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Introduction

Let W be a region in the extended z-plane containing the point oo and let

ί̂ ιi}S= i be a regular exhaustion of Jf containing the point oo, i.e., let Wn be regions

such that aoeWn,~WnczWn+l9 \jWn=W and the boundary of each Wn consists

of a finite number of disjoint analytic Jordan curves. Let Pn be the unique

vertical slit mapping of Wn with the following expansion about oo:

p (~\ _ 7Λ_
 αύn •

D. Hubert, P. Koebe and R. Courant showed that Pn converges uniformly on
compact subsets of W to a vertical slit mapping PWi i.e., every component of the
boundary of PW(W) is either a point or a line segment parallel to the imaginary
axis. Let 5 be the family of univalent meromorphic functions F on FFwith the
expansion

(*) F{z) = z- f-^ i-^+ about oo.

Then Pw is the unique function minimizing Re α^{F) in g.

P. Koebe [4] showed that the complement (PW(W))C of PW(W) has vanish-
ing area. Therefore, for a region of infinite connectivity, the uniqueness of verti-
cal slit mapping with the expansion (*) does not always hold. In 1918, P. Koebe
[5] called PwiW) the minimal vertical slits region. For an arbitrary plane region
^containing oo, the univalent meromorphic mapping of W with the expansion
(*) onto a minimal vertical slits region is uniquely determined. In the present
paper we shall study the complements of minimal vertical slits regions. We call
them extremal sets of vertical slits and denote their class by S. P. Koebe [5]
obtained the following results:

(I) E is a set of class S if and only if £ is a bounded closed set such that

\ Sf/dy dxdy = O for every feM(Ec) which vanishes identically on a neighbor-
JEC

hood of oo, where M(EC) denotes the class of Royden functions on Ec (see §2).
(i) Every set of class <f has vanishing area,
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(ii) If the projection into the real axis of a bounded closed set £ has vanish-
ing linear measure, then £ is of class £.

P. Koebe [5] conjectured that the converse of (ii) is true, but H. Grotzsch
[2] established a new characterization of extremal sets of vertical slits and con-
structed an example of extremal set of vertical slits such that the projection into
the real axis is an interval. Grotzsch's characterization is expressed by using
extremal length as follows:

(II) £ is a set of class <f if and only if £ is a bounded closed set such that
λ(ΓR-E) = λ(ΓR) for some open rectangle Rz^E with horizontal and vertical sides,
where ΓR (resp.ΓΛ_£) denotes the family of locally rectifiable curves joining
horizontal sides of R in R (resp. R-E).

From (II) we see (cf. L. Sario and K. Oikawa [8, Theorem IX 4A]) that

(iii) If £ is a set of class <f, then every two points zί9 z2 e£ c with Rezί =
Re z2 can be joined in Ec by a curve whose length is arbitrarily close to \zt — z2\

Now we present the properties of the class g:

(a) If £ is a set of class <f, then so is any closed subset of £.
(b) If £ 1 ?..., En are mutually disjoint sets of class <f, then so is their union.
(c) If £ is a set of class &, then so is its image under any affine transformation

x + iy->ax + iby + c with real b and Re

All of these properties follow from (I) immediately.
L. Sario and K. Oikawa [8] posed the following question: Weaken the as-

sumptions of the properties (b) and (c).
In the present paper we shall be concerned with this problem. It is known

that
(d) £ and iE={iz\zeE} are sets of class <f if and only if £ is of class ND,

i.e., £ is removable with respect to analytic functions with finite Dirichlet integral.

If £π, n = l, 2,... are sets of class ND and if the union \jEn is bounded and closed,
then \jEn is of class ND (cf. L. Sario and M. Nakai [7, pp. 371-372]). There-
fore it is plausible that the same is true for sets of class #. But, by constructing
examples, we shall show that if the assumption of finiteness or disjointness is re-
moved in (b), then the conclusion does not necessarily hold. In the last section
§ 6, we deal with the property (c) and improve the result obtained in [6].

§ 1. Union of a countable number of bounded closed sets

Let y be a class of bounded closed sets in the extended z-plane satisfying
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the following conditions:

(y. 1) If E is a set of class Sf, then so is any closed subset of E.

(y. 2) Let £ be a bounded closed set and let SΊ and S2 be open squares

with horizontal and vertical sides such that Si(\S2Φφ. If En SjeSf,j = l, 2,

then E n SΊ U S2 e S?.

It is easy to show that if Eί9..., En are mutually disjoint sets of class ¥, then

W " S I £ ; G ^ . For any bounded closed set E in the extended z-plane we define

the closed subset ky(E) of E by

fc^(£) = { z e £ | £ Π S(z, r) φ $f for every positive number r},

where S(z, r) denotes the open square with horizontal and vertical sides of length

r and center at z. Then

(k. i) E1 c £ 2 implies ky(EJ c ky(E2).

(fc, ii) fe^(JB) = 0 if and only if £ e ^ .

THEOREM 1.1. The following four conditions are equivalent:

( i ) ky(k^(E)) = ky(E) for any bounded closed set E.

(ii) IfEneόf9 n = l, 2,... and ι/ W£Li£M is a bounded closed set, then

(iii) Let Eo be a set of class £f and let {WJ jLi be a regular exhaustion

of the complement E% of Eθ9 i.e., let Wnbe open sets such that WnczWn+ίi \jWn =

EC

Q and the boundary dWn of each Wn consists of a finite number of disjoint

analytic Jordan curves. If E is a bounded closed set such that E Π

n = l,2,...9then

(iv) (1) Let Eo be a set of class Sf and let {Wn}£=i be a regular exhaustion

of Ec

0. If En, n = l, 2,... are sets of class S? such that EnczWn-Wn-u then

Furthermore,

(2) Let EQ be a set of class £f and let {^n}^=i be a regular exhaustion

of Ec

0. If E is a bounded closed set such that c(]E0Φφ for each component

c ofE-E0 and Ed WneSf, n = l, 2,..., then EeS?.

PROOF. It is trivial that (ϋ) implies (iii) and (iii) implies (iv). To prove

that (i) implies (ii), let En, n = l,2,... be sets of class S? such that \J™=ίEn is

bounded and closed. Set K=ky(\jEn) and Kn = En(\K, Assume that KΦφ.
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By the Baire category theorem there is at least one Kn which contains a point

z such that K Π S(z,r)aKn for a positive number r. Since Kne^, we have

zφky(K), so that

W W W £„)) =

Therefore (i) implies

To prove that (iii) implies (i), assume that (iii) is true and there is a bounded

closed set E such that ky(k^(E))^k^(E). Let z e W ^ - W W Φ λ let S(z, r)

be a square such that fe^(£) Π S(z^r)€Sf and let F = E Π S(z7r). Then F Π

Λ:^(JE) n S(z, r) e ̂  and F - (F Π W ^ ) ) <= F - W * 0 Therefore (iii) implies

F = (F Π ky(E)) U (F-(F Π W £ ) ) ) 6 ^ ,

so that z £ ky(E). This is a contradiction.

To prove that (iv) implies (iii), let Eo be a set of class Sf and let {Hy be a reg-

ular exhaustion of EC

Q. Assume that £ is a bounded closed set such that E Π Wne

&*, n = 1,2,... and let C be the union of components c of E — Eo such that c{\E0Φ

φ. Then (2) of (iv) implies that the bounded closed set E'0 = E0 U C is of class

^ . Since each component c of E — E'o satisfies c = c and c Π E'0 = φ, there exists

a regular exhaustion {if }̂ of E'o such t h a t ( F - F 0 ) c = WJLi(W^ή — ^ ή - i ) Hence,

by (1) of (iv), we have Ee&*.

We now give examples of classes of bounded closed sets satisfying (^ . 1)

a n d ( ^ . 2).

EXAMPLE 1.2. Let μ* be a Caratheodory outer measure and let Sf be a class

of bounded closed sets £ such that μ*(£) = 0. Then (^ . 1) and (ii) of Theorem

1.1 are satisfied. In particular, the classes of bounded closed sets of Hausdorίf

/ι-measure zero and the classes of bounded closed sets of generalized capacity

zero satisfy (Sf. 1) and (ii) of Theorem 1.1 (cf. L. Carleson [1]).

EXAMPLE 1.3. The class of totally disconnected bounded closed sets satisfies

(^ . 1) and (iv) of Theorem 1.1. The class of sets of vertical slits, i.e., the class

of bounded closed sets E such that each component of E is either a point or a line

segment parallel to the imaginary axis satisfies also (^ . 1) and (iv) of Theorem 1.1.

EXAMPLE 1.4. The classes NB and ND satisfy (^ . 1) and (iv) of Theorem

1.1 (cf. L. Sario and M. Nakai [7, pp. 371-372]).

EXAMPLE 1.5. The classes NSD and Np satisfy (^ . 1) and {ST. 2), but do

not satisfy (iv) of Theorem 1.1 (cf. N, Suita [9] and D, A. Hejhal [3]).
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In this paper, we shall denote by J£? the class of bounded closed sets E such

that the projection of each E into the real axis has vanishing linear measure. This

class 3? satisfies (y\ 1) and (ii) of Theorem 1.1.

§ 2. Extremal sets of vertical slits

Let M(W) be the class of Royden functions on a plane region W(cf. L. Sario

and M. Nakai [7, Chap. Ill]), i.e., let M(W) be the class of functions f on W

satisfying the following conditions:

(M. 1) / i s bounded on W.

(M. 2) / i s a continuous Tonelli function on W.

(M. 3) The Dirichlet integral Dw(f) off over Wis finite.

Let U be a regular region in the extended (z = x + /j/)-plane, i.e., let U be a region

whose boundary dU of U consists of a finite number of analytic Jordan curves

and let £ be a bounded closed set contained in U. We denote by M(TJ — E,y)

the class of functions / such that feM(Vf — E) for some region VJ ZDU and f\

dU = y. Let

d(U-E)= inf £>„_*(/)•
feM(ϋ-E,y)

It is known that there is a unique function /oeM(E7 — £, y) such that d(U — E) =

DV-EUO) a n d / o = 0 on bounded components of Ec. The function/0 is harmonic

on U — E. We denote it by L0(c/_£)(j;).

Let <f be the class of extremal sets of vertical slits. From the condition

(I), the next lemma immediately follows:

LEMMA 2.1. Let E be a bounded closed set in the extended (z = x+iy)-

plane. Then the following conditions are equivalent:

( i ) E is of class &.

(ii) \ dfjdy dxdy = 0 for every bounded C1-function f on Ec with finite
JEC

Dirichlet integral which vanishes identically on a neighborhood o/oo.

(iii) \ dfldy dxdy = 0 for every f e M ( £ c ) which vanishes identically
JEC

on a neighborhood of oo.

(iv) L0(U_E)(y) = yfor some regular region U containing E.

( v ) d(U — E) = d(U) for some regular region U containing E.

The property (a) implies that £ satisfies (y\ 1). To see that S satisfies

(Sf. 2), it is sufficient to show the lemmas below,
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LEMMA 2.2. Let E be a set in the (z = x + iy)-plane such that E+ =
{z\x^0} e£ andE- = EΓ\ {Z|JC^0} e <?. Then Ee<?.

PROOF. For any ε>0, let ωε be a C°°-function on the space R of real
numbers such that 0 ^ ω £ ^ l onR, ωε(ί) = 0(ί^0) and ω ε(ί)=l(ί^ε). Let / be
a Royden function on Ec vanishing identically on a neighborhood of oo. Set
fε(z)=f(z)ωε(x)+f(z)ωE(-x). Then f(z)ωε(x)eM(E+c) and /(z)ω ε(-x)e
M(E~C). Since

- L
= 0

and

where S(f) denotes the support of/, we deduce

Therefore E e £.

LEMMA 2.3. Let E be a set on the {z = x + iy)-plane such that E+ = EV\
^.— a} eg and E~ = E Π {z\y^a} e*f for a positive number a. ThenEe

PROOF. Let/be a Royden function on Ec vanishing identically on a neigh-
borhood of oo and let ωa be a C°°-function defined in the proof of Lemma 2.2.
Then

Jεcdy dxdy

= o,

and hence E e <f.

§3. Examples

In this section we construct examples of bounded closed sets which are count-
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able unions of sets of class ^, yet are not of class S\

EXAMPLE 3.1. Let e = e({ak}9{nk}) = Γ\f=oek be a generalized Cantor set

contained in the interval [0,1] on the real axis which has positive length and is

a set of class S (cf. L. Sario and K. Oikawa [8, pp. 229-235]). We denote by

xk the length of ek-1 — ek, where fe^l. Since e has positive length, we have

Σ f= i χk < 1 Let Tk, k = 0,1,... be the sets of end points of ek and let yk be numbers

such that yo = l, 0<yk£l9 fe=l,2,... and yk-+0(k-*Qθ). Set E0 = {z = x + iy\xe

Tθ90<Ly^l} and Ek = {z = x + iy\xeTk-Tk_uO^y^yk}. Then E = e U \Jf=0Ek

is bounded and closed. In the following we shall show that if {yk} satisfies

Σΐ=i(Xklyk)<U t h e n E is not of class <f. Let l/ = {z | | z-( l + ϊ)/2|<2} and

define a function / as follows:

fy, z = x + iye C/-S((l + i)/2f 1)

(*•) f(z) = ylyk> xeet-i-βto 0 g ^ y k , k = l , 2,...

( 1 elsewhere.

Then/eM(E7-£, y) and Du.E(y)-Du.E(f) = 1 - Σ ? = I W Λ ) > 0 Hence </(£/-

For every non-negative number δ, we define an open set Δδ by

d a = {z||z| < ί}-{z = x+iy\x = 0, |^| ^ 5}.

To construct Example 3.3 below we prepare the following lemma:

LEMMA 3.2. For any feM(A0) and for any positive number ε t and ε2

there are a positive number δ = δ(f,εί,ε2) and a function g eM(Aό) such that

DAo(f-g)<ει and g=f on Ao n {z | |z |>ε 2}.

PROOF.*> We define a Royden function ωδtε2 on {z||z| < 1} by

ro, |z|<5

ωδiE2(z) = log(|z|/5)/log(e2/5), δ ^ |z| ^ ε2

U, ε 2 < | z | < l .

Then, for a sufficiently small number <5, g=fωδt£2 is the required function.

EXAMPLE 3.3. Let E = e[) Γ\f=0Ek be the set defined in Example 3.1 satisfy-

ing Σ?=i(Wyfc)<l a n < l l e t / b e the function defined by (**). We may assume

that ykΦll2J\k=l,2,...,j = l,2,.... For a sequence {δj}f==ί of positive numbers

*) Author's proof was relatively long. This short proof was given by Mr, Y. Mizuta,
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... and define £({£,-}) by E({δj}) = e U W^=1Fy. Then £({<5;}) is a countable union
of mutually disjoint bounded sets of class g. From Lemma 3.2 we know that
there are a sequence {δj} and a function geM(U — E({δj}), y) such that Dυ_E(g)<
Du-E(f) + (Dv(y)-Du-E(f))/2> Therefore E({δj}) is not of class £ for such a
sequence {δj}.

% 4. Characterizations of extremal sets of vertical slits

Let £ be a bounded closed set and let U be a regular region containing £.
For any h e C1(dU)9 we denote by M((7 — £, h) the class of functions / such that
/ e M ( F Γ £ ) for some region Vf^U and f\dU = h. Let

i(U-E,h)= inf
/εM(l/-£,/i) Ju-E^

A function # eM(E7 — £, h) such that

Ju-E\oy/

does not always exist and is not uniquely determined even if it exists. Since the

operator f^df/dy is linear, dM(U-E,h)ldy = {dfldy\feM(U-E,h)} is convex

in the space L2(U — E). Hence there is a unique function φ minimizing the L2-

norm in dM(U — E,h)/dy. We call the function φ extremal and denote it by

Ly(u-E)(h) A function φeL2(U — E) is extremal if and only if φedM(Π — E,

hWyandί φdfldy dxdy = 0 for every /eM(£7-£,0).
Jυ-E

The operator Ly(U_E): h\-+φ has the following properties:

(L. i) Ly((/_£) is a linear operator of C1(dU) into L2(U — E).
(L. ii) Let hl9 h2 be C^functions on dU such that hί = h2 on <3t/n3K,

where Fis a component of U Π {z = xH-i_y|a<x<b}. Then

(L. iii) Let V be a component of U Π {z|α<x<fo} such that dVn {z = x +
ϊ<y|x = c, a<c<b} consists of two points whose distance is not less than d>0 for
every c. Then

( \Ly(U.E)(h)\2dxdy^4(b~a)( sup |A(OlY (A

(L. iv) Given heCί(dU), define a function lh on (7 so that lh^=h on
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and y->lh(c+iy) is linear on each component of U Π {z\x = c} for every c. Let
V be a component oΐUΠ {z\a<x<b} such that Vf] {z\x = c, a<c<b} is connected
for every c and FίΊ E = φ. Then

Lyiϋ.E)(h)\V=LyU(h)\V = -^-\V a.e. on V .

We shall prove (L. ii) and (L. iv); the other two properties are easily
obtained. Let /,-„, 7 = 1, 2, n = l, 2,..., be functions of class M(Ϊ7 — £, /ij) such
that

Without loss of generality we may assume

f (^
Jv-E\ dyy J • s - ) V - E

/2,«(z) o n V—E and gn>ε(z)=f2>n(z) on U — V—E, n = l, 2,..., where ε is a number
such that 0 < ε < ( b — α)/2 and ω ε is the C°°-function defined in the proof of Lemma
2.2. Then gntEeM(U->E,h2) and dgnjdy = {l-ωε(a + ε-x)-ωε(x-b + ε)}.
dfι,Jdy + {ωε(a + £ — χ) + ωε(χ — b + έ)}df2Jdy on F—£. Hence for each n there
is a number ε — ε(n) such that

Therefore

dy
χ)\V-E=lim dg» °W. V-E=Ly(ϋ_E)(h2)\V-E a.e. onV-E.

Thus (L. ii) is proved.

Next we shall prove (L. iv). Choose a! and ft' so that a'<a<b<br and
the closure of U Π {z\a'<x<bf) is disjoint from £. Let h! be a function of Cί(dU)
which is equal to h on 31/ Π δFand to 0 outside of {z\a'<x<b'}. Then, for any
g e M( E7 - E, 0) we have

From the characterization of Ly(u_E) given above and (L. ii) we infer that

V a.e. o n F .
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This proves (L. iv).

Now we are ready to show:

THEOREM 4.1. Let E be a bounded closed set and let U be a regular re-

gion containing E. Then the following conditions are equivalent:

( i)
(ii) Ly(U_£)O) =1 a.e. on U-E.

(iii) i(U-E,y) = i(U,y).

(iv) Ly(u.E)(h) = LyU(h) a.e. on V-E for every

(v) i(U-E,h) = i(U,h) for every heCι(dU).

PROOF. By using the characterization of Ly{u_E){y) given after its defini-

tion we see that (iii) of Lemma 2.1 and the present (ii) are equivalent. Hence

(i) and (ii) are equivalent. That (ii) and (iii) are equivalent and that (iv) and (v)

are equivalent are trivial. The theorem will be proved if we show that (ii) implies

(iv). Suppose that (ii) is valid. Let h be a C^function on dU and let Fbe a com-

ponent of U Π {z\a<x<b} such that dVf] {z\x = c, a<c<b} consists of two

points whose distance is not less than d>0 for every c. For any ε>0, let hε

be a C1-function on dU which satisfies \hε — h\<ε on dUΓ\dV and is equal to

ocjy + βj on dU Π dVft {z |α i<x<fc J }, J = l , 2,..., n, where a} and bj are numbers

such that a = aί<bί<' <an<bn = b and Σ5=lK + i " ^ ) < ε Then, using
(L. i) to (L. iv), we have

\Ly(u-E)(hε)-Ly(ϋ_E)(h)\2dxdy ^ 4 ( b ~ a ) ε2,

\ ILyV(hε) -Lyυ(h) I *dxdy S 4(b7a) ε2 ,
J V-~E *&

\ \Lyϋ(hε)-Ly(U_E)(hε)\2dxdy=0

and

where W=\j{z\aj<x<bj}. Letting ε->0, we have

Ly(ϋ_E)(h)\V-E = Lyϋ(h)\V-E a.e. on F - £ .

This together with (L. iv) gives (iv).
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§ 5. Union of a countable number of extremal sets

We now show the following theorem:

THEOREM 5.1. Let Eo be a set of class & and let {JFπ}£=i be a regular

exhaustion of EQ. If E is a bounded closed set such that E Π Wne<£9 n = l, 2,...,

then EG if.

PROOF. Let C be the union of components c of E — Eo such that do E0Φ

φ. Then E'0 = E0 U C is of class J2\ Let {W'n}f=ί be a regular exhaustion of

E'Q such that (£-£{,)<= KJ«L2(W'n- W'n_x) and En W\=φ. The theorem will

be proved if we show

[ ^f-dxdy = 0
)E° Sy

for every bounded C1-function/on Ec with finite Dirichlet integral which vanishes

identically on a neighborhood of oo. Let Un=W'n-W'n_l9 n = 2, 3,.... Then

En = (E — E'0)nUnetf. By virtue of Theorem 4.1, there are Royden functions

fn on Un such that fn\dUn=f and

C ί fif \2 C / fif\2 1
\ ί^j^) dxdy<\ (ψ-) dxdy+-4-.
Jun\ dy ) *" )un-En\oy J J 2n

Let

/n(z), zetJ^, n = 2, 3,...

/(z), z e ί ^ i

and

- £ π , 0 ) , π = 2, 3,... and J £ , o C ( ^ / ^ ) 2 d x i i y < + 00.

Since Έn&δ and £ό e^f, we have

c dy

COROLLARY 5.2. Let Ex and E2 be sets of class «f. // E1 n E2 e &,

then Eί[)E2e £.

LEMMA 5.3. Let E be a set of class β contained in {z = x + ϊ>|0<x<α,
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hι<y<hΛ + l} where α, hx and I are positive numbers. For any function
feM(R-E), where R = {z = x + iy\0<x<a,0<y<h1 + l + h2} and h2>0, such
that f(ίy) and f(a + iy) and linear functions in y, there is a function g eM(JR)
such that g=f on dR and

PROOF. Let/„, w = l, 2,... be bounded C1-functions on R — E with finite
Dirichlet integral such that supR_E|/rt-/|->0 (n-+oo) and DR-.E(fn-f)-+0 (n->oo).
Then hfn~^hf (n->oo) and DR(hf)^ljmDR(hft), where hf (resp. hfr) denotes the
function continuous on R and harmonic on R such that hf=f on dR (resp. hfn =
fn on dR). Since DR(hfn)^DR(gn) for every gneM(R) such that gn=fn on δR,
to show the lemma we may assume that/is a C1-function on R — E. Let yί be
a number such that 0^y1 ^ht and

= min

Then

where /?1 = {z = x + /^|0<x<a,0<j</71}. Let y2 be a number such that
and

where i?2 = {z = x+ι>|0<x<fl, /z1 + /<y</z1-f / + Λ2}. Set

, /(z), 0 < y < < y 1 or y2 < y <

g(z) = \ V - V i VT-V

Then g e M(R), g = / on dR,

(
DR

1/2
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and

where Ro = {z = x + iy\0<x<a, yi<y<y2} Since £ e ^ , by Theorem 4.1,

we have i(R0,g) = ί(R0-E,f). Hence (L. iv) implies that

Therefore

The following theorem will be used to construct Example 5.5.

THEOREM 5.4. Let {an} be a monotone decreasing sequence of positive

numbers such that α o = 3/2, aί = l, an-+0 as n-*oo and

n-^ > 0
~7Γ~ a2n-2~~a2n+l

If En, n = 0, 1, 2,... are sets of class # satisfying Eo

and Ena{z = x + iy\0^x^l9 a2n^y^a2n-1}, n — \9 2,..., and if E=\jEn is

bounded and closed, then Ee#.

PROOF. It is sufficient to show that

{ ψ-dxdy = 0
)E* dy γ

for every bounded C1-function / on Ec with finite Dirichlet integral which

vanishes identically on the complement of the square S0 = {z\ — l<x<29 — \<y

<2}. Let

Rn = {z\ — 1 < x < 29(a2n + a2n+ί)l2 < y <

Then, by Lemma 5.3, there are functions /„ e M(#π) such that /„=/ on dRn and

DR ( y j ί(l+ . 2(a2n-2-a2n+l) \ £>̂  _̂

Set

/M(z), ze,Rn, n = l, 2,...

/(z), z * WΛn
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and

f(z)-fn(z), zeRn-En

0, zeR<n.

ί , eM(R,-£ B 0) , » = 1, 2,... and fireM(S^-£O)0). Since

£„€<?, n=0, 1, 2,..., we have

EXAMPLE 5.5. Let Fpj = l, 2,... be the sets defined in Example 3.3. Set
Ex = e U \JfL0F2k+ i and £ 2 = e U \Jf=ίF2k. Then £ x Π £ 2 = ̂  and, from Theorem

5.4, we know that £ x and E2 are sets of class «f. But we have shown in Example

3.3 that Et U E2 = E({δj}) is not always of class S.

Finally, we give another sufficient condition for a countable union of sets

of class (f to be again of class <f.

LEMMA 5.6. Let E be a closed set contained in {z\\z\<r,r<l} and let

A be the unit disc {z\\z\<\}. Then for any feM(A—E) there is a function

g e M(J) such that g = / on {z\ \z\ = 1} and

PROOF. AS in the proof of Lemma 5.3, we assume that / is a C ̂ function

on A — E. Let p0 be a number such that r ^ p 0 ^ 1 and

Then

and

\ΛPoeiβ)-ΛPoeiβ')\2

\θ-θ'\
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Hence

for every 0, where α = (min/(poe
ίθ)+max/(poe

ίβ))/2. Set
Θ β

< f(peiθ), Po < P ^

Then g e M(ϋ) and

= 1-r

Therefore

Let Λ be a doubly connected plane region. If R is conformally equivalent

to an annulus { z | l < | z | < μ } we call μ the modulus of R and denote it by μ(R).

THEOREM 5.7. Let En9 n = 0, 1,... be mutually disjoint sets of class &

such that Γ\%=ίyJΐ=mEnczE0. If there are two sequences {Un}f=ί and

of simply connected regions such that Um(] Un = φ(mΦή), EnaVnc:Un,n = l9 2,...

andMμ(Un-K)> 1, then £ = \Jf=0Ene£.

PROOF. For every n ^ 1, let Fn be a conformal mapping of Un onto {w||w| <

1} such that {w|r<|w|<l}cF π (l7 w -T;), where r > 0 is independent of n (cf.

L. Sario and K. Oikawa [8, pp. 201-204]). We denote by F'1 the continuous

extension of the inverse function of Fn onto {w||w|^l}. Let/be a bounded C1-

function on Ec with finite Dirichlet integral vanishing identically on a neighbor-

hood of oo. Then, by Lemma 5.6, there are functions / π eM({w| |w|^l}) such

on {w||w| = l} and
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Set

f UM(z)> zeUn9 n=l,2,...
g(z) =

f(z), zeEc

n-\J«LiUM

and

zeUn-En

[ 0, zel/J.

Then / = # + Σ£=I0H> 0 « e M ( ϊ ζ - £ „ , ( ) ) , n = l, 2,... and # is a Royden function

on £g which vanishes identically on a neighborhood of oo. Since Ene#, n =

0, 1, 2,..., we have

)Ecdy™s-r*r)Eo d y

Hence £ e £.

§ 6. Subboundaries of the image regions under quasiconformal mappings

In this section, we shall be concerned with the property (c) of extremal sets

of vertical slits and improve the result obtained in [6]. From Lemma 2.1 the

next lemma immediately follows:

LEMMA 6.1. A bounded closed set E is of class & if and only if

= 0

for every bounded Tonelli function f on Ec with finite Dirichlet integral which

vanishes a.e. on the complement of an arbitrary fixed bounded region contain-

ing E.

THEOREM 6.2. Let E be a set of class £ in the (z = x + iy)-plane and let
U be a region containing E. Let φ = u + iv be a quasiconformal mapping of
U — E into the (w = u + iv)-plane such that

(q. i) duldy^O a.e. on U-E,

(q. ii) du/dx and dvjδy are bounded Tonelli functions on U — E with finite
Dirichlet integral,

(q. iii) δx/du and dyjdv are bounded Tonelli functions on φ(U — E) with
finite Dirichlet integral.
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Then d(φ(V—E))-φ(dV)e£9 where V is a subregion of U such that E

cVczVczU.

PROOF. It is sufficient to show

f dLdudv = 0
Jφ(V-E) OV

for every bounded (^-function/on φ(V—E) with finite Dirichlet integral which

vanishes on φ{dV). From the assumption we know that dx/dv = 0 a.e. on

φ(U-E\ d{((dylδv)oφ)(duldx)(dvldy)}ldy = 0 a.e. on U-E and (f°φ)((dy/dv)oφ)

(du/dx) (dv/dy) is a bounded Tonelli function on V— E with finite Dirichlet inte-

gral (cf. L. Sario and M. Nakai [7], Chap. Ill, § 3). We may assume D(u, v)j

D(x, y)>0 a.e. on U — E. By virtue of Lemma 6.1 we have

φ(V-E

= 0.

This completes the proof.

COROLLARY 6.3 ([6]). Let E be a set of class £ in the (z = x + iy)-plane

and let U be a region containing E. If φ is a dijfeomorphism of class C2 of

U into the (w = u + iυ) plane such that du/dy = 0 on U, then the image φ{E) of

E is of class $\
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