]}$$

holds. The main purpose of this paper is to show that the equality (*) remains valid for general self-adjoint harmonic spaces. Once this equality is established, we can consider Royden's algebra (cf. [3, Chap. III]) on a self-adjoint harmonic space. We shall also see that if the harmonic structure is considered on a Euclidean domain and satisfies a certain additional condition (see Theorem 5), then the gradient measure is expressed as

$$\delta_{[f,g]} = \sum_{i,j=1}^{k} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} v_{ij}$$

with a positive-definite system of signed measures (v_{ij}) ; and the harmonic functions are "solutions" of the second order elliptic partial differential equation

$$\sum_{i,j=1}^{k} \frac{\partial}{\partial x_{i}} \left(v_{ij} \frac{\partial u}{\partial x_{j}} \right) - \pi u = 0$$

whose coefficients v_{ij} , π are (signed) measures.

§ 1. Basic definitions in the previous paper [2].

The base space Ω is a connected, locally compact Hausdorff space with a countable base. We consider a harmonic structure $\mathfrak{H} = {\mathscr{H}}(\omega)_{\omega: open}$ on Ω satisfying Axioms 1, 2 and 3 of M. Brelot. A domain ω in Ω is called a P-domain if it is non-compact and there is a positive potential on ω . We assume

Axiom 4. On any P-domain ω , the condition of proportionality is satisfied.

We furthermore assume that (Ω, \mathfrak{H}) is self-adjoint, i.e., there is a system $\{G_{\omega}(x, y)\}_{\omega: P-domain}$ of symmetric Green functions satisfying the consistency condition [2, §1.2, (c)]; this system will be fixed. For a P-domain ω and a signed measure σ on ω , let $U_{\omega}^{\sigma}(x) = \int_{\omega} G_{\omega}(x, y) d\sigma(y)$ whenever it has a meaning. A domain ω is called a PC-domain if it is relatively compact and its closure

is contained in a P-domain. For an open set ω_0 in Ω , let

$$\mathscr{B}_{loc}(\omega_0) = \left\{ \begin{array}{l} \text{for any PC-domain } \omega \text{ such that } \overline{\omega} \subset \omega_0, \text{ there are} \\ f; \text{ two non-negative bounded superharmonic func-} \\ \text{tions } s_1 \text{ and } s_2 \text{ on } \omega \text{ such that } f|\omega = s_1 - s_2 \end{array} \right\}$$

To each $f \in \mathscr{B}_{loc}(\omega_0)$, a signed measure σ_f on ω_0 is associated in such a way that $f|\omega = U_{\omega}^{\sigma_f} + u$ with $u \in \mathscr{H}(\omega)$ for any PC-domain ω such that $\overline{\omega} \subset \omega_0$. We assume

Axiom 5. The constant function 1 belongs to $\mathscr{B}_{loc}(\Omega)$ and for any PCdomain ω , $U_{\omega}^{|\pi|}$ is continuous, where $\pi = \sigma_1$.

For any open set ω_0 , $\mathscr{B}_{loc}(\omega_0)$ is an algebra ([2, Proposition 2.1]). We define

$$\delta_{[f,g]} = \frac{1}{2} (f\sigma_g + g\sigma_f - \sigma_{fg} - fg\pi)$$

for $f, g \in \mathscr{B}_{loc}(\omega_0)$ as a signed measure on ω_0 . We know ([2, Theorem 4.1]) that $\delta_f \equiv \delta_{[f,f]} \ge 0$ for any $f \in \mathscr{B}_{loc}(\omega_0)$.

For a PB-domain ω (i.e., a P-domain for which $U_{\omega}^{|\pi|}$ is bounded), set

$$\mathcal{M}_{BC}(\omega) = \left\{ \sigma; \begin{array}{l} \text{signed measure on } \omega \text{ such that } U_{\omega}^{|\sigma|} \text{ is } \\ \text{bounded continuous and } |\sigma|(\omega) < \infty \end{array} \right\}$$

and

$$\mathscr{P}_{BC}(\omega) = \{ U^{\sigma}_{\omega}; \, \sigma \in \mathscr{M}_{BC}(\omega) \} \,.$$

The space $\mathcal{P}_{BC}(\omega)$ is a normed space with respect to

Dirichlet Integral of Product of Functions

$$\|U^{\sigma}_{\omega}\|_{I,\omega} = \left(\int_{\omega} U^{\sigma}_{\omega} d\sigma\right)^{1/2}.$$

We define

$$\mathscr{D}_{0}(\omega) = \left\{ f; \text{ there is a sequence } \{f_{n}\} \text{ in } \mathscr{P}_{BC}(\omega) \text{ such that } \right\}, \\ f_{n} \rightarrow f \text{ q.e. on } \omega \text{ and } \|f_{n} - f_{m}\|_{I,\omega} \rightarrow 0 \ (n, m \rightarrow \infty) \right\},$$

where "q.e." means "except on a polar set". This space is a Hilbert space with respect to the norm

$$\|f\|_{I,\omega} = \lim_{n\to\infty} \|f_n\|_{I,\omega},$$

where $\{f_n\}$ is a sequence for f described in the definition of $\mathcal{D}_0(\omega)$.

For an open set ω_0 , we define

$$\mathcal{D}_{loc}(\omega_0) = \left\{ f; \begin{array}{l} \text{for any PC-domain } \omega \text{ such that } \overline{\omega} \subset \omega_0, \\ f \mid \omega \in \mathcal{D}_0(\omega) + \mathcal{H}_E(\omega) \end{array} \right\}$$

Here,

$$\mathscr{H}_{E}(\omega) = \{ u \in \mathscr{H}(\omega); \, \delta_{u}(\omega) + \int_{\omega} u^{2} d|\pi| < \infty \}$$

which is complete with respect to the norm (semi-norm, in case $\pi = 0$)

$$||u||_{E,\omega} = \{\delta_u(\omega) + \int_{\omega} u^2 d|\pi|\}^{1/2}.$$

To each $f \in \mathcal{D}_{loc}(\omega_0)$, there corresponds a non-negative measure δ_f on ω_0 which is determined as follows: For a PC-domain ω such that $\overline{\omega} \subset \omega_0$, if $f|\omega = g + u$ with $g \in \mathcal{D}_0(\omega)$ and $u \in \mathscr{H}_E(\omega)$ and if $\{g_n\}$ is a sequence in $\mathscr{P}_{BC}(\omega)$ such that $g_n \rightarrow g$ q.e. on ω and $||g_n - g_m||_{I,\omega} \rightarrow 0$ $(n, m \rightarrow \infty)$, then

$$\delta_f(A) = \lim_{n \to \infty} \delta_{g_n + u}(A)$$

for every Borel set A in ω (see [2, Theorems 6.2 and 7.1]). This is an extension of the notion δ_f for $f \in \mathscr{B}_{loc}(\omega_0)$. If $f, g \in \mathscr{D}_{loc}(\omega_0)$, then we define

$$\delta_{[f,g]} = \frac{1}{2} (\delta_{f+g} - \delta_f - \delta_g) \,.$$

§2. Gradient measure of product of functions in $\mathscr{B}_{loc}(\omega_0)$.

The purpose of this section is to establish the following results:

THEOREM 1. Let ω_0 be an open set in Ω . For any $f, g, \phi \in \mathscr{B}_{loc}(\omega_0)$,

$$\delta_{[fg,\phi]} = f \delta_{[g,\phi]} + g \delta_{[f,\phi]}.$$

COROLLARY. For any $f, g \in \mathscr{B}_{loc}(\omega_0)$,

$$\delta_{fg} = f^2 \delta_g + 2fg \delta_{[f,g]} + g^2 \delta_f,$$

in particular,

 $\delta_{f^2} = 4f^2 \delta_f.$

The proof of the above theorem will be given by a series of lemmas. First, we consider the perturbed sheaf $\mathfrak{H}^{\sim} = {\mathscr{H}^{\sim}(\omega)}_{\omega: \text{open}}$ which was defined in [2, § 3.2]. We note that if $u \in \mathscr{H}^{\sim}(\omega_0)$, then $\sigma_u = u\pi$.

LEMMA 1. If $u, v \in \mathscr{H}^{\sim}(\omega_0)$, then

$$\delta_{[u^2,v]} = 2u\delta_{[u,v]}.$$

PROOF. Let $\tilde{\sigma}_f \equiv \sigma_f - f\pi$ for $f \in \mathscr{B}_{loc}(\omega_0)$. If $u \in \mathscr{H}^{\sim}(\omega_0)$, then $\tilde{\sigma}_u = 0$; a continuous function w on ω_0 is \mathfrak{H}^{\sim} -superharmonic if and only if $\tilde{\sigma}_w \ge 0$ (see [2, Proposition 3.7]). First we shall show that

(1)
$$\tilde{\sigma}_{u^3} = 3u\tilde{\sigma}_{u^2}$$

for $u \in \mathscr{H}^{\sim}(\omega_0)$. Since u is continuous, given $\varepsilon > 0$, each $x_0 \in \omega_0$ has an open neighborhood $V(\subset \omega_0)$ such that

$$u(x_0) - \varepsilon \leq u \leq u(x_0) + \varepsilon$$

on V. Consider the function $w = u(x_0) + \varepsilon - u$ on V. Since $w \in \mathscr{H}^{\sim}(V)$ and $w \ge 0$ on V, $-w^3$ is \mathfrak{H}^{\sim} -superharmonic on V, so that $\tilde{\sigma}_{w^3} \le 0$ on V. It follows that $\tilde{\sigma}_{u^3} \ge 3(u(x_0) + \varepsilon)\tilde{\sigma}_{u^2}$ on V. Noting that $\tilde{\sigma}_{u^2} \le 0$, we have

(2)
$$\tilde{\sigma}_{u^3} \ge 3(u+2\varepsilon)\tilde{\sigma}_{u^2}$$

on V. Since such V's cover ω_0 , (2) holds on ω_0 . Since ε is arbitrary, we obtain the inequality $\tilde{\sigma}_{u^3} \ge 3u \tilde{\sigma}_{u^2}$. Similarly, by considering $w = u - u(x_0) + \varepsilon$ on V, we obtain the converse inequality $\tilde{\sigma}_{u^3} \le 3u \tilde{\sigma}_{u^2}$. Hence we have (1).

Next, let $u, v \in \mathscr{H}^{\sim}(\omega_0)$. For any real $t, \tilde{\sigma}_{(u+tv)^3} = 3(u+tv)\tilde{\sigma}_{(u+tv)^2}$ by (1). Using (1) for u and v and taking the definition of $\tilde{\sigma}_f$ into account, we deduce

$$\begin{aligned} 3t(\sigma_{u^2v} - 2u\sigma_{uv} - v\sigma_{u^2} + 2u^2v\pi) \\ &= -3t^2(\sigma_{uv^2} - u\sigma_{v^2} - 2v\sigma_{uv} + 2uv^2\pi). \end{aligned}$$

From the arbitrariness of t, it follows that

(3)
$$\sigma_{u^2v} = 2u\sigma_{uv} + v\sigma_{u^2} - 2u^2v\pi.$$

On the other hand,

$$\delta_{[u^2,v]} = \frac{1}{2} \left(u^2 \sigma_v + v \sigma_{u^2} - \sigma_{u^2 v} - u^2 v \pi \right) = \frac{1}{2} \left(v \sigma_{u^2} - \sigma_{u^2 v} \right).$$

Hence, by (3),

$$\delta_{[u^2,v]} = \frac{2u}{2} (uv\pi - \sigma_{uv}) = 2u\delta_{[u,v]}$$

Now, let ω be a PC-domain and consider the spaces

$$\mathscr{P}_{B}(\omega) = \{U_{\omega}^{\sigma}; \sigma \in \mathscr{M}_{B}(\omega)\} \text{ and } \mathscr{B}_{E}(\omega) = \mathscr{P}_{B}(\omega) + \mathscr{H}_{BE}(\omega)$$

(see [2, §1.3 and §2.5] for $\mathcal{M}_{B}(\omega)$ and $\mathcal{H}_{BE}(\omega)$).

We remark that if $f \in \mathscr{P}_B(\omega)$ and $g \in \mathscr{P}_E(\omega)$ then $fg \in \mathscr{P}_B(\omega)$ by virtue of [2, Corollary to Proposition 2.2] and [2, Lemma 2.9]. Also, if $u, v \in \mathscr{H}_{BE}(\omega)$, then $U^{\sigma_{uv}}_{\omega} \in \mathscr{P}_B(\omega)$ by [2, Lemma 2.7]. Therefore, for $f, g \in \mathscr{R}_E(\omega), U^{\sigma_{fg}}_{\omega} \in \mathscr{P}_B(\omega)$. These facts will be frequently used in what follows.

LEMMA 2. Let ω be a PC-domain, $u, v \in \mathscr{H}_{BE}(\omega)$ and $g \in \mathscr{P}_{B}(\omega)$. If $uv \in \mathscr{B}_{E}(\omega)$, then

$$\int_{\omega} u \ d\sigma_{vg} = \int_{\omega} uv \ d\sigma_g - \int_{\omega} g \ d\sigma_{uv} d\sigma_{uv}$$

PROOF. Put $p = U_{\omega}^{\sigma_{uv}}$ and h = uv - p. Then, $p \in \mathscr{P}_B(\omega)$ and $h \in \mathscr{H}_{BE}(\omega)$. Hence, [2, Corollary to Proposition 2.2] and [2, Proposition 2.4] imply

$$\sigma_{pg}(\omega) = \int_{\omega} pg \ d\pi$$

and

$$\sigma_{hg}(\omega) = \int_{\omega} h \ d\sigma_g + \int_{\omega} hg \ d\pi.$$

Hence

$$\sigma_{uvg}(\omega) = \sigma_{pg}(\omega) + \sigma_{hg}(\omega) = \int_{\omega} uvg \ d\pi + \int_{\omega} h \ d\sigma_g$$

On the other hand, since $vg \in \mathcal{P}_B(\omega)$, [2, Proposition 2.4] implies

$$\sigma_{uvg}(\omega) = \int_{\omega} u \, d\sigma_{vg} + \int_{\omega} uvg \, d\pi \, .$$

Hence

$$\int_{\omega} u \, d\sigma_{vg} = \int_{\omega} h \, d\sigma_g = \int_{\omega} uv \, d\sigma_g - \int_{\omega} p \, d\sigma_g$$
$$= \int_{\omega} uv \, d\sigma_g - \int_{\omega} g \, d\sigma_p = \int_{\omega} uv \, d\sigma_g - \int_{\omega} g \, d\sigma_{uv}.$$

LEMMA 3. Let ω be a PC-domain, $f \in \mathscr{P}_B(\omega)$ and $u \in \mathscr{H}_{BE}(\omega)$. Then

$$\int_{\omega} u \, d\sigma_{f^2} = 0 \, .$$

PROOF. Applying [2, Corollary to Proposition 2.2] to f and fu, we have

$$\sigma_{f^2 u}(\omega) = \int_{\omega} f^2 u \, d\pi$$

On the other hand, [2, Proposition 2.4] implies

$$\sigma_{f^{2}u}(\omega) = \int_{\omega} u \, d\sigma_{f^{2}} + \int_{\omega} f^{2} u \, d\pi.$$

Hence we have the required equality.

LEMMA 4. Let ω be a PC-domain, $f \in \mathcal{P}_{B}(\omega)$ and $g \in \mathcal{B}_{E}(\omega)$. Then

$$\delta_{[f^2,g]}(\omega) = 2 \int_{\omega} f d\delta_{[f,g]}.$$

PROOF. Let $v = 2\delta_{[f^2,g]} - 4f\delta_{[f,g]}$. We are to show that $v(\omega) = 0$. By the definition of $\delta_{[\cdot,\cdot]}$, we have

$$v = -f^2\sigma_g + g\sigma_{f^2} - \sigma_{f^2g} - 2fg\sigma_f + 2f\sigma_{fg} + f^2g\pi$$

Since $fg, f \in \mathcal{P}_B(\omega)$, $\int_{\omega} fg \, d\sigma_f = \int_{\omega} f \, d\sigma_{fg}$. By [2, Corollary to Proposition 2.2], $\sigma_{f^2g}(\omega) = \int_{\omega} f^2g \, d\pi$. Hence

$$v(\omega) = -\int_{\omega} f^2 d\sigma_g + \int_{\omega} g \, d\sigma_{f^2}.$$

Let $g = u + g_0$ with $u \in \mathscr{H}_{BE}(\omega)$ and $g_0 \in \mathscr{P}_B(\omega)$. Then,

$$\int_{\omega}g_0d\sigma_{f^2}=\int_{\omega}f^2d\sigma_{g_0}=\int_{\omega}f^2d\sigma_{g}.$$

By the above lemma, $\int_{\omega} u \, d\sigma_{f^2} = 0$. Hence $v(\omega) = 0$.

LEMMA 5. Let ω be a PC-domain, $f \in \mathcal{P}_B(\omega)$, $u \in \mathcal{H}_{BE}(\omega)$ and $g \in \mathcal{B}_E(\omega)$. If $ug \in \mathcal{B}_E(\omega)$, then

Dirichlet Integral of Product of Functions

$$\delta_{[f^{u,g}]}(\omega) = \int_{\omega} f \, d\delta_{[u,g]} + \int_{\omega} u \, d\delta_{[f,g]}.$$

PROOF. Put $v = 2(\delta_{[fu,g]} - f\delta_{[u,g]} - u\delta_{[f,g]})$. Since $\sigma_u = 0$,

$$\mathbf{v} = (g\sigma_{fu} - fu\sigma_g) + (f\sigma_{ug} - ug\sigma_f) - \sigma_{fug} + u\sigma_{fg} + fug\pi.$$

By [2, Proposition 2.4],

$$\sigma_{fug}(\omega) = \int_{\omega} u \, d\sigma_{fg} + \int_{\omega} fug \, d\pi \, .$$

Let $g = v + g_0$ with $v \in \mathscr{H}_{BE}(\omega)$ and $g_0 \in \mathscr{P}_B(\omega)$. Then

$$\int_{\omega} g_0 d\sigma_{fu} = \int_{\omega} fu \, d\sigma_{g_0} = \int_{\omega} fu \, d\sigma_g \quad \text{and} \quad \int_{\omega} f \, d\sigma_{ug_0} = \int_{\omega} ug_0 d\sigma_f \, d\sigma_{g_0} = \int_{\omega} ug_0 \, d\sigma_f \, d\sigma_{g_0} \, d\sigma_f \, d\sigma_{g_0} = \int_{\omega} ug_0 \, d\sigma_f \, d\sigma_{g_0} \, d\sigma_f \, d\sigma_{g_0} = \int_{\omega} ug_0 \, d\sigma_f \, d\sigma_{g_0} \, d\sigma_f \, d\sigma_f \, d\sigma_{g_0} \, d\sigma_f \, d$$

Hence

$$\mathbf{v}(\omega) = \int_{\omega} v \, d\sigma_{fu} + \int_{\omega} f \, d\sigma_{uv} - \int_{\omega} u v \, d\sigma_{f},$$

which is equal to zero by virtue of Lemma 2. (Note that $uv - ug \in \mathscr{P}_B(\omega)$, and hence $uv \in \mathscr{B}_E(\omega)$.)

LEMMA 6. Let ω be a PC-domain, $u \in \mathscr{H}_{BE}(\omega)$ and $g \in \mathscr{P}_B(\omega)$. If $u^2 \in \mathscr{B}_E(\omega)$, then

$$\delta_{[u^2,g]}(\omega) = 2 \int_{\omega} u \, d\delta_{[u,g]}.$$

PROOF. Let $v = 2\delta_{[u^2,g]} - 4u\delta_{[u,g]}$. We have

$$v = g\sigma_{u^2} - u^2\sigma_g - \sigma_{u^2g} + 2u\sigma_{ug} + u^2g\pi.$$

[2, Proposition 2.4] implies

$$\sigma_{u^2g}(\omega) = \int_{\omega} u \, d\sigma_{ug} + \int_{\omega} u^2 g \, d\pi \, .$$

On the other hand, by Lemma 2,

$$\omega^{u} d\sigma_{ug} = \int_{\omega} u^{2} d\sigma_{g} - \int_{\omega} g d\sigma_{u^{2}}.$$

Hence $v(\omega) = 0$.

LEMMA 7. Let ω be a small PC-domain (see [2, § 3.2] for a small domain), $u \in \mathscr{H}_{BE}(\omega)$ and $g \in \mathscr{B}_{E}(\omega)$. If u^{2} , $ug \in \mathscr{B}_{E}(\omega)$, then

$$\delta_{[u^2,g]}(\omega) = 2 \int_{\omega} u \, d\delta_{[u,g]}$$

PROOF. Let $g = v + g_0$ with $v \in \mathscr{H}_{BE}(\omega)$ and $g_0 \in \mathscr{P}_B(\omega)$. Let $\tilde{u} = (I - G_{\omega})^{-1}u$ and $\tilde{v} = (I - G_{\omega})^{-1}v$, where G_{ω} is the operator defined in [2, § 3.1]. Put $p \equiv G_{\omega}\tilde{u} = U_{\omega}^{\tilde{u}\pi}$ and $q \equiv G_{\omega}\tilde{v} = U_{\omega}^{\tilde{v}\pi}$. Then $u = \tilde{u} - p$ and $v = \tilde{v} - q$ and $p, q \in \mathscr{P}_B(\omega)$. Now

$$\delta_{\llbracket u^2,g \rrbracket} = \delta_{\llbracket u^2,v \rrbracket} + \delta_{\llbracket u^2,g-v \rrbracket} - 2\delta_{\llbracket up,v \rrbracket} - \delta_{\llbracket p^2,v \rrbracket}.$$

Since $\tilde{u}, \tilde{v} \in \mathscr{H}^{\sim}(\omega)$ by [2, Proposition 3.5], Lemma 1 shows that $\delta_{[\tilde{u}^2, \tilde{v}]} = 2\tilde{u}\delta_{[\tilde{u}, \tilde{v}]}$. The previous lemma implies

$$\delta_{[u^2,g-\tilde{v}]}(\omega)=2\int_{\omega}u\,d\delta_{[u,g-\tilde{v}]},$$

since $g - \tilde{v} = g_0 - q \in \mathscr{P}_B(\omega)$. Since $u\tilde{v} = ug + uq$ and $uq \in \mathscr{P}_B(\omega)$, we see that $u\tilde{v} \in \mathscr{B}_E(\omega)$. Hence, By Lemma 5,

$$\delta_{[up,\tilde{v}]}(\omega) = \int_{\omega} u \, d\delta_{[p,\tilde{v}]} + \int_{\omega} p \, d\delta_{[u,\tilde{v}]}.$$

Finally, by Lemma 4, we have

$$\delta_{[p^2,\tilde{v}]}(\omega) = 2 \int_{\omega} p \, d\delta_{[p,\tilde{v}]}$$

Therefore

$$\delta_{[u^2,g]}(\omega)$$

$$= 2 \int_{\omega} \tilde{u} \, d\delta_{[\tilde{u},\tilde{v}]} + 2 \int_{\omega} u \, d\delta_{[u,g-\tilde{v}]} - 2 \int_{\omega} u \, d\delta_{[p,\tilde{v}]}$$

$$- 2 \int_{\omega} p \, d\delta_{[u,\tilde{v}]} - 2 \int_{\omega} p \, d\delta_{[p,\tilde{v}]}$$

$$= 2 \int_{\omega} u \, d\delta_{[u,g]}.$$

Now we are ready to prove the theorem:

PROOF OF THEOREM 1. It is enough to prove the case f=g. Let ω_1 be any relatively compact small domain such that $\overline{\omega}_1 \subset \omega_0$ and let ω be another domain contained in ω_1 . Then ω is a small PC-domain. We can write $f|\omega =$ $u+f_0$ with $u \in \mathscr{H}_{BE}(\omega)$ and $f_0 \in \mathscr{P}_B(\omega)$. Since f^2 , $f\phi \in \mathscr{R}_{loc}(\omega_0)$, we see by [2, Lemma 2.8] that u^2 , $u(\phi|\omega) \in \mathscr{R}_E(\omega)$. Therefore, by Lemmas 4, 5 and 7, we have

(4)
$$\delta_{[f^2,\phi]}(\omega) = 2 \int_{\omega} f \, d\delta_{[f,\phi]}.$$

It follows that (4) holds for any open set ω in ω_1 , and hence

$$\delta_{[f^2,\phi]} = 2f\delta_{[f,\phi]}$$

holds on ω_1 . Since such ω_1 's cover ω_0 , this equality holds on ω_0 .

§3. Some auxiliary results on functions in $\mathcal{D}_{loc}(\omega_0)$.

LEMMA 8. Let ω be a PB-domain. If $f \in \mathcal{D}_0(\omega)$ and μ is a non-negative measure such that U^{μ}_{ω} is bounded, then

$$\int_{\omega} f^2 d\mu \leq (\sup U^{\mu}_{\omega}) \|f\|^2_{I,\omega}.$$

PROOF. This is easily seen from [2, Theorem 1.2 and Lemma 1.3]. Cf. the proof of [2, Theorem 6.3].

LEMMA 9. Let ω_0 be an open set and f be an extended real valued function on ω_0 . If for each $x \in \omega_0$ there is an open neighborhood V_x of x such that $f|V_x \in \mathcal{D}_{loc}(V_x)$, then $f \in \mathcal{D}_{loc}(\omega_0)$.

PROOF. If $V_x \cap V_{x'} \neq \emptyset$, then [2, Lemma 7.3] shows that $\delta_{f|V_x} = \delta_{f|V_{x'}}$ on $V_x \cap V_{x'}$. It follows that there is a non-negative measure δ_f^* on ω_0 such that $\delta_f^*|V_x = \delta_{f|V_x}$ for each $x \in \omega_0$. Similarly, given a PC-domain ω with $\overline{\omega} \subset \omega_0$ and $g \in \mathcal{D}_0(\omega)$, there is a signed measure $\delta_{[f,g]}^*$ on ω such that $\delta_{[f,g]}^*|V_x \cap \omega =$ $\delta_{[f|V_x \cap \omega,g|V_x \cap \omega]}$ for each $x \in \omega_0$ with $V_x \cap \omega \neq \emptyset$. We can cover ω by a finite number of V_x 's, which we write $\omega_1, ..., \omega_k$. Then

$$\begin{split} \delta^*_{[f,g]}(\omega) &= \sum_{j=1}^k \delta^*_{[f,g]}(\omega_j \cap \omega - \bigcup_{i=1}^{j-1} \omega_i) \\ &\leq \sum_{j=1}^k \delta_{f|\omega_j}(\omega_j \cap \omega)^{1/2} \delta_g(\omega_j \cap \omega)^{1/2} \\ &\leq k \delta^*_f(\omega)^{1/2} \delta_g(\omega)^{1/2} \,. \end{split}$$

Also,

$$\left|\int_{\omega} fg \, d\pi\right| \leq \left(\int_{\omega} f^2 d|\pi|\right)^{1/2} \left(\int_{\omega} g^2 d|\pi|\right)^{1/2}.$$

Since $\delta_{f}^{*}(\omega) < \infty$ and $\int_{\omega} f^{2} d|\pi| < \infty$, it follows from [2, Theorem 6.3] and the above Lemma 8 that the mapping

$$g \longrightarrow \delta^*_{[f,g]}(\omega) + \int_{\omega} fg \ d\pi$$

is continuous on $\mathscr{D}_0(\omega)$. Obviously, this is linear. Since the mapping $(g_1, g_2) \rightarrow \delta_{[g_1,g_2]}(\omega) + \int_{\omega} g_1 g_2 d\pi$ gives the inner product for the Hiblert space $\mathscr{D}_0(\omega)$ (see [2, (6.4) in Theorem 6.3]), there is $f_0 \in \mathscr{D}_0(\omega)$ such that

(5)
$$\delta^*_{[f,g]}(\omega) + \int_{\omega} fg \ d\pi = \delta_{[f_0,g]}(\omega) + \int_{\omega} f_0 g \ d\pi$$

for all $g \in \mathscr{D}_0(\omega)$. For any $x \in \omega$, choose a domain ω' such that $x \in \omega' \subset \overline{\omega}' \subset V_x \cap \omega$. If $\phi \in \mathscr{D}_0(\omega')$, then its extension to ω by 0 on $\omega - \omega'$ belongs to $\mathscr{D}_0(\omega)$ by [2, Lemma 6.7]. Hence, by (5), we obtain

$$\delta_{\left[(f-f_0)|\omega',\phi\right]}(\omega') + \int_{\omega'} (f-f_0)\phi \ d\pi = 0$$

for all $\phi \in \mathcal{D}_0(\omega')$. Using [2, Theorem 6.4] and modifying the values of f_0 on a polar set, we see that $f|\omega=f_0+u$ with $u \in \mathcal{H}(\omega)$. Thus $f|\omega \in \mathcal{D}_{loc}(\omega)$ and $\delta_{f|\omega} = \delta_{f|\omega}^*$. Then by [2, Proposition 7.2], we conclude that $f|\omega \in \mathcal{D}_0(\omega) + \mathcal{H}_E(\omega)$. Therefore $f \in \mathcal{D}_{loc}(\omega_0)$.

LEMMA 10. If ω is a PB-domain such that $\sup U_{\omega}^{\pi^-} < 1/4$, then

$$\|f\|_{I,\omega}^2 + \|u\|_{E,\omega}^2 \leq c_{\omega}\{\delta_{f+u}(\omega) + \int_{\omega} (f+u)^2 d|\pi|\}$$

for any $f \in \mathcal{D}_0(\omega)$ and $u \in \mathcal{H}_E(\omega)$, where $c_{\omega}^{-1} = 1 - 2(\sup U_{\omega}^{\pi^-})^{1/2}$.

PROOF. Put $\alpha = \sup U_{\omega}^{\pi^*}$. Using [2, Theorem 6.3] and Lemma 8 above, we have

$$\begin{split} \delta_{f+u}(\omega) + & \int_{\omega} (f+u)^2 d|\pi| \\ &= \delta_f(\omega) + \int_{\omega} f^2 d|\pi| + 2(\delta_{[f,u]}(\omega) + \int_{\omega} fu \, d|\pi|) + \delta_u(\omega) + \int_{\omega} u^2 d|\pi| \\ &\geq \|f\|_{I,\omega}^2 + \|u\|_{E,\omega}^2 + 4 \int_{\omega} fu \, d\pi^- \\ &\geq \|f\|_{I,\omega}^2 + \|u\|_{E,\omega}^2 - 4 \left(\int_{\omega} f^2 d\pi^-\right)^{1/2} \left(\int_{\omega} u^2 d\pi^-\right)^{1/2} \\ &\geq \|f\|_{I,\omega}^2 + \|u\|_{E,\omega}^2 - 4\alpha^{1/2} \|f\|_{I,\omega} \|u\|_{E,\omega} \\ &\geq (1 - 2\alpha^{1/2})(\|f\|_{I,\omega}^2 + \|u\|_{E,\omega}^2). \end{split}$$

PROPOSITION 1. If $\{f_n\}$ is a sequence in $\mathcal{D}_{loc}(\omega_0)$ such that $f_n \to f q. e.$ on $\omega_0, \delta_{f_n - f_m}(K) \to 0$ and $\int_K (f_n - f_m)^2 d|\pi| \to 0$ as $n, m \to \infty$ for any compact set

K in ω_0 , then $f \in \mathcal{D}_{loc}(\omega_0)$ and $\delta_{f_n-f}(K) \to 0$ as $n \to \infty$ for any compact set K in ω_0 .

PROOF. Let ω be a PC-domain such that $\overline{\omega} \subset \omega_0$ and $U_{\omega}^{\pi^-} < 1/4$. Let $f_n | \omega = g_n + u_n$ with $g_n \in \mathcal{D}_0(\omega)$ and $u_n \in \mathscr{H}_E(\omega)$. By the previous lemma, we see that $||g_n - g_m||_{I,\omega} \to 0$ and $||u_n - u_m||_{E,\omega} \to 0$ $(n, m \to \infty)$. Then it follows from [2, Theorems 6.1 and 5.3] (in case $\pi | \omega = 0$, [1, Theorem 3.3] instead of [2, Theorem 5.3]) that $f | \omega = g + u$ with $g \in \mathcal{D}_0(\omega)$ and $u \in \mathscr{H}_E(\omega)$ and that $||g_n - g||_{I,\omega} \to 0$ and $||u_n - u_l||_{E,\omega} \to 0$ $(n \to \infty)$. Since each point has a neighborhood V_x which is a PC-domain and for which $\sup U_{V_x}^{\pi^-} < 1/4$, Lemma 9 implies that $f \in \mathcal{D}_{loc}(\omega_0)$. Also, in the above argument, $\delta_{g_n - g}(\omega) \to 0$ and $\delta_{u_n - u}(\omega) \to 0$ $(n \to \infty)$. Hence $\delta_{f_n - f}(\omega) \to 0$ $(n \to \infty)$, and thus the last assertion of the proposition follows.

§4. Locally bounded Dirichlet functions.

Let ω_0 be an open set in Ω . Besides $\mathscr{B}_{loc}(\omega_0)$, we consider

 $\mathscr{B}_{C,\text{loc}}(\omega_0) = \{ f \in \mathscr{B}_{\text{loc}}(\omega_0); U_{\omega}^{|\sigma_f|} \text{ is continuous for any PC-domain } \omega \}.$

Functions in $\mathscr{B}_{C,loc}(\omega_0)$ are continuous. We see from [2, Lemma 2.5] and the proof of [2, Proposition 2.1] that $\mathscr{B}_{C,loc}(\omega_0)$ is also an algebra. Note that Axiom 5 states that $1 \in \mathscr{B}_{C,loc}(\Omega)$.

Now, let

$$\mathscr{D}_{B,\text{loc}}(\omega_0) = \left\{ \begin{array}{l} \text{there is a sequence } \{f_n\} \text{ in } \mathscr{B}_{\text{loc}}(\omega_0) \text{ such} \\ g \text{; that } f_n \rightarrow g \text{ locally uniformly on } \omega_0 \text{ and} \\ \delta_{f_n - f_m}(K) \rightarrow 0 \ (n, m \rightarrow \infty) \text{ for each compact } K \subset \omega_0 \end{array} \right\}$$

We similarly define $\mathscr{D}_{BC,loc}(\omega_0)$ replacing $\mathscr{B}_{loc}(\omega_0)$ by $\mathscr{B}_{C,loc}(\omega_0)$. Obviously, these are linear spaces and by Proposition 1

$$\mathscr{D}_{BC,\mathrm{loc}}(\omega_0) \subset \mathscr{D}_{B,\mathrm{loc}}(\omega_0) \subset \mathscr{D}_{\mathrm{loc}}(\omega_0).$$

THEOREM 2. $\mathscr{D}_{B,\text{loc}}(\omega_0)$ and $\mathscr{D}_{BC,\text{loc}}(\omega_0)$ are algebras. For any $f, g \in \mathscr{D}_{B,\text{loc}}(\omega_0)$ and $\phi \in \mathscr{D}_{\text{loc}}(\omega_0)$,

$$\delta_{[fg,\phi]} = f\delta_{[g,\phi]} + g\delta_{[f,\phi]}.$$

PROOF. Let $f, g \in \mathcal{D}_{B,\text{loc}}(\omega_0)$ (resp. $\mathcal{D}_{BC,\text{loc}}(\omega_0)$) and choose $\{f_n\}$ and $\{g_n\}$ in $\mathcal{B}_{\text{loc}}(\omega_0)$ (resp. $\mathcal{B}_{C,\text{loc}}(\omega_0)$) such that $f_n \to f$ and $g_n \to g$ locally uniformly on ω_0 and $\delta_{f_n - f_m}(K) \to 0$ and $\delta_{g_n - g_m}(K) \to 0$ $(n, m \to \infty)$ for each compact set Kin ω_0 . By the corollary to Theorem 1, we have

$$\begin{split} \delta_{f_ng_n - f_mg_m} &\leq 2(\delta_{(f_n - f_m)g_n} + \delta_{f_m(g_n - g_m)}) \\ &= 2\{(f_n - f_m)^2 \delta_{g_n} + 2(f_n - f_m)g_n \delta_{[f_n - f_m, g_n]} + g_n^2 \delta_{f_n - f_m} \\ &+ f_m^2 \delta_{g_n - g_m} + 2f_m(g_n - g_m) \delta_{[f_m, g_n - g_m]} + (g_n - g_m)^2 \delta_{f_m} \} \end{split}$$

It follows that $\delta_{f_ng_n-f_mg_m}(K) \to 0 \ (n, m \to \infty)$ for any compact set K in ω_0 . Obviously, $f_ng_n \to fg$ locally uniformly on ω_0 . Hence $fg \in \mathscr{D}_{B,\text{loc}}(\omega_0)$ (resp. $\mathscr{D}_{BC, \log(\omega_0)}$). Therefore, $\mathscr{D}_{B,\text{loc}}(\omega_0)$ and $\mathscr{D}_{BC,\text{loc}}(\omega_0)$ are algebras.

Next, let $\phi \in \mathscr{D}_{loc}(\omega_0)$. If ω is a PC-domain such that $\overline{\omega} \subset \omega_0$, then there is a sequence $\{\phi_n\}$ in $\mathscr{P}_{BC}(\omega) + \mathscr{H}_E(\omega)$ such that $\delta_{\phi_n - \phi}(\omega) \rightarrow 0$. By Theorem 1,

$$\delta_{[f_ng_n,\phi_m]} = f_n \delta_{[g_n,\phi_m]} + g_n \delta_{[f_n,\phi_m]}$$

on ω . Letting $m \to \infty$, we have

$$\delta_{[f_n g_n, \phi]} = f_n \delta_{[g_n, \phi]} + g_n \delta_{[f_n, \phi]}$$

on ω , and hence on ω_0 . Let A be any relatively compact Borel set such that $\overline{A} \subset \omega_0$. Since $\delta_{f_n g_n - f_n}(A) \to 0$ (Proposition 1),

$$\delta_{[f_ng_n,\phi]}(A) \to \delta_{[fg,\phi]}(A)$$
.

On the other hand, since $f_n \rightarrow f$, $g_n \rightarrow g$ uniformly on A and $\delta_{f_n-f}(A) \rightarrow 0$ and $\delta_{g_n-g}(A) \rightarrow 0$ (Proposition 1),

$$\int_{A} f_n \, d\delta_{[g_n,\phi]} \to \int_{A} f \, d\delta_{[g,\phi]} \quad \text{and} \quad \int_{A} g_n \, d\delta_{[f_n,\phi]} \to \int_{A} g \, d\delta_{[f,\phi]}.$$

Therefore

$$\delta_{[fg,\phi]}(A) = \int_A f \, d\delta_{[g,\phi]} + \int_A g \, d\delta_{[f,\phi]},$$

and hence

$$\delta_{[fg,\phi]} = f\delta_{[g,\phi]} + g\delta_{[f,\phi]}.$$

COROLLARY. For $f, g \in \mathcal{D}_{B, \text{loc}}(\omega_0)$,

$$\delta_{fg} = f^2 \delta_g + 2fg \delta_{[f,g]} + g^2 \delta_f.$$

PROPOSITION 2. If $\{f_n\}$ is a sequence in $\mathscr{D}_{B,\text{loc}}(\omega_0)$ (resp. $\mathscr{D}_{BC,\text{loc}}(\omega_0)$) which converges locally uniformly to f on ω_0 and if $\delta_{f_n-f_m}(K) \to 0$ $(n, m \to \infty)$ for each compact set K in ω_0 , then $f \in \mathscr{D}_{B,\text{loc}}(\omega_0)$ (resp. $\mathscr{D}_{BC,\text{loc}}(\omega_0)$) and $\delta_{f-f_n}(K) \to 0$ $(n \to \infty)$ for each compact set K in ω_0 .

PROOF. Let $\{\omega_n\}$ be an exhaustion of ω_0 . By definition, there is $g_n \in \mathscr{B}_{loc}(\omega_0)$ (resp. $\mathscr{B}_{C,loc}(\omega_0)$) such that $|g_n - f_n| < 1/n$ on $\overline{\omega}_n$ and $\delta_{g_n - f_n}(\omega_n) < 1/n$ for each *n*. Then $g_n \to f$ locally uniformly on ω_0 and $\delta_{g_n - g_m}(K) \to 0$ $(n, m \to \infty)$ for each compact set K in ω_0 . Hence $f \in \mathscr{D}_{B,loc}(\omega_0)$ (resp. $\mathscr{D}_{BC,loc}(\omega_0)$) and

$$\delta_{f_n-f}(K) \leq 2\{\delta_{f-g_n}(K) + \delta_{g_n-f_n}(K)\} \to 0 \qquad (n \to \infty)$$

for each compact set K in ω_0 .

THEOREM 3. Let $f_1, \ldots, f_k \in \mathcal{D}_{B, \text{loc}}(\omega_0)$ (resp. $\mathcal{D}_{BC, \text{loc}}(\omega_0)$) and regard $f = (f_1, \ldots, f_k)$ as a mapping from ω_0 into \mathbb{R}^k . If Ω' is an open set in \mathbb{R}^k containing $\cup \{\overline{f(K)}; K: \text{compact} \subset \omega_0\}$ (resp. $f(\omega_0)$) and if $\Phi \in \mathbb{C}^1(\Omega')$, then $\Phi \circ f \in \mathcal{D}_{B, \text{loc}}(\omega_0)$ (resp. $\mathcal{D}_{BC, \text{loc}}(\omega_0)$) and

(6)
$$\delta_{[\boldsymbol{\Phi}\circ\boldsymbol{f},\boldsymbol{g}]} = \sum_{j=1}^{k} \left(\frac{\partial \boldsymbol{\Phi}}{\partial x_{j}} \circ \boldsymbol{f} \right) \delta_{[f_{j},\boldsymbol{g}]}$$

for any $g \in \mathscr{D}_{loc}(\omega_0)$.

PROOF. If $\Phi \equiv \text{const.}$, then the both sides of (6) vanish. If $\Phi(x_1, \dots, x_k) = x_j$, then both sides of (6) are reduced to $\delta_{[f_j,g]}$. Now, suppose the conclusions are true for $\Phi_1, \Phi_2 \in C^1(\Omega')$ and let $\Phi = \Phi_1 \Phi_2$. By Theorem 2,

$$\Phi \circ \boldsymbol{f} = (\Phi_1 \circ \boldsymbol{f})(\Phi_2 \circ \boldsymbol{f}) \in \mathscr{D}_{\boldsymbol{B}, \text{loc}}(\omega_0) \text{ (resp. } \mathscr{D}_{\boldsymbol{BC}, \text{loc}}(\omega_0))$$

and

$$\delta_{[\boldsymbol{\Phi}^{\circ}\boldsymbol{f},\boldsymbol{g}]}$$

$$= \delta_{[(\boldsymbol{\Phi}_{1}\circ\boldsymbol{f})(\boldsymbol{\Phi}_{2}\circ\boldsymbol{f}),\boldsymbol{g}]}$$

$$= (\boldsymbol{\Phi}_{1}\circ\boldsymbol{f})\delta_{[\boldsymbol{\Phi}_{2}\circ\boldsymbol{f},\boldsymbol{g}]} + (\boldsymbol{\Phi}_{2}\circ\boldsymbol{f})\delta_{[\boldsymbol{\Phi}_{1}\circ\boldsymbol{f},\boldsymbol{g}]}$$

$$= \sum_{j=1}^{k} \left\{ (\boldsymbol{\Phi}_{1}\circ\boldsymbol{f}) \left(\frac{\partial \boldsymbol{\Phi}_{2}}{\partial x_{j}}\circ\boldsymbol{f}\right) + (\boldsymbol{\Phi}_{2}\circ\boldsymbol{f}) \left(\frac{\partial \boldsymbol{\Phi}_{1}}{\partial x_{j}}\circ\boldsymbol{f}\right) \right\} \delta_{[\boldsymbol{f}_{j},\boldsymbol{g}]}$$

$$= \sum_{j=1}^{k} \left(\frac{\partial \boldsymbol{\Phi}}{\partial x_{j}}\circ\boldsymbol{f}\right) \delta_{[\boldsymbol{f}_{j},\boldsymbol{g}]}.$$

It follows that the conclusion of the theorem holds for any polynomial Φ in k-variables. Now let $\Phi \in C^1(\Omega')$. Then there is a sequence $\{P_n\}$ of polynomials in k-variables such that $P_n \rightarrow \Phi$ and $\partial P_n / \partial x_j \rightarrow \partial \Phi / \partial x_j$, j = 1, ..., k, all locally uniformly on Ω' . Then $P_n \circ f \rightarrow \Phi \circ f$ locally uniformly on ω_0 , since the image f(K)of a compact set K in ω_0 is relatively compact in Ω' . We have seen that

$$\partial_{P_n \circ f - P_m \circ f} = \sum_{j,l=1}^k \left(\frac{\partial (P_n - P_m)}{\partial x_j} \circ f \right) \left(\frac{\partial (P_n - P_m)}{\partial x_l} \circ f \right) \delta_{[f_j, f_l]}.$$

Hence, if K is a compact set in ω_0 , then

 $\delta_{P_n^{\circ}f - P_m^{\circ}f}(K) \to 0 \qquad (n, m \to \infty),$

since $[\partial(P_n - P_m)/\partial x_j] \circ f \to 0 \ (n, m \to \infty)$ uniformly on K for each j. Hence, by

Proposition 2, $\Phi \circ \mathbf{f} \in \mathcal{D}_{B,\text{loc}}(\omega_0)$ (resp. $\mathcal{D}_{BC,\text{loc}}(\omega_0)$) and

$$\delta_{P_n\circ f-\Phi\circ f}(K)\to 0 \qquad (n\to\infty).$$

By an argument similar to the proof of Theorem 2, we see that (6) holds for the given Φ .

COROLLARY 1. Let f_i (j=1,...,k) and Φ be as in the above proposition. Then

$$\delta_{\boldsymbol{\Phi}^{\circ}\boldsymbol{f}} = \sum_{j,l=1}^{k} \left(\frac{\partial \boldsymbol{\Phi}}{\partial x_{j}} \circ \boldsymbol{f} \right) \left(\frac{\partial \boldsymbol{\Phi}}{\partial x_{l}} \circ \boldsymbol{f} \right) \delta_{[f_{j},f_{l}]}.$$

COROLLARY 2. (a) If $f \in \mathcal{D}_{B,loc}(\omega_0)$ and $\inf_K f > 0$ for each compact set K in ω_0 , then $1/f \in \mathcal{D}_{B,\text{loc}}(\omega_0)$ and

(7)
$$\delta_{[1/f,g]} = -\frac{1}{f^2} \delta_{[f,g]} \quad \text{for } g \in \mathscr{D}_{1oc}(\omega_0); \ \delta_{1/f} = \frac{1}{f^4} \delta_f.$$

(b) If
$$f \in \mathscr{D}_{BC, loc}(\omega_0)$$
 and $f > 0$ on ω_0 , then $1/f \in \mathscr{D}_{BC, loc}(\omega_0)$ and (7) is valid.

Next, we consider so-called Royden's algebras. For an open set ω_0 in Ω , set

$$\mathscr{D}_{B}(\omega_{0}) = \{f \in \mathscr{D}_{B, loc}(\omega_{0}); f \text{ is bounded and } \delta_{f}(\omega_{0}) < \infty\}$$

and

$$\mathscr{D}_{BC}(\omega_0) = \mathscr{D}_{B}(\omega_0) \cap \mathscr{D}_{BC,\mathrm{loc}}(\omega_0).$$

For $f \in \mathcal{D}_{\mathcal{B}}(\omega_0)$, let

$$||f||_{DB,\omega_0} = \delta_f(\omega_0)^{1/2} + \sup_{\omega_0} |f|.$$

THEOREM 4. $\mathscr{D}_{B}(\omega_{0})$ and $\mathscr{D}_{BC}(\omega_{0})$ are Banach algebras with respect to the above norm.

PROOF. By Theorem 2, we easily see that $\mathscr{D}_{B}(\omega_{0})$ and $\mathscr{D}_{BC}(\omega_{0})$ are algebras. Obviously, $\|\cdot\|_{DB,\omega_0}$ is a norm on these spaces. By the aid of the corollary to Theorem 2, we can easily verify that

$$||fg||_{DB,\omega_0} \leq ||f||_{DB,\omega_0} ||g||_{DB,\omega_0}$$

for $f, g \in \mathcal{D}_B(\omega_0)$. The completeness of $\mathcal{D}_B(\omega_0)$ and $\mathcal{D}_{BC}(\omega_0)$ follows from **Proposition 2.**

REMARK 1. Using the algebra $\mathscr{D}_{BC}(\Omega)$ we may extend the classical theory involving Royden's algebra (see, e.g., [3, Chap. III]) to self-adjoint harmonic spaces.

§5. Self-adjoint harmonic space on a Euclidean domain.

We consider the special case where Ω is a domain in the Euclidean space \mathbf{R}^{k} $(k \ge 1)$.

THEOREM 5. Let Ω be a domain in \mathbb{R}^k and let \mathfrak{H} be a self-adjoint harmonic structure on Ω satisfying Axioms $1 \sim 5$. Furthermore we assume that the coordinate functions x_j (j=1,...,k) all belong to $\mathcal{D}_{B,\text{loc}}(\Omega)$ (resp. $\mathcal{D}_{BC,\text{loc}}(\Omega)$). Then, for any open set $\omega_0 \subset \Omega$, every $f \in \mathbb{C}^1(\omega_0)$ belongs to $\mathcal{D}_{B,\text{loc}}(\omega_0)$ (resp. $\mathcal{D}_{BC,\text{loc}}(\omega_0)$) and its gradient measure is expressed as

$$\delta_f = \sum_{i,j=1}^k \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} v_{ij},$$

where v_{ij} , i, j = 1, ..., k, are signed measures on Ω having the following properties:

- (a) $v_{ij} = v_{ji}$ (i, j = 1, ..., k);
- (b) For each $\xi = (\xi_1, \dots, \xi_k) \in \mathbf{R}^k$ with $\xi \neq 0$,

$$\mu_{\xi} = \sum_{i, j=1}^{k} \xi_i \xi_j v_{ij}$$

is a positive measure whose support is equal to Ω .

PROOF. Define

$$v_{ij} = \delta_{[x_i, x_j]}, \quad i, j = 1, ..., k.$$

By our assumption, these are well-defined signed measures on Ω . Property (a) is obvious. For $\xi \in \mathbf{R}^k$, if A is a Borel set in Ω , then

$$\mu_{\xi}(A) = \sum_{i,j} \xi_i \xi_j \delta_{[x_i, x_j]}(A) = \delta_{\Sigma \xi_i x_i}(A) \ge 0.$$

Furthermore, if $\xi \neq 0$, then the function $f_{\xi}(x) = \Sigma \xi_i x_i$ is non-constant on any open set ω in Ω . Hence $\delta_{f_{\xi}}(\omega) > 0$ by virtue of [2, Theorem 7.3]. Hence the support of μ_{ξ} is the whole space Ω . If $f \in C^1(\omega_0)$, then Theorem 3 implies that $f \in \mathcal{D}_{B, \log(\omega_0)}$ $\log(\omega_0)$ (resp. $\mathcal{D}_{BC,\log(\omega_0)}$) and Corollary 1 to Theorem 3 shows that

$$\delta_f = \sum_{i,j=1}^k \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} \delta_{[x_i,x_j]} = \sum_{i,j=1}^k \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} v_{ij}$$

REMARK 2. Under the assumptions of Theorem 5, if ω is a PB-domain, then $C_0^1(\omega) \subset \mathcal{D}_0(\omega)$, where $C_0^1(\omega) = \{f \in C^1(\omega); \text{ supp } f \text{ is compact in } \omega\}$. Hence,

it follows from [2, Theorem 6.3] that every $u \in \mathscr{H}(\omega_0)$ (ω_0 : any open set in Ω) satisfies

$$\delta_{[u,\psi]}(\omega_0) + \int_{\omega_0} u\psi \, d\pi = 0$$

for all $\psi \in C_0^1(\omega_0)$. In particular, if $u \in \mathscr{H}(\omega_0) \cap C^1(\omega_0)$, then by the above theorem, it satisfies

$$\sum_{i,j=1}^{k} \int_{\omega_0} \frac{\partial u}{\partial x_i} \frac{\partial \psi}{\partial x_j} dv_{ij} + \int_{\omega_0} u\psi \, d\pi = 0$$

for all $\psi \in C_0^1(\omega_0)$. In this sense, we may say that every $u \in \mathcal{H}(\omega_0)$ is a "solution" of the formal differential equation

$$\sum_{i,j=1}^{k} \frac{\partial}{\partial x_i} \left(v_{ij} \frac{\partial u}{\partial x_j} \right) - \pi u = 0.$$

§6. An application of Theorem 1.

Now, we return to the general case and let *h* be a positive continuous function on Ω . Then $\mathfrak{H}^{(h)} = \mathfrak{H}/h$ is a self-adjoint harmonic structure on Ω with a consistent system of Green functions $\{G^{(h)}_{\omega}(x, y)\}_{\omega: P-domain}$:

$$G_{\omega}^{(h)}(x, y) = \frac{G_{\omega}(x, y)}{h(x)h(y)}.$$

Obviously, for any open set ω_0 in Ω ,

$$\mathscr{B}_{\rm loc}^{(h)}(\omega_0) = \left\{ \frac{f}{h}; f \in \mathscr{B}_{\rm loc}(\omega_0) \right\}$$

and for $f \in \mathscr{B}_{loc}(\omega_0)$,

$$\sigma_{f/h}^{(h)} = h\sigma_f,$$

where the index (h) means that the notion is considered with respect to $\mathfrak{H}^{(h)}$.

PROPOSITION 3. If $h \in \mathscr{B}_{loc}(\Omega)$ is positive continuous, then $\mathscr{B}_{loc}^{(h)}(\omega_0) = \mathscr{B}_{loc}(\omega_0)$ for any open set ω_0 ; in particular $1 \in \mathscr{B}_{loc}^{(h)}(\Omega)$ and $1/h \in \mathscr{B}_{loc}(\Omega)$.

PROOF. If $f \in \mathscr{B}_{loc}(\omega_0)$, then f = (fh)/h and $fh \in \mathscr{B}_{loc}(\omega_0)$. Hence $f \in \mathscr{B}_{loc}(\omega_0)$. In particular, since $1 \in \mathscr{B}_{loc}(\Omega)$ (Axiom 5), $1 \in \mathscr{B}_{loc}^{(h)}(\Omega)$. It follows that $\mathscr{B}_{loc}^{(h)}(\omega_0)$ is also an algebra (cf. the proof of [2, Proposition 2.1]; it requires only the assumption $1 \in \mathscr{B}_{loc}(\Omega)$). Since $1/h \in \mathscr{B}_{loc}^{(h)}(\Omega)$, $1/h^2 \in \mathscr{B}_{loc}^{(h)}(\Omega)$, and hence $1/h \in \mathscr{B}_{loc}(\Omega)$. If $f \in \mathscr{B}_{loc}^{(h)}(\omega_0)$, then $fh \in \mathscr{B}_{loc}(\omega_0)$. Hence $f = (fh)/h \in \mathscr{B}_{loc}(\omega_0)$.

COROLLARY. For any open set ω_0 in Ω , if $f \in \mathscr{B}_{loc}(\omega_0)$ is continuous and does not vanish on ω_0 , then $1/f \in \mathscr{B}_{loc}(\omega_0)$.

LEMMA 11. If $h \in \mathscr{B}_{C, loc}(\Omega)$ is positive, then $\mathfrak{H}^{(h)}$ satisfies Axiom 5.

PROOF. By Proposition 3, $1 \in \mathscr{B}_{loc}^{(h)}(\Omega)$. Since $\sigma_1^{(h)} = h\sigma_h$, we have

$$\int_{\omega} G_{\omega}^{(h)}(\cdot, y) d |\sigma_1^{(h)}|(y) = \int_{\omega} G_{\omega}^{(h)}(\cdot, y) h(y) d |\sigma_h|(y) = \frac{1}{h} U_{\omega}^{|\sigma_h|}$$

Hence, $\int_{\omega} G_{\omega}^{(h)}(\cdot, y) d|\sigma_1^{(h)}|(y)$ is continuous on ω for any PC-domain ω .

Thus, if h is a function as in this lemma, then we can consider the gradient measure $\delta_f^{(h)}$ for $f \in \mathscr{B}_{loc}^{(h)}(\omega_0) = \mathscr{B}_{loc}(\omega_0)$ with respect to the self-adjoint harmonic structure $\mathfrak{H}^{(h)}$. Then we have

LEMMA 12. If $h \in \mathscr{B}_{C, \text{loc}}(\Omega)$ is positive then for $f \in \mathscr{B}_{\text{loc}}(\omega_0)$

$$\delta_f^{(h)} = h^2 \delta_f.$$

PROOF. Noting that $\sigma_g^{(h)} = h \sigma_{hg}$ for $g \in \mathscr{B}_{loc}(\omega_0)$, we have

$$\begin{split} \delta_{f}^{(h)} &= \frac{1}{2} (2f\sigma_{f}^{(h)} - \sigma_{f^{2}}^{(h)} - f^{2}\sigma_{1}^{(h)}) \\ &= \frac{1}{2} (2fh\sigma_{hf} - h\sigma_{hf^{2}} - f^{2}h\sigma_{h}) \\ &= \frac{h}{2} (2f\sigma_{hf} - \sigma_{hf^{2}} - f^{2}\sigma_{h}) \,. \end{split}$$

Now, by Theorem 1, $\delta_{[f^2,h]} = 2f\delta_{[f,h]}$, which may be written as

$$f^2\sigma_h + h\sigma_{f^2} - \sigma_{hf^2} - f^2h\pi = 2f(f\sigma_h + h\sigma_f - \sigma_{hf} - fh\pi),$$

or

$$2f\sigma_{hf} - \sigma_{hf^2} - f^2\sigma_h = 2fh\sigma_f - h\sigma_{f^2} - f^2h\pi = 2h\delta_f.$$

Hence

$$\delta_f^{(h)} = \frac{h}{2} 2h \delta_f = h^2 \delta_f \,.$$

We can also consider the spaces $\mathscr{D}^{(h)}_{loc}(\omega_0)$, $\mathscr{D}^{(h)}_{B,loc}(\omega_0)$ and $\mathscr{D}^{(h)}_{BC,loc}(\omega_0)$ with respect to $\mathfrak{H}^{(h)}$. By Proposition 3 and Lemma 12, we can easily show

THEOREM 6. Let h be a function as in Lemma 12. Then $\mathscr{D}_{B,\text{loc}}^{(h)}(\omega_0) = \mathscr{D}_{B,\text{loc}}(\omega_0)$ and $\mathscr{D}_{BC,\text{loc}}^{(h)}(\omega_0) = \mathscr{D}_{BC,\text{loc}}(\omega_0)$ for any open set ω_0 ; for $f \in \mathscr{D}_{B,\text{loc}}(\omega_0)$,

$$\delta_f^{(h)} = h^2 \delta_f.$$

References

- F-Y. Maeda, Energy of functions on a self-adjoint harmonic space I, Hiroshima Math. J. 2 (1972), 313-337.
- [2] F-Y. Maeda, Dirichlet integrals of functions on a self-adjoint harmonic space, Ibid. 4 (1974), 685-742.
- [3] L. Sario and M. Nakai, *Classification theory of Riemann surfaces*, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

Department of Mathematics, Faculty of Science, Hiroshima University