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In this paper all rings are assumed to be commutative with identity. If
A is a noetherian Hubert ring which satisfies the second chain condition for
prime ideals, then the polynomial ring A[X~\ in an indeterminate X over A has
the second chain condition for prime ideals ([11], Theorem 1.14). However,
in Section 1, we show that v4[^] does not necessarily satisfy the first chain con-
dition for prime ideals, even though A is a noetherian Hubert ring which satisfies
the first chain condition for prime ideals. If a ring A satisfies the first chain
condition for prime ideals, then as we know, for each prime ideal p in A, ht(p)
-f dim(,4/p) = dimO4). However, it is unknown whether the converse of this
statement is true or not ([7], Remark 2.25). Moreover, in Section 1, we give a
noetherian integral domain such that the converse is false. Let A be a noetherian
semi local ring such that ht(p)-\-dim (A/})) = dim (A) for any non maximal prime
ideal p in A. Then it is known that ht(m) = dim(A) or ht(m) = 1 for any maximal
ideal in in A. But it is unknown whether this assertion is true or not for a general
noetherian ring ([7], Remark 2.6). In Section 2, we give a noetherian integral
domain such that the above assertion is false. This example shows besides that
the statement b) and the statement c) of Remark 2.25 of RatlifΓs paper [7] are
not equivalent: Even if dim 04/p) = dim (A) — 1 for each height one prime ideal
p in a noetherian integral domain A, the equality ht(9β) + dim (A/ty) = dim (A)
does not necessarily hold for any prime ideal φ in A. In Section 3, making use
of the example given in Section 2, we construct a non-catenarian local integral
domain D such that for each height one prime ideal p in D, ht(p) + dim (D/p)
= dim(D)(cf. [9], p. 232).

Throughout this paper the notation McN (or Nz>M) means that M is a
proper subset of N.

The author wishes to express his gratitude to Professor H. Yanagihara for
his valuable advice and his comments in writing this paper.

1. It is known that if a ring A satisfies the first chain condition for prime
ideals, then for each prime ideal p in A, /iί(p) + dim(A/p) = dim(/l) ([7], p. 1083).
Moreover, in [8], RatlifΓ proved that if A is a noetherian local domain, then the
converse of this assertion holds. However it is an open problem whether or not
the converse holds in general case ([7], p. 1085). The purpose of this section
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is to give a noetherian integral domain such that the converse is false.

For the convenience of the reader we cite here the following lemma which

was obtained by W. Heinzer ([4], p. 230).

LEMMA 1. Let D, B and V be integral domains with the same quotient

field K such that D = B Π V, V is a rank one valuation ring with a rational value

group, DczBcK, and V is centered on a maximal ideal φ in D. Then V=D%,

so ty is a maximal ideal in D of height one. Moreover, B is a flat D-module.

Hence the non-zero ideals in B are in 1-1 inclusion preserving correspondence

with the ideals in D not contained in *$, this correspondence being effected by

extension and contraction. In particular, B is a Hubert ring if and only if D

is a Hubert ring, and D is noetherian if and only if B and V are noetherian.

LEMMA 2. Let R be a noetherian integral domain, and let Rr be a finite

integral extension over R. If there exists a prime ideal 9β in R' such that

ht(9β Π R)>ht(ψ), then R[Z~] is not catenarian, where Z is an indeterminate.

PROOF. If R\_Z~\ is catenarian, then R satisfies the altitude formula by Theo-

rem 3.6 in [6]. Therefore, ht(φ) + tr.degR/ynR(RΊy) = ht(y () R) + tr.degR(R').

Hence, ht(ty) = ht(9β Π R) because R'/φ is integral over R/(Sβ n R) and R' is integral

over R. This is a contradiction.

A ring R is said to be equicodimensional if every maximal ideal in R has

the same height dim (R).

LEMMA 3. // R is an equicodimensional neotherian Hubert ring, then

R\_Z~\ is equicodimensional.

PROOF. Let $R be any maximal ideal in R\Z\ Since R is a Hubert ring,

WlΓiR is maximal in R by Theorem 5 in [2]. Therefore ht(Wl Π R) = άim(R)

by the assumption, and hence dim(#[Z])>/iί(9ft)>dim(K)+l because $0ϊ=>($t

Thus ήί(ΪR) = dim(jR[Z]).

NOTATION. We will retain the following notation for the remainder of

this section.

(1) K is a field of characteristic zero.

(2) Tis an algebraically independent variable over K.

(3) X = T, Y=T+T2/2\ + T3l3\ + -- = eτ-l. It is well-known that X

and Y are algebraically independent over K.

(4) A = KlX9r\ιx + 2.γ), N = (X + 2,Y)A,
F=X[[T]]nX(I 5 Y), v is a natural valuation of K[[T]], ^ = XK=

nκ(x,Y), D^AΠV, n=D1n9t=vn% m=z>1 nm=
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l) = D Π n = D Π % and \ = R Π ί.

Remark. Rί is the same as Nagata's example ([5], Example 2, pp. 204-205)
in case m = 0 and r = 1.

LEMMA 4. The following statements hold.
a) X is integral over R, and R[X]=R + RX.
b) R + RX contains YjX.
c) Let m, n fee positive integers such that m>n. Then R + RX contains

d) We denote by f(m, k) the coefficient of Tm+k in Ym, where /c>l, namely
γm = T>»+f(m,l)Tm+ί + ~'+f(m9ί)Tm+i + .' . Let bm>n{X, Y) = {Ym-Xm-f(m,
l)Xm+1 - ••• f(m, n-m)Xn}/Xn+\ where n>m. Then R + RX contains bm,n(X9

n
PROOF, a) Let u = (X + 2)X. As u is an element of \( = yjlV[S$l), R

contains u. Therefore X is integral over R and R{X~\ — R + RX because X2

+ 2X-u = 0.
b) Let d = (Y-X-X2/2\)IX2. Then 91 contains d. Since J = (T3/3!

+ T4/4! + •••)/T2> v(d)>0> Therefore t contains d9 and hence R + RX contains
Y/X because Y/X = l + {(l/2) + d}Z.

c) If />n, then (Xm-iYi)IXn = Xm-iYi-n(YIX)\ and if i<n, then (Z^-'y1)/
X^X^-^y/X)1. Therefore (*"»-'y')/*11 is an element of Λ + ̂ X by our as-
sertion b).

d) Set 0m,,,(X, y) = y* - X- -/(m, 1)X-+1 /(m, n - m)Xn -f(m, n -
m + l)Xn+ x. Since bm>π(X, Y) =f(m, n - m +1) + (gm>n(X, Y)/Xn+ x) =/(m, n - m

and since t contains {(gmtΛ(X, Y)-(gm,n(-2,0)/(-2)«+2)Z«+2}/X«+1, we have

LEMMA 5. D =

PROOF. Let f\Xn be an arbitrary element of D, where / e X [ I , y]. We
may assume that the monomials whose degree is greater than n — 1 don't appear
in/by the assertion c) of Lemma 4. Namely/is of the form ali0X + a0ΛY-\—
+ aiJX

iYJ + ' +an_U0X
n-1+an-2ΛX

n-2Y+' ' + a0fn_ίY
n-1. The value of

fjXn is non-negative. Therefore if we replace X, Yby T, T+T 2/2! + T3/3! +
respectively in /, then for every ΐ = l, 2,..., n — 1, the coefficient of T* is zero,
namely αi,o + «o,i=0 ' α2,o + «i,i + αo,2 + «o,i/(U l) = 0,

i , ,

+ + mΣ1^,m-i-i/(m-j-ϊ,j)+- + Σ fl|i2-ι/(2-i, m-2) + αo,i/(1' m -

i=0 i=0
= 0,.... Therefore α1 > 0=-«0,i» ^2,0= -«i,i~αo,2-«o,i/(1'!)» fl3,o=-β2
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m-ί m-2

-01,2-00,3-^1, l/(l» l)-«0,2/(2,l )-flθ,l/(l» 2)>-> 0m,O= ~ Σ «i,m-«— Σ «i.
m-J-1 1 t=0 i=0

m-i-i/(m-l-/, 1) Σ aιtm-j-ifQn-j-i,j) Σ aU2-if(2-i9 m-2)
i = 0 m-1 m-2 i=0

-Λ O f l /( l , m-1) , . . . . We substitute - Σ β<. m - i- Σ ««,,»-i-i/(™-l-f, 1)
ί=0 i=0

#o,i/(l> m — 1) for the coefficient αffl)0 of Xm in/. Then we obtain f=aOΛ(Y

-X-f(i 1)X2 /(I, n-

Therefore //X" = α o .A.»-i(*> Y) + aUίbUn.2(X, Y) + aoab2>n_1(X,

ibUn-3(X, y ) + +αt>1fo1>M_ ί_1(X, Y H + ^ .ufc + i ^ + ^ C * , Y)+

+ 0/1-2,i&i,iCX> Y)+m~ + <*o,n-ibn-itn-ι(X9 γ)> a n d hence//Xn is an element

of R + # J ί by our assertion d) of Lemma 4. Thus D = R + RX.

LEMMA 6. The following statements hold.

a) q is 0 maximal ideal in D, and /ιί(q) = l.

b) D and R are noetherian Hilbert rings.

c) ht(t)) = 2, ht(\) = 2andqf]R = ].

d) R\_Z~] is not catenarian, where Z is an indeterminate. In particular,

R[_Z~\ does not satisfy the first chain condition for prime ideals.

e) R satisfies the first chain condition for prime ideals.

PROOF, a) As K^Djq^VjW^K, D/q = K. Hence q is a maximal ideal

in D, and hence Lemma 1 implies that Dq = Fand that ftί(q) = 1.

b) Since B is a noetherian Hilbert ring and Fis noetherian, D is a noetherian

Hilbert ring by the assertion of Lemma 1. Since D is a finite integral extension

of R by Lemma 5, R is a Hilbert ring and is noetherian by Eakin-Nagata's theorem.

c) q r\R = ̂ lf)DnR = mf]D1 0 D Π R = m f] D Π R = m Π R = B 0 m Π Rx

and m(]R1 = l Hence we have q Π £ = j . Since ί) Π K[X, 7 ] = 91 n D Π iC[Z, Y]

Y)X[X, y ] and K\X, Y J c D c y i , we have 4 = K[X,
a n d n e n c e ^ = £ ) v Therefore /iίφ) = 2. Since I) Π R

= DnnΓ\R = nΓiR = BnR1Γιn and i ? 1 n n = i , ^ n ^ = j , and hence ftf(j) = 2

because D is integral over R and because /zί(ί)) = dim(JR) = 2.

d) The fact that 2 = ht(c\ n JR)>/ίί(q)=l implies that Λ[Z] is not catenarian

by the assertion of Lemma 2.

e) By Lemma 1, the canonical mapping Max(β)-»Max(D) — {q} is bijection,

where Max(*) means the maximal spectrum of a ring *, i.e., the set of the maximal

ideals in a ring *. Since B is equicodimensional, the height of each element of

Max(D) — {q} is 2. Moreover since the canonical mapping Max(D)->MaxCR)

is surjection and ht(\) = 29 R is an equicodimensional ring of dimension 2 because

a maximal ideal in D except q is height 2 and /iί(j) = 2. Thus R satisfies the

first chain condition for prime ideals because R is two-dimensional.
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REMARK. R is a Hubert ring which satisfies the first chain condition for

prime ideals, but R[Z~] does not satisfy the first chain condiiton for prime ideals.

However, for the second chain condition for prime ideals, the following statement

was obtained by H. Seydi ([11], Theorem 1.14): Let C be a noetherian Hubert

ring. If C satisfies the second chain condition for prime ideals, then so does C[X],

where X is an indeterminate.

In the remainder of this section, we assume that K is algebraically closed.

LEMMA 7. Let φab = Dίn(X-a,Y- b)B, a Φ 0, and let pa>h = Rf] φ α >

If {a, £?)Φ( —2,0), then RPab is a regular local ring.

PROOF. If feφO, then 7 is an element of R — τρab. Hence RPab contains

X because X = XY/Y. Therefore RPab=>K[_X, 7 ] . Since (X-a°Ύ-b)K[X,

7 ] = <pα,b ίl KIX, 7 ] = φα > b n RPa b Π K\X, 7] = Va,bRPa,b n KIX, 7 ] , we have KIX,

Y\x-a,γ-b)^RPθtb^Dyab = KtX9Y\x_afY_b), which implies that RPab = K[X,

Y\x-a,γ-by If β φ 2 , then (X + 2)X is an element of R but not of pab because

t contains (X + 2)X. Hence RPab contains X because X = X 2 (X + 2)/(X(X + 2)).

Therefore we see similarly that RPab = K[X, 7] ( A Γ _ Λ > y _ 6 ) . Thus if (a, fc)φ(-2, 0),

RPa b is a regular local ring.

LEMMA 8. For each prime ideal Q in Λ[Z], ^ ( Q ) + dim(Λ[Z]/£ =

PROOF. Since R is an equicodimensional Hubert ring of dimension 2,

every maximal ideal in R\Z~] has the same height 3 by Lemma 3. Therefore

we may assume that Q is not maximal. Suppose that there exists a maximal

ideal 91" in D[Z] such that QD[Z]<=9t" and W Π D = S3βab, where (a, ft)φ(-2,0).

As 9 t " D [ Z ] ^ α b ^ Q # [ Z ] P α b = Q/^ α b [Z] and RPab is a regular local ring by the

assertion of Lemma 7, R[_Z\, is a regular local ring, where 9t' = 9t" n K[Z],

Since # [ Z ] is equicodimensional and 91' is maximal in R[Z], the height of 91' is

3. Therefore 3 = dim (RIZ]*.) = hί(QR[Z] sO + dim (Λ]Z]w7QJR[Z] s0 < Λί(Q) +

dim (Λ[Z]/O) <dim (R[ZJ) = 3. Therefore dim (Λ[Z]) = Λ/(Q) + dim (Λ[Z]/O).

Now suppose that there does not exist a maximal ideal W in D[Z] such that

DD[Z]c$ft" a n d w n D = φatb9 where (α, &)φ(-2,0) . Since R\_Z] is a Hubert

ring, Q = Λ 91^, where 91^ is maximal in R[_Z~\. By our assumption, for any λ,

yi'λnR = \ because $l'λΓ\R is maximal in R by the fact that R is a Hubert ring

(cf. [2], Theorem 5). Since A is an infinite set, £>= \R[_Z]. As ht{\R\_Z]) =

= 2 and dim(^[Z])/j^[Z]) = dim(K[Z])=l , dim(Λ[Z])

Thus for each prime ideal Q in # [ Z ] , /iί(Q) + dim(Λ[Z]/Q) =

By the above arguement, we obtain the following proposition which implies

that R[Z~\ is a counterexample to the assertion at the beginning of this Section.
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PROPOSITION. For each prime ideal Q in R[Z], dim(£[Z]) =

+ dim(R[Z]/Q), but #[Z] does not satisfy the first chain condition for prime

ideals.

2. Let A be a ring. Consider the following properties of A.

1) For each non-maximal prime ideal p in A, /iί(p) + dim(^4/p) = dim(v4).

2) For each prime ideal p in A9 either /ιί(p) + dim(.4/p) = dim(/l) or p is

a maximal ideal of height one.

In [7], pp. 1076-1077, RatlifF has considered the following statements.

a) The statement 1) implies (in the noetherian case) that dim(^)<oo.

b) 1) and 2) are equivalent in general (noetherian) case.

In this section, we construct a counterexample to the statement b).

REMARK. If A is noetherian, then the statement a) is true. In fact, we

suppose that άim(A)=oo. Then for each non-maximal prime ideal p in A,

dim(^4/p)=oo by the assumption. Let p x be a non-maximal prime ideal in A.

There exists a maximal ideal m 2 in A such that m2=>p1 and /2ί(m2/p1)>2 because

άim(A/p1)=co. Therefore, there exists a prime ideal p 2 in A such that m2=>p2

Similarly we can take prime ideals p 3 , p 4 , . . . such that p 1 c p 2 c : p 3 c : p 4 c : . . . ,

which contradicts the fact that A is noetherian.

LEMMA 1. Let C be a locally noetherian ring, and α 1 ^ α 2 c α 3 c . . . be

an ascending chain of ideals in C. If there exist only a finite number of maximal

ideals in C which contain o l 5 then αn = α Λ + 1 = for some n.

PROOF. Let m 1 ? m 2 , . . . ,m r be the maximal ideals in C which contain αx.

Since Cm. is noetherian for each i = 1, 2,..., r, anCm. = an+ίCm. = for a sufficiently

large n. Let m be any maximal ideal in C other than rrt ί9...9 m r. Since a1Cm

NOTATION. 1) K is a field with cardinality < K o.

2) ^i, Yi, ^3, XD Xi, ^ 3 , are algebraically independent variables over

K.

3) A = K\YuY29YZ9XuX2,...-\9

P = (Y19 Y29 Y3)A.

4) F={feP;f is a prime element such that fA^YxA and X1 does not

appear in /}. Since card(K)< Ko, card ( 4 ) = Ko, and hence c a r d ( F ) = X 0 .

Therefore we may set F={fa Ϊ = 1,2, 3,...}, where ftA + fjA if ΐΦ j .

5) Let e(l, 1) and e(l,2) be two positive integers such that e(l9 l ) φ l and

έ?(l, 2)Φ 1, and that ^ e(i,i) and Xe(U2) don't appear in fx. Let e(291) and e(2,2)

be two positive integers such that {1, e(l, l),e(l,2)} $> e(2,1), e(2,2), and that
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^e(2,i) a n d ^e(2,2) don't appear in f2. By the same way as above, for each

integer n > 2 we proceed inductively to choose two positive integers e(n, 1) and

e(n, 2) such that {1, e(\, 1), e(l, 2),..., e(n-1,1), e(n-1, 2)} $ e(n, 1), e(«, 2),

and that Xe(M,D and Xe(π,2) don't appear in/r t.

6) We replace ^ β ( 1 > 1 ) , Z e ( l f 2 ) , Xβ ( 2 f l ),... by X2, X 3, X4,... respectively,

and denote by Zl9 Z 2,.. . the rest of X/s.

LEMMA 2. Lei P ^ ί / ^ , * ^ , JT 2 ί + 1 )A Lβί φ: A->R = K[Yl9Y29Y3,X2,

X3,..., Zί,Z2,...~\^A/(XίA) be the canonical homomorphism. Then the fol-

lowing statements hold.

a) Pi is a prime ideal in A.

b) For each non-zero element a of R, there exist only a finite number of

ΦiPiYs which contain a. In particular, for each element g of A but not of XXA9

there exist only a finite number of P^s which contain g.

c) Let P' be the prime ideal in A generated by Yl9 Y2, Y3 and Xx. If
oo

α is an ideal in A such that a^P' (j U P ί 5 then a^P' or a^Ptfor some i. In
i = l oo

particular, if a is an ideal in A such that α ^ P u \J Pi9 then a^Pr or a^Pifor

some i.
d) Let T=A-P'Ό \J Pi9 and let S = A-P[) 0 P f. Then, T~ίA and

i= 1 i= 1
S ίA are noetherian.

PROOF, a) As/£ is a prime element and Xu X2i and X2i+ι don't appear

in fh P( is a prime ideal in A.

b) Let R0 = K[Yλ,Y2,Y2,Zλ,Z2,...~]. Let m be a positive integer such

that RQ[XX,X2,..., Z m ] contains a. Tt suffices to show that there exist only a

finite number of Γs such that m<2ί and φ(Pf) contains a. Suppose that </>(Λ)

( = (f.9X2hX2i+ί)R) contains a, where m<2i. Therefore α = /z1/i + /i2^2i

+ h3X2i+1, where hί,h2,h3eR. Since X2i and X2i+i don't appear in a and

fi9 by substituting 0 for X2i and X2i+l9 we see that f{ devides a. This implies

that our assertion holds by the facts that /, is a prime element and that /f and f}

are relatively prime if i Φ j .

c) φ(a)^φ(Pf)\J Oφ(PdHYu Y2, ^ ) ^ U G ( / , , X 2 ί, X 2 i + i ) « . Suppose
i = l i = l

that φ(ά) is finitely generated, namely φ(ά) = (h1,..., hs)R. Let r and t be two

positive integers such that Rί=K[Yί, Y2, Y3, X2, X39..., Xr, Z l 5 . . . , Z J contains

/*!,..., /is, and let TV be a positive integer satsifying r<2N. Since ( 7 l 9 72, 73)Λ
contains ft for any /, ψ(α) fl Ri =(Yl9 Y2, Y3)R, U W ( ^ n (/f, Z 2 i , X 2 ι + i ) * )

i = l

Therefore φ(a) n i^i ̂ ( 7 i , F 2, 73)^1 or φ(α) n Rt g ^ n (/„ Z 2 i , X 2 i + i ) # so that

( F ^ y ^ y a ^ a / i i , . . . , / ! , or (f, X2hX2i+1)Rs hl9..., hs. Hence φ(ά)ς:φ(P') or

^φ(Pι) for some ϊ. Next suppose that φ(α) is not finitely generated. Let

) = (hl9h2,...)R (Note that φ(ά) is generated by a countable number of the
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elements of R). Let bn = (hu..., hn)R. If (Yls Y2, Y3)Kφ0(α), there exists a

positive integer n 0 such that for each n>n0 (Y1? Y2, Y3)R^bn, whence there

exists a positive integer i(ή) such that bn^φ(Pi(n)) for each n>n0. The set {i(n);

n = nθ9 n o + l,...} is finite since there exist only a finite number of φ(P/)'s which
00

contain ftx by our assertion b). Hence φ(a) ( = W b j is contained in φ(Pi)
i = l oo

for some i. Thus for any ideal α in A satisfying α ̂  P' (J W P i ? we have φ(α) c φ(P')

or φ(ά)^φ(Pi) for some i so that a^Pf or α ^ p . for some i.

d) Every maximal ideal in T~ίA is of the form T~ιP' or T~1Pi for some

i by our assertion c), and hence T"ίA is locally noetherian. Let 93X ^ 3 3 2 ^ ••• be

an ascending chain of ideals in T~ 1A, and let bf = 33 f Π A. If there exists a positive

integer n 0 satisfying b ^ φ X ^ , then by our assertion b) there exist only a finite
number of maximal ideals in T~1A which contain ©π o. Therefore 33n = 3$M+1

= ••• for some n by Lemma 1. If bn^XxA for any n, bπ is of the form Xα ( π )cπ,

where cΛ is the ideal in A such that c^X^. As α(l)>α(2)>α(3)> , a(m)

= α(ra + l ) = for some m, whence T ~ 1 c m c T ~ 1 c m + 1 £ . Since ^ φ Z x ^ ,

by applying the similar method as before, we see that T ~ 1 c r = T " 1 c r + 1 Ξ . . for

some r. Therefore 33r = 93 r + 1 = •••. Thus we conclude that T~ιA is noetherian.

Also S~1A is noetherian since S-ίA = S~ι(T-1A).

LEMMA 3. Let B = S-χA. Let H = {e1Y
rϊ + e2X1\ et e S , meN and e2

GA} and let Sx be the multiplicatively closed set generated by Xx and all the

elements of H. Let Q = (Y2,Y3)A and let l/f = {p e Spec 04) Pf=>p, ht(PJp)=l

and p φ

a)

b)

c)
prime.

d)

e)

height 3

(Y2, ]

β Π -

Let g
Then,

P*n
Lei p

in ST

Then

be

. p t

H =

fee
! £ .

= 0
any

$ ^
= 0

any

the following statements hold.

. n s = 0.

element of K[Yl9

for any i .
00

element of \J l/t .
i= 1

7 2 , Y3] swcft ίftaί of an

Then Sj1(S-1p) is a

id f are relatively

maximal ideal of

f) S ϊ K 5 " " 1 ® is a maximal ideal of height 2 in S l 1 ^ .

PROOF, a) Let h be an arbitrary element of {Y2,Y3,XX)A. We can

express h = X1h1 + h2, where /zx e^4, h2e(Y2, Y3)A and Z x doesn't appear in

h2. If /i2 = 0, then hePt for any i, whence S $ ft. If ft2 = 0, then there exists

at least one prime divisor of ft2 which is of the form / f, so that P( contains ft, and

hence S $ / i . Thus (Y2, Y3, X ^ 0 5 = 0.

b) Suppose that Q contains an element e1Y
rί~{-e2X1 of H. Since φ ^ i ^ T

+ e 2 Z 1 ) e (Y2, Y3)JR, ^ e j Y T e (Y2, Y3)R. Therefore φ(e1) e (Y2. Y3)K, and hence

eι e(Y2, Y3, X\)A. However this contradicts our assertion a).

c) Suppose that Pt contains g. Then we can write g = h1fi + h2Xί + h3X2ι
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+ h4X2i+ί, where hl9...9 h4eΛ. Since Xί9X2i and X2i+1 don't appear in ft

and g, by substituting 0 for Xi9 X2i and X2i+U

 w e s e e that/ f divides g. This is

a contradiction.

d) Suppose that Pt contains an element et Y*l + e2Xι of H. Then Pt 3 e1 Yy

since P f contains Xλ. This is impossible because P f does not contain eί and y l β

Thus Pi Π i ί = 0 for any i.

e) Since p Π if = 0 and p ί ^ for each element p of Ui9 p Π Sx = 0. /ιί(p)

= Λί(JP|) —1 = 3 because A is catenarian. Since dim (B) = 4 and since every

maximal ideal of height 4 in B is of the form S"1Pi for some i by our assertion

c) of Lemma 2, we have dim(S'[1B) = 3. Thus Sγ 1 (S" 1 p) is a maximal ideal

of height 3 in S^B.

f) If P p β , then Pt contains 72, Y3, Xl9 X2i9 X2i+ί9 whence /ιί(P f)>5.

This contradicts ht(Pι) = 4. Therefore to prove that S~[ί(S~1Q) is a maximal

ideal in S^1B9 it suffices to show that for any prime ideal Q! in A such that Q

<=Q'^P'9 we have Qf Π S x Φ0. Let # be an element of Q' but not of Q. We

may assume that Y2 and Y3 don't appear in g. If 7X does not appear in g9 then

^ is of the form gγX\9 where gx φ F . Hence β ' a ^ i Thus Q'(\Sί±0.

Now suppose that Yv appears in g. Then g is of the form uίY
n

1+u2Xί9 where

wl5 u2eA. We may assume that Z x does not appear in ut and that YγA $ Wj.

Therefore P does not contain wx. By our assertion b) of Lemma 2, we may as-

sume that P ι ( 1),..., P ί ( m ) are totality of P/s which contain Mt. Let P j ( 1 ) , . . . , P y ( s )

be the totality of P/s such that X2i or X 2 Ϊ + I appears in ux. Let r be a positive

integer such that Y2+Yr

3 is relatively prime to each/ i ( 1 ) , . . . ,/ ί ( m ) ,/ i ( 1 ) , . . . ,/ i ( s ) .

Then P i (i)U ••• U P ί ( m ) U P i ( 1 ) U ••• U P i ( s ) does not contain Y2+Yr

3 by our as-

sertion c). Let t be a positive integer such that P 7 ( 1 ) u ••• U Pj ( s ) does not contain

^ i ( ^ 2 + ^ 3 ) + M i (Proof of the existence of such an integer t: Suppose that

P 7 ( 1 ) u ••• U Pj(S) contains Y\(Y2 + Yr

3) + uί for any positive integer ί. Then some

Pm contains y ί

1

( 1 )(7 2+ Yr

3) + u1 and Y\i2)(Y2+Y3) + uί9 where t(ί)<t(2). Hence

Pm contains y ^ ^ l - y ^ ^ - ^ ^ X ^ + ys) so that Pm contains 1 - Y^-ήi)

because Yx and Y2 + Yr

3 are not contained in Pj(fc). This contradicts the fact

that PKk)^(Yί9Y29Y39Xί9X2,...)A ) Then P u G Pf does not contain Y\(Y2

+ Yr

3) + uί. Indeed, P ^ y ^ y a + y ^ + Mi since Ps Yx and P $ i i l e And if for

some iφi(l), i(2),..., /(m), j(l),..., j(s), Pf contains Y\(Y2 + Yr

z) + ul9 then y^Tj

+ ϊrS) + «i=Λi/i + Λ2X1 + Λ3-X
r

2i + Λ4A'2i+1, where hl9...9h4eA. As X l 5 X2 ί

and X 2 ί + 1 don't appear in ul9 by substituting 0 for Xl9 X2i and X2i+l9 we see

that uγ is of the form fih1 - y U ^ + ^3) s o that P B UX. This is a contradiction.

For each i(k)9 Pm$ Y{(Y2 + Yr

3) + uί since Pmsux and P ί ( J k )^ 7UΪ2+ ^3).

Thus S contains Yt

1(Y2+Y3) + u1. Therefore H Π Q! contains (Y\(Y2+Y%)

+ u1)Y\+u2X1. Thus S 1 Πβ'φ0. Since ht(Q) = 29 the height of S-[1(S"1Q)

is 2. Thus the proof is completed.
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Now we obtain the following proposition which gives our desired example.

PROPOSITION. For each non-maximal ideal q in S~[lB, ht(q) + dim(SjίB/qi)
= 3. However, Sj1B has a maximal ideal of height 2.

PROOF. Let q ( = 5γ1(S~1p), where peSpec(,4)) be a non-maximal prime
ideal in S^1B. To prove that /ίί(q) + dim(571J5/q) = 3, we may assume that
ht(q) = l because S~[1B is three-dimensional. Since A is a unique factorization
domain, V = Af for a suitable prime element / of A. If / e P f for some i, then
Lemma 5 of [1] implies that a maximal element with respect to the inclusion rela-
tion in the family {p'eSpec(yl); p'<=Pf, v'3f a n d p ' ^ X J has the height 3,
and hence dim(571β/q) = 2 by our assertion e) of Lemma 3 and by the fact that
B is catenarian. If fe P\ then we can express f=g + hXί9 where g, he A. Since
/ is a prime element and / is an element of q, g is not zero. We may assume
that Xj does not appear in g. Therefore, g eP. If g has a prime divisor/f for
some i, Pt contains/, whence ά\m(Si1Blq) = 2. If any ft isn't a prime divisor of
g9 then g is of the form Y™gu where gλeA — P. Since/ is not an element of
H, S does not contain g. Therefore Pi^gx for some i because gx e A — P. Hence
P f9/, so that άim(SjίBlq) = 2. Thus for each non-maximal prime ideal q in
S^B, ftί(q) + dim(S71JB/q) = 3. Siί(S'1Q) is a maximal ideal of height 2 in
Si[ίB by/) of Lemma 3. Thus our assertion is proved.

REMARK 1. Every prime ideal of height one in S~[ίB is contained in some
maximal ideal of height 3 by the proof of the above Proposition. Therefore
S^1B does not have a maximal ideal of height one. Moreover, we see that for a
noetherian ring E the following statements of Remark 2.25 in [7] are not equiva-
lent: b) For each prime ideal p in £, /iί(p) + dim(£/p) = dim(£). c) For each
height one prime ideal p in E, dim(£/p) = dim(£)—1.

REMARK 2. If every maximal ideal of height 3 in Si1 B is of the form

Sl1(S"1p) for some element p of W (7f, then by using Corollary 10.5.8 in [3],

p. 106, we see that S~[1B is a Hubert ring.

3. In [9], p. 232, Ratliff gave the following conjecture.

H-conjecture: If £ is a noetherian local domain such that ht(p) + dim (R/τρ)
= άim(R) for each height one prime ideal p in R, then R is catenarian.

In this section, making use of the example constructed in the previous sec-
tion, we give a non-noetherian local domain D such that D is not catenarian, but
for each height one prime ideal n in D, /ιί(n) +dim (D/n) = dim (D).

LEMMA 1. Let K be afield and let C be a noetherian integral domain over
K. Let D = K + ZC[[Z]']9 where Z is an indeterminate, and let 3t=ZC[[Z]].
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Then the following statements hold.
a) D is a local ring whose unique maximal ideal is 91.

b) 9i = λ/i)Z. In particular, 91 is a minimal prime ideal of DZ.
c) Let K={neSpec(D);nc:9t}. Let ρ(p) = pC[[ZJ] Π D for each prime

ideal p in C. Then p: Spec(C)-»Fis injective.
d) ht(p) = ht(p(p))for each prime ideal p in C.
e) Let μ(n) = {#eC[[Z]];Z#ett} for each element n of V. Then μ(n)

is a prime ideal in C\XZJ].
f) For each element n of V, Zp(n) = n and nDz = p(n)C[[Z]][l/Z]. In

particular, μ: V-+ Spec(C[[Z]]) is injective, and ht(n) = ht(μ(n)) for each element
nofV.

g) μp(p) = vC[_[_ZJ] for each prime ideal p in C.
h) Let n' be a prime ideal in C[[ZJ]. Then Zn' is prime in D if and only

if n' does not contain Z. In particular, for each maximal ideal 901 in C[[ZJ]9

ZSM is not prime in D.
i) /zί(9ϊ/p(m)) = l for each maximal ideal m in C.
j) dim(Z)) = dim(C) + l.

PROOF. We see obviously that the assertion a), b), c), f) and g) hold.
d) Since DZ = C[[Z]][1/Z], p(p)z = PC[[Z]] [1/Z] n D z = pC[[Z]] [1/Z],

and hence ht(p(p)) = ht(p(p)z) = ht(p) because C is noetherian.
e) Suppose that fg belongs to μ(n), where /, #eC[[Z]]. Then nsZfg,

whence nB(Zf)(Zg). But n is prime in D. Consequently either Zfen or Zg e
n. It follows that either /eμ(n) or ^eμ(n). Hence μ(n) is prime in C[[Z]].

h) First suppose that Zn' is prime in D. If n' contains Z, then Zn' con-
tains Z 2, whence Zn' sZ because Zn' is prime in D. Hence n' s 1. This is a
contradiction. Next suppose that n' does not contain Z. Let (Zf)(Zg) be an
element of Zn', where /, g e C[[ZJ]. Then Zfg belongs to n', whence n' 3fg by
our assumption. Therefore either n' 3f or n' 3 g. It follows that either Zn' B Zf
or Zn' 3 Zg. Thus Zn' is prime in D. Finally, the radical of C[[Z]] contains
Z so that the last assertion is obvious.

i) Suppose that there exists a prime ideal n in D such that p(m)czncz9l.
Then mC[[Z]]=μp(m)cμ(n) by our assertion e), g). It follows that μ(n) is
maximal in C[[Z]] since m is maximal in C. On the other hand, Zμ(ή) = n by
the assertion f), this contradicts the assertion h).

j) We may assume that dim(C)<oo by the assertion d). Set n = dim(C).
Let m be a maximal ideal of height n in C. Since 9l=>p(m), /zί(9t)>rc + l by the
assertion d). Let n be any element of V. The assertion f) and h) imply that
μ(n) is not maximal in C[[Z]], whence /zί(n)<dim(C[[Z]]) = n + l by the asser-
tion f). Hence ht(9l) < n +1. Thus /iί(9l) = ή +1.

LEMMA 2. Let C be a noetherian integral domain and let ^ be a prime
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ideal in C. Let a be a non-zero element o/φ. Then there exists a prime ideal
p in C such that ht(p) = ht(ψ)-1 andp^a.

PROOF. We prove the assertion by induction on ht(9β). Set n = ht(φ).

If rc = 2, then Γ\pλ = 0, where pΛ is a prime ideal of height one contained in φ,

whence pλ^a for some λ. Assume that n> 2. Let φ = poiDp1=) ••• =>pn_2

IDVn-ι

D O be a chain of prime ideals in C. Similarly, we may assume that pn-ί does

not contain a. Then, applying the induction assumption to φ/p π _ l 5 we obtain

a prime ideal p such that ht(p) = n — 1 and p does not contain a.

LEMMA 3. (Samuel, [10], Theorem 2.1) Let C be a regular unique fac-

torization domain. Then C[[ZJ] is also a regular unique factorization do-

main.

We are now able to state:

PROPOSITION. Let the notation be the same as in Section 2. Let C

= 5 7 ^ and let D = K + ZC\_[_ZJ\, where Z is an indeterminate. Then D is a

non-catenarian local domain, and dim(D/n) = 3 for each height one prime ideal

n in D.

PROOF. C has a maximal ideal of height 2 and a maximal ideal of height

3 by the assertion e) and f) of Lemma 3 of Section 2. Hence the assertions d)

and i) of Lemma 1 imply that D is not catenarian. Let n be a prime ideal of height

one in D. Since C is a regular unique factorization domain, so is C[[Z]] by

Lemma 3. Hence μ(ή) = (c + Zg(Z))C[[ZJ], where ceC and g(Z) e C[[Z]].

Since c + Zg(Z) is a prime element and since n does not contain Z, c is not zero.

Let m be a maximal ideal in C of height 3 containing c. The existence of such

m follows from the proof of Proposition of Section 2. Let 9)ΐ = mC[[Z]]

+ ZCHZJ]. Since ht(W) = 4 and C\_[ZJ] is catenarian (cf. [11], p. 24), Lemma 2

implies that there exists a prime ideal n\ in C[[Z]] such that ht(n'ί) = 3, ni =>μ(n)

and ni does not contain Z. Hence there exists a chain of prime ideals Oczμ(n)

cx\'2 c n i in C[[ZJ] by the fact that C\_[_ZJ\ is catenarian. Therefore O c n c Z n ' 2

czZniciSft is a chain of prime ideals in D by our assertion f), h) of Lemma 1.

Thus dim(D/n) = 3.

REMARK. Since K is algebraically closed in C, D is a normal integral

domain.
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