Some Counterexamples Related to Prime Chains in Integral Domains

Kazunori Fulita
(Received May 19, 1975)

In this paper all rings are assumed to be commutative with identity. If A is a noetherian Hilbert ring which satisfies the second chain condition for prime ideals, then the polynomial ring $A[X]$ in an indeterminate X over A has the second chain condition for prime ideals ([11], Theorem 1.14). However, in Section 1, we show that $A[X]$ does not necessarily satisfy the first chain condition for prime ideals, even though A is a noetherian Hilbert ring which satisfies the first chain condition for prime ideals. If a ring A satisfies the first chain condition for prime ideals, then as we know, for each prime ideal \mathfrak{p} in $A, \operatorname{ht}(\mathfrak{p})$ $+\operatorname{dim}(A / \mathfrak{p})=\operatorname{dim}(A)$. However, it is unknown whether the converse of this statement is true or not ([7], Remark 2.25). Moreover, in Section 1, we give a noetherian integral domain such that the converse is false. Let A be a noetherian semi local ring such that $h t(\mathfrak{p})+\operatorname{dim}(A / \mathfrak{p})=\operatorname{dim}(A)$ for any non maximal prime ideal \mathfrak{p} in A. Then it is known that $h t(\mathfrak{m})=\operatorname{dim}(A)$ or $h t(\mathfrak{m})=1$ for any maximal ideal m in A. But it is unknown whether this assertion is true or not for a general noetherian ring ([7], Remark 2.6). In Section 2, we give a noetherian integral domain such that the above assertion is false. This example shows besides that the statement b) and the statement c) of Remark 2.25 of Ratliff's paper [7] are not equivalent: Even if $\operatorname{dim}(A / \mathfrak{p})=\operatorname{dim}(A)-1$ for each height one prime ideal \mathfrak{p} in a noetherian integral domain A, the equality $h t(\mathfrak{P})+\operatorname{dim}(A / \mathfrak{P})=\operatorname{dim}(A)$ does not necessarily hold for any prime ideal \mathfrak{P} in A. In Section 3, making use of the example given in Section 2, we construct a non-catenarian local integral domain D such that for each height one prime ideal \mathfrak{p} in $D, \operatorname{ht}(\mathfrak{p})+\operatorname{dim}(D / \mathfrak{p})$ $=\operatorname{dim}(D)(c f .[9]$, p. 232).

Throughout this paper the notation $M \subset N$ (or $N \supset M$) means that M is a proper subset of N.

The author wishes to express his gratitude to Professor H. Yanagihara for his valuable advice and his comments in writing this paper.

1. It is known that if a ring A satisfies the first chain condition for prime ideals, then for each prime ideal \mathfrak{p} in $A, h t(\mathfrak{p})+\operatorname{dim}(A / \mathfrak{p})=\operatorname{dim}(A)([7], \mathfrak{p}$ 1083). Moreover, in [8], Ratliff proved that if A is a noetherian local domain, then the converse of this assertion holds. However it is an open problem whether or not the converse holds in general case ([7], p. 1085). The purpose of this section
is to give a noetherian integral domain such that the converse is false.
For the convenience of the reader we cite here the following lemma which was obtained by W. Heinzer ([4], p. 230).

Lemma 1. Let D, B and V be integral domains with the same quotient field K such that $D=B \cap V, V$ is a rank one valuation ring with a rational value group, $D \subset B \subset K$, and V is centered on a maximal ideal \mathfrak{P} in D. Then $V=D_{\mathfrak{B}}$, so \mathfrak{P} is a maximal ideal in D of height one. Moreover, B is a flat D-module. Hence the non-zero ideals in B are in 1-1 inclusion preserving correspondence with the ideals in D not contained in \mathfrak{P}, this correspondence being effected by extension and contraction. In particular, B is a Hilbert ring if and only if D is a Hilbert ring, and D is noetherian if and only if B and V are noetherian.

Lemma 2. Let R be a noetherian integral domain, and let R^{\prime} be a finite integral extension over R. If there exists a prime ideal \mathfrak{P} in R^{\prime} such that $h t(\mathfrak{P} \cap R)>h t(\mathfrak{P})$, then $R[Z]$ is not catenarian, where Z is an indeterminate.

Proof. If $R[Z]$ is catenarian, then R satisfies the altitude formula by Theorem 3.6 in [6]. Therefore, $h t(\mathfrak{P})+\operatorname{tr} \cdot \operatorname{deg}_{R / \mathfrak{B} \cap \mathbb{R}}\left(R^{\prime} / \mathfrak{P}\right)=h t(\mathfrak{P} \cap R)+\operatorname{tr} . \operatorname{deg}_{R}\left(R^{\prime}\right)$. Hence, $h t(\mathfrak{P})=h t(\mathfrak{P} \cap R)$ because $R^{\prime} / \mathfrak{P}$ is integral over $R /(\mathfrak{P} \cap R)$ and R^{\prime} is integral over R. This is a contradiction.

A ring R is said to be equicodimensional if every maximal ideal in R has the same height $\operatorname{dim}(R)$.

Lemma 3. If R is an equicodimensional neotherian Hilbert ring, then $R[Z]$ is equicodimensional.

Proof. Let \mathfrak{M} be any maximal ideal in $R[Z]$. Since R is a Hilbert ring, $\mathfrak{M} \cap R$ is maximal in R by Theorem 5 in [2]. Therefore $h t(\mathfrak{M} \cap R)=\operatorname{dim}(R)$ by the assumption, and hence $\operatorname{dim}(R[Z]) \geq h t(\mathfrak{M}) \geq \operatorname{dim}(R)+1$ because $\mathfrak{M} \supset(\mathfrak{M}$ $\cap R) R[Z]$. Thus $h t(\mathfrak{M})=\operatorname{dim}(R[Z])$.

Notation. We will retain the following notation for the remainder of this section.
(1) K is a field of characteristic zero.
(2) T is an algebraically independent variable over K.
(3) $X=T, \quad Y=T+T^{2} / 2!+T^{3} / 3!+\cdots=e^{T}-1$. It is well-known that X and Y are algebraically independent over K.
(4) $A=K[X, Y]_{(X+2, Y)}, \quad N=(X+2, Y) A$,
$V=K[[T]] \cap K(X, Y), v$ is a natural valuation of $K[[T]], \mathfrak{M}=X V=T K[[T]]$ $\cap K(X, Y), \quad D_{1}=A \cap V, \quad \mathfrak{n}=D_{1} \cap \mathfrak{N}=V \cap \mathfrak{N}, \quad \mathfrak{m}=D_{1} \cap \mathfrak{M}=A \cap \mathfrak{M}, \quad \mathfrak{i}=\mathfrak{n} \cap \mathfrak{m}=\mathfrak{N}$ $\cap \mathfrak{M}, \quad R_{1}=K+\mathfrak{i}, \quad B=K[X, Y, 1 / X], \quad D=B \cap D_{1}=B \cap V, R=B \cap R_{1}, \quad \mathfrak{q}=\mathfrak{M} \cap D$,
$\mathfrak{h}=D \cap \mathfrak{n}=D \cap \mathfrak{R}$, and $\mathrm{i}=R \cap \mathfrak{i}$.
Remark. $\quad R_{1}$ is the same as Nagata's example ([5], Example 2, pp. 204-205) in case $m=0$ and $r=1$.

Lemma 4. The following statements hold.
a) X is integral over R, and $R[X]=R+R X$.
b) $R+R X$ contains Y / X.
c) Let m, n be positive integers such that $m \geq n$. Then $R+R X$ contains $X^{m-i} Y^{i} / X^{n}$, where $0 \leq i \leq m$.
d) We denote by $f(m, k)$ the coefficient of T^{m+k} in Y^{m}, where $k \geq 1$, namely $Y^{m}=T^{m}+f(m, 1) T^{m+1}+\cdots+f(m, i) T^{m+i}+\cdots . \quad$ Let $b_{m, n}(X, Y)=\left\{Y^{m}-X^{m}-f(m\right.$, 1) $\left.X^{m+1}-\cdots f(m, n-m) X^{n}\right\} / X^{n+1}$, where $n \geq m$. Then $R+R X$ contains $b_{m, n}(X$, Y).

Proof. a) Let $u=(X+2) X$. As u is an element of $\mathfrak{i}(=\mathfrak{M} \cap \mathfrak{P}), R$ contains u. Therefore X is integral over R and $R[X]=R+R X$ because X^{2} $+2 X-u=0$.
b) Let $d=\left(Y-X-X^{2} / 2!\right) / X^{2}$. Then \mathfrak{N} contains d. Since $d=\left(T^{3} / 3\right.$! $\left.+T^{4} / 4!+\cdots\right) / T^{2}, v(d)>0$. Therefore i contains d, and hence $R+R X$ contains Y / X because $Y / X=1+\{(1 / 2)+\mathrm{d}\} X$.
c) If $i \geq n$, then $\left(X^{m-i} Y^{i}\right) / X^{n}=X^{m-i} Y^{i-n}(Y \mid X)^{n}$, and if $i<n$, then $\left(X^{m-i} Y^{i}\right) /$ $X^{n}=X^{m-n}(Y \mid X)^{i}$. Therefore $\left(X^{m-i} Y^{i}\right) / X^{n}$ is an element of $R+R X$ by our assertion b).
d) Set $g_{m, n}(X, Y)=Y^{m}-X^{m}-f(m, 1) X^{m+1}-\cdots-f(m, n-m) X^{n}-f(m, n-$ $m+1) X^{n+1}$. Since $b_{m, n}(X, Y)=f(m, n-m+1)+\left(g_{m, n}(X, Y) / X^{n+1}\right)=f(m, n-m$ $+1)+\left\{\left(g_{m, n}(X, Y)-\left(g_{m, n}(-2,0) /(-2)^{n+2}\right) X^{n+2}\right\} / X^{n+1}+\left\{g_{m, n}(-2,0) /(-2)^{n+2}\right\} X\right.$ and since \mathfrak{i} contains $\left\{\left(g_{m, n}(X, Y)-\left(g_{m, n}(-2,0) /(-2)^{n+2}\right) X^{n+2}\right\} / X^{n+1}\right.$, we have $b_{m, n}(X, Y) \in R+R X$.

Lemma 5. $\quad D=R+R X$.
Proof. Let f / X^{n} be an arbitrary element of D, where $f \in K[X, Y]$. We may assume that the monomials whose degree is greater than $n-1$ don't appear in f by the assertion c) of Lemma 4. Namely f is of the form $a_{1,0} X+a_{0,1} Y+\cdots$ $+a_{i, j} X^{i} Y^{j}+\cdots+a_{n-1,0} X^{n-1}+a_{n-2,1} X^{n-2} Y+\cdots+a_{0, n-1} Y^{n-1}$. The value of f / X^{n} is non-negative. Therefore if we replace X, Y by $T, T+T^{2} / 2!+T^{3} / 3!+\cdots$ respectively in f, then for every $i=1,2, \ldots, n-1$, the coefficient of T^{i} is zero, namely $a_{1,0}+a_{0,1}=0, a_{2,0}+a_{1,1}+a_{0,2}+a_{0,1} f(1,1)=0, a_{3,0}+a_{2,1}+a_{1,2}+a_{0,3}$ $+a_{1,1} f(1,1)+a_{0,2} f(2,1)+a_{0,1} f(1,2)=0, \ldots, \sum_{i=0}^{m} a_{i, m-i}+\sum_{i=0}^{m-2} a_{i, m-1-i} f(m-1-i, 1)$ $+\cdots+\sum_{i=0}^{m-j-1} a_{i, m-j-i} f(m-j-i, j)+\cdots+\sum_{i=0}^{1} a_{i, 2-i}^{i=0} f(2-i, m-2)+a_{0,1} f(1, m-1)$ $=0, \ldots$ Therefore $a_{1,0}=-a_{0,1}, \quad a_{2,0}=-a_{1,1}-a_{0,2}-a_{0,1} f(1,1), a_{3,0}=-a_{2,1}$
$-a_{1,2}-a_{0,3}-a_{1,1} f(1,1)-a_{0,2} f(2,1)-a_{0,1} f(1,2), \ldots, a_{m, 0}=-\sum_{i=0}^{m-1} a_{i, m-i}-\sum_{i=0}^{m-2} a_{i,}$
${ }_{m-1-i} f(m-1-i, 1)-\cdots-\sum_{i=0}^{m-1} a_{\iota, m-j-i} f\left(m_{m-1}^{m-i, j}\right)-\cdots-\sum_{i=0}^{1} a_{i, 2-i} f(2-i, \stackrel{i=0}{m-2)}$
$-a_{0,1} f(1, m-1), \ldots \mathrm{We}^{i=0}$ substitute $-\sum_{i=0}^{m-1} a_{i, m-1}-\sum_{i=0}^{m-2} a_{i, m-1-i} f(m-1-i, 1)$ $-\cdots-a_{0,1} f(1, m-1)$ for the coefficient $a_{m, 0}$ of X^{m} in f. Then we obtain $f=a_{0,1}(Y$ $\left.-X-f(1, \quad 1) X^{2}-\cdots-f(1, \quad n-3) X^{n-2}-f(1, \quad n-2) X^{n-1}\right)+a_{1,1}\left(X Y-X^{2}-f(1\right.$, 1) $\left.X^{3}-\cdots-f(1, n-3) X^{n-1}\right)+\cdots+a_{i-j, j+1}\left(X^{i-j} Y^{j+1}-X^{i+1}-f(j+1,1) X^{i+2}-\cdots\right.$ $\left.-f(j+1, n-i-2) X^{n-1}\right)+\cdots+a_{n-2,1}\left(X^{n-2} Y-X^{n-1}\right)+\cdots+a_{0, n-1}\left(Y^{n-1}-X^{n-1}\right)$. Therefore $f / X^{n}=a_{0,1} b_{1, n-1}(X, \quad Y)+a_{1,1} b_{1, n-2}(X, \quad Y)+a_{0,2} b_{2, n-1}(X, \quad Y)+a_{2}$, ${ }_{1} b_{1, n-3}(X, \quad Y)+\cdots+a_{\iota, 1} b_{1, n-i-1}(X, \quad Y)+\cdots+a_{i-j, j+1} b_{j+1, n-i+j-1}(X, \quad Y)+\cdots$ $+a_{n-2,1} b_{1,1}(X, Y)+\cdots+a_{0, n-1} b_{n-1, n-1}(X, Y)$, and hence f / X^{n} is an element of $R+R X$ by our assertion d) of Lemma 4. Thus $D=R+R X$.

Lemma 6. The following statements hold.
a) \mathfrak{q} is a maximal ideal in D, and $h t(\mathfrak{q})=1$.
b) D and R are noetherian Hilbert rings.
c) $h t(\mathfrak{h})=2, h t(\mathrm{i})=2$ and $\mathfrak{q} \cap R=\mathrm{j}$.
d) $R[Z]$ is not catenarian, where Z is an indeterminate. In particular, $R[Z]$ does not satisfy the first chain condition for prime ideals.
e) R satisfies the first chain condition for prime ideals.

Proof. a) As $K \subseteq D / \mathfrak{q} \subseteq V / \mathfrak{M}=K, D / \mathfrak{q}=K$. Hence \mathfrak{q} is a maximal ideal in D, and hence Lemma 1 implies that $D_{q}=V$ and that $h t(\mathfrak{q})=1$.
b) Since B is a noetherian Hilbert ring and V is noetherian, D is a noetherian Hilbert ring by the assertion of Lemma 1. Since D is a finite integral extension of R by Lemma $5, R$ is a Hilbert ring and is noetherian by Eakin-Nagata's theorem.
c) $\mathfrak{q} \cap R=\mathfrak{M} \cap D \cap R=\mathfrak{M} \cap D_{1} \cap D \cap R=\mathfrak{m} \cap D \cap R=\mathfrak{m} \cap R=B \cap \mathfrak{m} \cap R_{1}$
and $\mathfrak{m} \cap R_{1}=\mathfrak{i}$. Hence we have $\mathfrak{q} \cap R=\mathfrak{i}$. Since $\mathfrak{b} \cap K[X, Y]=\mathfrak{M} \cap D \cap K[X, Y]$ $=\mathfrak{M} \cap K[X, Y]=(X+2, Y) K[X, Y]$ and $K[X, Y] \subseteq D \subseteq A$, we have $A=K[X$, $Y]_{(X+2, Y)} \subseteq D_{\mathfrak{y}} \subseteq A_{\mathfrak{R}}=A$, and hence $A=D_{\mathfrak{h}}$. Therefore $h t(\mathfrak{h})=2$. Since $\mathfrak{h} \cap R$ $=D \cap \mathfrak{n} \cap R=\mathfrak{n} \cap R=B \cap R_{1} \cap \mathfrak{n}$ and $R_{1} \cap \mathfrak{n}=\mathrm{i}, \mathfrak{h} \cap R=\mathrm{i}$, and hence $h t(\mathrm{i})=2$ because D is integral over R and because $h t(\mathfrak{h})=\operatorname{dim}(R)=2$.
d) The fact that $2=h t(\mathfrak{q} \cap R)>h t(\mathfrak{q})=1$ implies that $R[Z]$ is not catenarian by the assertion of Lemma 2.
e) By Lemma 1, the canonical mapping $\operatorname{Max}(B) \rightarrow \operatorname{Max}(D)-\{\mathfrak{q}\}$ is bijection, where $\operatorname{Max}(*)$ means the maximal spectrum of a ring *, i.e., the set of the maximal ideals in a ring *. Since B is equicodimensional, the height of each element of $\operatorname{Max}(D)-\{\mathfrak{q}\}$ is 2 . Moreover since the canonical mapping $\operatorname{Max}(D) \rightarrow \operatorname{Max}(R)$ is surjection and $h t(\mathrm{i})=2, R$ is an equicodimensional ring of dimension 2 because a maximal ideal in D except \mathfrak{q} is height 2 and $h t(i)=2$. Thus R satisfies the first chain condition for prime ideals because R is two-dimensional.

Remark. R is a Hilbert ring which satisfies the first chain condition for prime ideals, but $R[Z]$ does not satisfy the first chain condiiton for prime ideals. However, for the second chain condition for prime ideals, the following statement was obtained by H. Seydi ([11], Theorem 1.14): Let C be a noetherian Hilbert ring. If C satisfies the second chain condition for prime ideals, then so does $C[X]$, where X is an indeterminate.

In the remainder of this section, we assume that K is algebraically closed.
Lemma 7. Let $\mathfrak{\Re}_{a, b}=D_{1} \cap(X-a, Y-b) B, a \neq 0$, and let $p_{a, b}=R \cap \mathfrak{P}_{a, b}$. If $(a, b) \neq(-2,0)$, then $R_{p_{a, b}}$ is a regular local ring.

Proof. If $b \neq 0$, then Y is an element of $R-\mathfrak{p}_{a, b}$. Hence $R_{p_{a, b}}$ contains X because $X=X Y / Y$. Therefore $R_{\mathfrak{p} a, b} \supseteq K[X, Y]$. Since $(X-a, Y-b) K[X$, $Y]=\mathfrak{P}_{a, b} \cap K[X, Y]=\mathfrak{F}_{a, b} \cap R_{\mathfrak{p}_{a} b} \cap K[X, Y]=\mathfrak{p}_{a, b} R_{\mathfrak{p}_{a, b}} \cap K[X, Y]$, we have $K[X$, $Y]_{(X-a, Y-b)} \subseteq R_{\mathfrak{p}_{a, b}} \subseteq D_{\Re_{a, b}}=K[X, Y]_{(X-a, Y-b)}$, which implies that $R_{p_{a, b}}=K[X$, $Y]_{(X-a, Y-b)}$. If $a \neq 2$, then $(X+2) X$ is an element of R but not of $p_{a, b}$ because \mathfrak{i} contains $(X+2) X$. Hence $R_{p_{a, b}}$ contains X because $X=X^{2}(X+2) /(X(X+2))$. Therefore we see similarly that $R_{p a, b}=K[X, Y]_{(X-a, Y-b)}$. Thus if $(a, b) \neq(-2,0)$, $R_{p_{a, b}}$ is a regular local ring.

Lemma 8. For each prime ideal \mathfrak{Q} in $R[Z], h t(\mathfrak{Q})+\operatorname{dim}(R[Z] / \mathbb{Q}=$ $\operatorname{dim}(R[Z])$.

Proof. Since R is an equicodimensional Hilbert ring of dimension 2, every maximal ideal in $R[Z]$ has the same height 3 by Lemma 3. Therefore we may assume that \mathbb{Q} is not maximal. Suppose that there exists a maximal ideal $\mathfrak{N}^{\prime \prime}$ in $D[Z]$ such that $\mathfrak{Q} D[Z] \subseteq \mathfrak{N}^{\prime \prime}$ and $\mathfrak{N}^{\prime \prime} \cap D=\mathfrak{P}_{a, b}$, where $(a, b) \neq(-2,0)$. As $\mathfrak{N}^{\prime \prime} D[Z]_{\mathfrak{R}_{a, b}} \supseteq \mathfrak{Q} R[Z]_{\mathfrak{p}_{a, b}}=\mathfrak{Q} R_{\mathfrak{p}_{a, b}}[Z]$ and $R_{p_{\alpha, b}}$ is a regular local ring by the assertion of Lemma $7, R[Z]_{\mathfrak{R}^{\prime}}$ is a regular local ring, where $\mathfrak{N}^{\prime}=\mathfrak{N}^{\prime \prime} \cap R[Z]$. Since $R[Z]$ is equicodimensional and \mathfrak{N}^{\prime} is maximal in $R[Z]$, the height of \mathfrak{N}^{\prime} is 3. Therefore $\left.\left.3=\operatorname{dim}\left(R[Z]_{\mathfrak{M}^{\prime}}\right)=h t\left(\mathbb{Q} R[Z]_{\mathfrak{R}^{\prime}}\right)+\operatorname{dim}(R] Z\right]_{\mathfrak{R}^{\prime}} / \mathfrak{Q} R[Z]_{\mathfrak{R}^{\prime}}\right) \leq h t(\mathfrak{Q})+$ $\operatorname{dim}(R[Z] / \mathfrak{Q}) \leq \operatorname{dim}(R[Z])=3$. Therefore $\quad \operatorname{dim}(R[Z])=h t(\mathfrak{Q})+\operatorname{dim}(R[Z] / \mathfrak{Q})$. Now suppose that there does not exist a maximal ideal $\mathfrak{N}^{\prime \prime}$ in $D[Z]$ such that $\mathfrak{Q} D[Z] \subseteq \mathfrak{N}^{\prime \prime}$ and $\mathfrak{N}^{\prime \prime} \cap D=\mathfrak{P}_{a, b}$, where $(a, b) \neq(-2,0)$. Since $R[Z]$ is a Hilbert ring, $\mathfrak{Q}=\cap \mathfrak{N}_{\lambda}^{\prime}$, where $\mathfrak{N}_{\lambda}^{\prime}$ is maximal in $R[Z]$. By our assumption, for any λ, $\mathfrak{N}_{\lambda}^{\prime} \cap R=\mathrm{j}$ because $\mathfrak{N}_{\lambda}^{\prime} \cap R$ is maximal in R by the fact that R is a Hilbert ring (cf. [2], Theorem 5). Since Λ is an infinite set, $\mathfrak{Q}=\mathrm{i} R[Z]$. As $h t(\mathrm{i} R[Z])=h t(\mathrm{i})$ $=2$ and $\operatorname{dim}(R[Z]) / \mathfrak{i} R[Z])=\operatorname{dim}(K[Z])=1, \operatorname{dim}(R[Z])=h t(\mathfrak{Q})+\operatorname{dim}(R[Z] / \mathbb{Q})$. Thus for each prime ideal \mathfrak{Q} in $R[Z], h t(\mathbb{Q})+\operatorname{dim}(R[Z] / \mathfrak{Q})=\operatorname{dim}(R[Z])$.

By the above arguement, we obtain the following proposition which implies that $R[Z]$ is a counterexample to the assertion at the beginning of this Section.

Proposition. For each prime ideal \mathfrak{Q} in $R[Z], \operatorname{dim}(R[Z])=h t(\mathbb{Q})$ $+\operatorname{dim}(R[Z] / \mathbb{Q})$, but $R[Z]$ does not satisfy the first chain condition for prime ideals.
2. Let A be a ring. Consider the following properties of A.

1) For each non-maximal prime ideal \mathfrak{p} in $A, h t(\mathfrak{p})+\operatorname{dim}(A / \mathfrak{p})=\operatorname{dim}(A)$.
2) For each prime ideal \mathfrak{p} in A, either $h t(\mathfrak{p})+\operatorname{dim}(A / \mathfrak{p})=\operatorname{dim}(A)$ or \mathfrak{p} is a maximal ideal of height one.

In [7], pp. 1076-1077, Ratliff has considered the following statements.
a) The statement 1) implies (in the noetherian case) that $\operatorname{dim}(A)<\infty$.
b) 1) and 2) are equivalent in general (noetherian) case.

In this section, we construct a counterexample to the statement b).
Remark. If A is noetherian, then the statement a) is true. In fact, we suppose that $\operatorname{dim}(A)=\infty$. Then for each non-maximal prime ideal \mathfrak{p} in A, $\operatorname{dim}(A / p)=\infty$ by the assumption. Let \mathfrak{p}_{1} be a non-maximal prime ideal in A. There exists a maximal ideal \mathfrak{m}_{2} in A such that $\mathfrak{m}_{2} \supset \mathfrak{p}_{1}$ and $h t\left(\mathfrak{m}_{2} / \mathfrak{p}_{1}\right) \geq 2$ because $\operatorname{dim}\left(A / \mathfrak{p}_{1}\right)=\infty$. Therefore, there exists a prime ideal \mathfrak{p}_{2} in A such that $\mathfrak{m}_{2} \supset \mathfrak{p}_{2}$ $\supset \mathfrak{p}_{1}$.

Similarly we can take prime ideals $\mathfrak{p}_{3}, \mathfrak{p}_{4}, \ldots$ such that $\mathfrak{p}_{1} \subset \mathfrak{p}_{2} \subset \mathfrak{p}_{3} \subset \mathfrak{p}_{4} \subset \cdots$, which contradicts the fact that A is noetherian.

Lemma 1. Let C be a locally noetherian ring, and $\mathfrak{a}_{1} \subseteq \mathfrak{a}_{2} \subseteq \mathfrak{a}_{3} \subseteq \cdots$ be an ascending chain of ideals in C. If there exist only a finite number of maximal ideals in C which contain \mathfrak{a}_{1}, then $\mathfrak{a}_{n}=\mathfrak{a}_{n+1}=\cdots$ for some n.

Proof. Let $\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{r}$ be the maximal ideals in C which contain \mathfrak{a}_{1}. Since $C_{m_{i}}$ is noetherian for each $i=1,2, \ldots, r, \mathfrak{a}_{n} C_{m_{i}}=\mathfrak{a}_{n+1} C_{m_{i}}=\cdots$ for a sufficiently large n. Let \mathfrak{m} be any maximal ideal in C other than $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{r}$. Since $a_{1} C_{m}$ $=C_{m}, \mathfrak{a}_{n} C_{m}=\mathfrak{a}_{n+1} C_{m}=\cdots$. Thus $\mathfrak{a}_{n}=\mathfrak{a}_{n+1}=\cdots$.

Notation. 1) K is a field with cardinality $\leq \aleph_{0}$.
2) $Y_{1}, Y_{2}, Y_{3}, X_{1}, X_{2}, X_{3}, \ldots$ are algebraically independent variables over K.
3) $A=K\left[Y_{1}, Y_{2}, Y_{3}, X_{1}, X_{2}, \ldots\right]$,
$P=\left(Y_{1}, Y_{2}, Y_{3}\right) A$.
4) $F=\left\{f \in P ; f\right.$ is a prime element such that $f A \neq Y_{1} A$ and X_{1} does not appear in $f\}$. Since $\operatorname{card}(K) \leq \aleph_{0}, \operatorname{card}(A)=\aleph_{0}$, and hence $\operatorname{card}(F)=\aleph_{0}$. Therefore we may set $F=\left\{f_{i} ; i=1,2,3, \ldots\right\}$, where $f_{i} A \neq f_{j} A$ if $i \neq j$.
5) Let $e(1,1)$ and $e(1,2)$ be two positive integers such that $e(1,1) \neq 1$ and $e(1,2) \neq 1$, and that $X_{e(1,1)}$ and $X_{e(1,2)}$ don't appear in f_{1}. Let $e(2,1)$ and $e(2,2)$ be two positive integers such that $\{1, e(1,1), \mathrm{e}(1,2)\} \nexists e(2,1), e(2,2)$, and that
$X_{e(2,1)}$ and $X_{e(2,2)}$ don't appear in f_{2}. By the same way as above, for each integer $n>2$ we proceed inductively to choose two positive integers $e(n, 1)$ and $e(n, 2)$ such that $\{1, e(1,1), e(1,2), \ldots, e(n-1,1), e(n-1,2)\} \nexists e(n, 1), e(n, 2)$, and that $X_{e(n, 1)}$ and $X_{e(n, 2)}$ don't appear in f_{n}.
6) We replace $X_{e(1,1)}, X_{e(1,2)}, X_{e(2,1)}, \ldots$ by $X_{2}, X_{3}, X_{4}, \ldots$ respectively, and denote by Z_{1}, Z_{2}, \ldots the rest of X_{i} 's.

Lemma 2. Let $P_{i}=\left(f_{i} X_{1}, X_{2 i}, X_{2 i+1}\right) A$. Let $\phi: A \rightarrow R=K\left[Y_{1}, Y_{2}, Y_{3}, X_{2}\right.$, $\left.X_{3}, \ldots, Z_{1}, Z_{2}, \ldots\right] \simeq A /\left(X_{1} A\right)$ be the canonical homomorphism. Then the following statements hold.
a) P_{i} is a prime ideal in A.
b) For each non-zero element a of R, there exist only a finite number of $\phi\left(P_{i}\right)$'s which contain a. In particular, for each element g of A but not of $X_{1} A$, there exist only a finite number of P_{i} 's which contain g.
c) Let P^{\prime} be the prime ideal in A generated by Y_{1}, Y_{2}, Y_{3} and X_{1}. If \mathfrak{a} is an ideal in A such that $\mathfrak{a} \subseteq P^{\prime} \cup \bigcup_{i=1}^{\infty} P_{i}$, then $\mathfrak{a} \subseteq P^{\prime}$ or $\mathfrak{a} \subseteq P_{i}$ for some i. In particular, if \mathfrak{a} is an ideal in A such that $\mathfrak{a} \subseteq P \cup \bigcup_{i=1}^{\infty} P_{i}$, then $\mathfrak{a} \subseteq P^{\prime}$ or $\mathfrak{a} \subseteq P_{i}$ for some i.
d) Let $T=A-P^{\prime} \cup \bigcup_{i=1}^{\infty} P_{i}$, and let $S=A-P \cup \bigcup_{i=1}^{\infty} P_{i}$. Then, $T^{-1} A$ and $S^{-1} A$ are noetherian.

Proof. a) As f_{i} is a prime element and $X_{1}, X_{2 i}$ and $X_{2 i+1}$ don't appear in f_{i}, P_{i} is a prime ideal in A.
b) Let $R_{0}=K\left[Y_{1}, Y_{2}, Y_{3}, Z_{1}, Z_{2}, \ldots\right]$. Let m be a positive integer such that $R_{0}\left[X_{1}, X_{2}, \ldots, X_{m}\right]$ contains a. It suffices to show that there exist only a finite number of i 's such that $m<2 i$ and $\phi\left(P_{i}\right)$ contains a. Suppose that $\phi\left(P_{i}\right)$ $\left(=\left(f_{i}, X_{2 i}, X_{2 i+1}\right) R\right)$ contains a, where $m<2 i$. Therefore $a=h_{1} f_{i}+h_{2} X_{2 i}$ $+h_{3} X_{2 i+1}$, where $h_{1}, h_{2}, h_{3} \in R$. Since $X_{2 i}$ and $X_{2 i+1}$ don't appear in a and f_{i}, by substituting 0 for $X_{2 i}$ and $X_{2 i+1}$, we see that f_{i} devides a. This implies that our assertion holds by the facts that f_{i} is a prime element and that f_{i} and f_{j} are relatively prime if $i \neq j$.
c) $\phi(\mathfrak{a}) \subseteq \phi\left(P^{\prime}\right) \cup \bigcup_{i=1}^{\infty} \phi\left(P_{i}\right)=\left(Y_{1}, Y_{2}, Y_{3}\right) R \cup \bigcup_{i=1}^{\infty}\left(f_{i}, X_{2 i}, X_{2 i+1}\right) R$. Suppose that $\phi(\mathfrak{a})$ is finitely generated, namely $\phi(\mathfrak{a})=\left(h_{1}, \ldots, h_{s}\right) R$. Let r and t be two positive integers such that $R_{1}=K\left[Y_{1}, Y_{2}, Y_{3}, X_{2}, X_{3}, \ldots, X_{r}, Z_{1}, \ldots, Z_{t}\right]$ contains h_{1}, \ldots, h_{s}, and let N be a positive integer satsifying $r<2 N$. Since $\left(Y_{1}, Y_{2}, Y_{3}\right) R$ contains f_{i} for any $i, \phi(\mathfrak{a}) \cap R_{1} \subseteq\left(Y_{1}, Y_{2}, Y_{3}\right) R_{1} \cup \bigcup_{i=1}^{N}\left(R_{1} \cap\left(f_{i}, X_{2 i}, X_{2 i+1}\right) R\right)$. Therefore $\phi(\mathfrak{a}) \cap R_{1} \subseteq\left(Y_{1}, Y_{2}, Y_{3}\right) R_{1}$ or $\phi(\mathfrak{a}) \cap R_{1} \subseteq R_{1} \cap\left(f_{i}, X_{2 i}, X_{2 i+1}\right) R$ so that $\left(Y_{1}, Y_{2}, Y_{3}\right) R \ni h_{1}, \ldots, h_{s}$ or $\left(f_{i}, X_{2 i}, X_{2 i+1}\right) R \ni h_{1}, \ldots, h_{s}$. Hence $\phi(\mathfrak{a}) \subseteq \phi\left(P^{\prime}\right)$ or $\phi(\mathfrak{a}) \subseteq \phi\left(P_{\mathfrak{i}}\right)$ for some i. Next suppose that $\phi(\mathfrak{a})$ is not finitely generated. Let $\phi(\mathfrak{a})=\left(h_{1}, h_{2}, \ldots\right) R$ (Note that $\phi(\mathfrak{a})$ is generated by a countable number of the
elements of R). Let $\mathfrak{b}_{n}=\left(h_{1}, \ldots, h_{n}\right) R$. If $\left(Y_{1}, Y_{2}, Y_{3}\right) R \notin \phi(\mathfrak{a})$, there exists a positive integer n_{0} such that for each $n \geq n_{0}\left(Y_{1}, Y_{2}, Y_{3}\right) R \notin \mathfrak{b}_{n}$, whence there exists a positive integer $i(n)$ such that $\mathfrak{b}_{n} \subseteq \phi\left(P_{i(n)}\right)$ for each $n \geq n_{0}$. The set $\{i(n)$; $\left.n=n_{0}, n_{0}+1, \ldots\right\}$ is finite since there exist only a finite number of $\phi\left(P_{i}\right)$'s which contain h_{1} by our assertion b). Hence $\phi(\mathfrak{a})\left(=\bigcup_{i=1}^{\infty} \mathrm{b}_{n}\right)$ is contained in $\phi\left(P_{i}\right)$ for some i. Thus for any ideal \mathfrak{a} in A satisfying $\mathfrak{a} \subseteq P^{\prime} \cup \bigcup_{i=1}^{\infty} P_{i}$, we have $\phi(\mathfrak{a}) \subseteq \phi\left(P^{\prime}\right)$ or $\phi(\mathfrak{a}) \subseteq \phi\left(P_{i}\right)$ for some i so that $\mathfrak{a} \subseteq P^{\prime}$ or $\mathfrak{a} \subseteq P_{i}$ for some i.
d) Every maximal ideal in $T^{-1} A$ is of the form $T^{-1} P^{\prime}$ or $T^{-1} P_{i}$ for some i by our assertion c), and hence $T^{-1} A$ is locally noetherian. Let $\mathfrak{B}_{1} \subseteq \mathfrak{B}_{2} \subseteq \cdots$ be an ascending chain of ideals in $T^{-1} A$, and let $\mathfrak{b}_{i}=\mathfrak{B}_{i} \cap A$. If there exists a positive integer n_{0} satisfying $\mathfrak{b}_{n_{0}} \nsubseteq X_{1} A$, then by our assertion \mathfrak{b}) there exist only a finite number of maximal ideals in $T^{-1} A$ which contain $\mathfrak{B}_{n 0}$. Therefore $\mathfrak{B}_{n}=\mathfrak{B}_{n+1}$ $=\cdots$ for some n by Lemma 1. If $\mathfrak{b}_{n} \subseteq X_{1} A$ for any n, \mathfrak{b}_{n} is of the form $X^{a(n)} \mathfrak{c}_{n}$, where \mathfrak{c}_{n} is the ideal in A such that $c_{n} \nsubseteq X_{1} A$. As $a(1) \geq a(2) \geq a(3) \geq \cdots, a(m)$ $=a(m+1)=\cdots$ for some m, whence $T^{-1} \mathfrak{c}_{m} \subseteq T^{-1} \mathfrak{c}_{m+1} \subseteq \cdots$. Since $\mathfrak{c}_{m} \ddagger X_{1} A$, by applying the similar method as before, we see that $T^{-1} \mathfrak{c}_{r}=T^{-1} \mathfrak{c}_{r+1} \equiv \cdots$ for some r. Therefore $\mathfrak{B}_{r}=\mathfrak{B}_{r+1}=\cdots$. Thus we conclude that $T^{-1} A$ is noetherian. Also $S^{-1} A$ is noetherian since $S^{-1} A=S^{-1}\left(T^{-1} A\right)$.

Lemma 3. Let $B=S^{-1} A$. Let $H=\left\{e_{1} Y_{1}^{m}+e_{2} X_{1} ; e_{1} \in S, m \in \boldsymbol{N}\right.$ and e_{2} $\in A\}$ and let S_{1} be the multiplicatively closed set generated by X_{1} and all the elements of H. Let $Q=\left(Y_{2}, Y_{3}\right) A$ and let $U_{i}=\left\{\mathfrak{p} \in \operatorname{Spec}(A) ; P_{i} \supset \mathfrak{p}, h t\left(P_{i} / \mathfrak{p}\right)=1\right.$ and $\left.\mathfrak{p} \neq X_{1}\right\}$. Then the following statements hold.
a) $\left(Y_{2}, Y_{3}, X_{1}\right) A \cap S=\varnothing$.
b) $Q \cap S_{1}=\varnothing$.
c) Let g be any element of $K\left[Y_{1}, Y_{2}, Y_{3}\right]$ such that g and f_{i} are relatively prime. Then, $P_{i} \neq g$.
d) $P_{i} \cap H=\varnothing \quad$ for any i.
e) Let \mathfrak{p} be any element of $\bigcup_{i=1}^{\infty} U_{i}$. Then $S_{1}^{-1}\left(S^{-1} \mathfrak{p}\right)$ is a maximal ideal of height 3 in $S_{1}^{-1} B$.
f) $S_{1}^{-1}\left(S^{-1} Q\right)$ is a maximal ideal of height 2 in $S_{1}^{-1} B$.

Proof. a) Let h be an arbitrary element of $\left(Y_{2}, Y_{3}, X_{1}\right) A$. We can express $h=X_{1} h_{1}+h_{2}$, where $h_{1} \in A, h_{2} \in\left(Y_{2}, Y_{3}\right) A$ and X_{1} doesn't appear in h_{2}. If $h_{2}=0$, then $h \in P_{i}$ for any i, whence $S \nexists h$. If $h_{2}=0$, then there exists at least one prime divisor of h_{2} which is of the form f_{i}, so that P_{i} contains h, and hence $S \neq h$. Thus $\left(Y_{2}, Y_{3}, X_{1}\right) A \cap S=\varnothing$.
b) Suppose that Q contains an element $e_{1} Y_{1}^{m}+e_{2} X_{1}$ of H. Since $\phi\left(e_{1} Y_{1}^{m}\right.$ $\left.+e_{2} X_{1}\right) \in\left(Y_{2}, Y_{3}\right) R, \phi\left(e_{1}\right) Y_{1}^{m} \in\left(Y_{2}, Y_{3}\right) R$. Therefore $\phi\left(e_{1}\right) \in\left(Y_{2} . Y_{3}\right) R$, and hence $e_{1} \in\left(Y_{2}, Y_{3}, X_{1}\right) A$. However this contradicts our assertion a).
c) Suppose that P_{i} contains g. Then we can write $g=h_{1} f_{i}+h_{2} X_{1}+h_{3} X_{2 \imath}$
$+h_{4} X_{2 i+1}$, where $h_{1}, \ldots, h_{4} \in A$. Since $X_{1}, X_{2 i}$ and $X_{2 i+1}$ don't appear in f_{i} and g, by substituting 0 for $X_{1}, X_{2 i}$ and $X_{2 i+1}$, we see that f_{i} divides g. This is a contradiction.
d) Suppose that P_{i} contains an element $e_{1} Y_{1}^{m}+e_{2} X_{1}$ of H. Then $P_{i} \ni e_{1} Y_{1}^{m}$ since P_{i} contains X_{1}. This is impossible because P_{i} does not contain e_{1} and Y_{1}. Thus $P_{i} \cap H=\varnothing$ for any i.
e) Since $\mathfrak{p} \cap H=\varnothing$ and $\mathfrak{p} \neq X_{1}$ for each element \mathfrak{p} of $U_{i}, \mathfrak{p} \cap S_{1}=\varnothing . \quad h t(\mathfrak{p})$ $=h t\left(P_{i}\right)-1=3$ because A is catenarian. Since $\operatorname{dim}(B)=4$ and since every maximal ideal of height 4 in B is of the form $S^{-1} P_{i}$ for some i by our assertion c) of Lemma 2, we have $\operatorname{dim}\left(S_{1}^{-1} B\right)=3$. Thus $S_{1}^{-1}\left(S^{-1} \mathfrak{p}\right)$ is a maximal ideal of height 3 in $S_{1}^{-1} B$.
f) If $P_{i} \supset Q$, then P_{i} contains $Y_{2}, Y_{3}, X_{1}, X_{2 i}, X_{2 i+1}$, whence $\operatorname{ht}\left(P_{i}\right) \geq 5$. This contradicts $h t\left(P_{i}\right)=4$. Therefore to prove that $S_{1}^{-1}\left(S^{-1} Q\right)$ is a maximal ideal in $S_{1}^{-1} B$, it suffices to show that for any prime ideal Q^{\prime} in A such that Q $\subset Q^{\prime} \subseteq P^{\prime}$, we have $Q^{\prime} \cap S_{1} \neq \emptyset$. Let g be an element of Q^{\prime} but not of Q. We may assume that Y_{2} and Y_{3} don't appear in g. If Y_{1} does not appear in g, then g is of the form $g_{1} X_{1}^{n}$, where $g_{1} \notin P^{\prime}$. Hence $Q^{\prime} \ni X_{1}$. Thus $Q^{\prime} \cap S_{1} \neq \emptyset$. Now suppose that Y_{1} appears in g. Then g is of the form $u_{1} Y_{1}^{n}+u_{2} X_{1}$, where $u_{1}, u_{2} \in A$. We may assume that X_{1} does not appear in u_{1} and that $Y_{1} A \nexists u_{1}$. Therefore P does not contain u_{1}. By our assertion b) of Lemma 2, we may assume that $P_{i(1)}, \ldots, P_{i(m)}$ are totality of P_{i} 's which contain u_{1}. Let $P_{j(1)}, \ldots, P_{j(s)}$ be the totality of P_{i} 's such that $X_{2 i}$ or $X_{2 i+1}$ appears in u_{1}. Let r be a positive integer such that $Y_{2}+Y_{3}^{r}$ is relatively prime to each $f_{i(1)}, \ldots, f_{i(m)}, f_{j(1)}, \ldots, f_{j(s)}$. Then $P_{i(1)} \cup \cdots \cup P_{i(m)} \cup P_{j(1)} \cup \cdots \cup P_{j(s)}$ does not contain $Y_{2}+Y_{3}^{r}$ by our assertion c). Let t be a positive integer such that $P_{j(1)} \cup \cdots \cup P_{j(s)}$ does not contain $Y_{1}^{t}\left(Y_{2}+Y_{3}^{r}\right)+u_{1}$. (Proof of the existence of such an integer t : Suppose that $P_{j(1)} \cup \cdots \cup P_{j(s)}$ contains $Y_{1}^{t}\left(Y_{2}+Y_{3}^{r}\right)+u_{1}$ for any positive integer t. Then some $P_{j(k)}$ contains $Y_{1}^{t(1)}\left(Y_{2}+Y_{3}^{r}\right)+u_{1}$ and $Y_{1}^{t(2)}\left(Y_{2}+Y_{3}^{r}\right)+u_{1}$, where $t(1)<t(2)$. Hence $P_{j(k)}$ contains $Y_{1}^{t(1)}\left(1-Y_{1}^{t(2)-t(1)}\right)\left(Y_{2}+Y_{3}^{r}\right)$ so that $P_{j(k)}$ contains 1- $Y_{1}^{t(2)-t(1)}$ because Y_{1} and $Y_{2}+Y_{3}^{r}$ are not contained in $P_{j(k)}$. This contradicts the fact that $P_{j(k)} \subseteq\left(Y_{1}, Y_{2}, Y_{3}, X_{1}, X_{2}, \ldots\right) A$.) Then $P \cup \bigcup_{i=1}^{\infty} P_{i}$ does not contain $Y_{1}^{t}\left(Y_{2}\right.$ $\left.+Y_{3}^{r}\right)+u_{1}$. Indeed, $P \nexists Y_{1}^{t}\left(Y_{2}+Y_{3}^{r}\right)+u_{1}$ since $P \ni Y_{1}$ and $P \nexists u_{1}$. And if for some $i \neq i(1), i(2), \ldots, i(m), j(1), \ldots, j(s), P_{i}$ contains $Y_{1}^{t}\left(Y_{2}+Y_{3}^{r}\right)+u_{1}$, then $Y_{1}^{t}\left(Y_{2}\right.$ $\left.+Y_{3}^{r}\right)+u_{1}=h_{1} f_{i}+h_{2} X_{1}+h_{3} X_{2 i}+h_{4} X_{2 i+1}$, where $h_{1}, \ldots, h_{4} \in A$. As $X_{1}, X_{2 i}$ and $X_{2 i+1}$ don't appear in u_{1}, by substituting 0 for $X_{1}, X_{2 i}$ and $X_{2 i+1}$, we see that u_{1} is of the form $f_{i} \bar{h}_{1}-Y_{1}^{t}\left(Y_{2}+Y_{3}^{r}\right)$ so that $P \ni u_{1}$. This is a contradiction. For each $i(k), P_{i(k)} \nexists Y_{1}^{t}\left(Y_{2}+Y_{3}^{r}\right)+u_{1}$ since $P_{i(k)} \ni u_{1}$ and $P_{i(k)} \nexists Y_{1}^{t}\left(Y_{2}+Y_{3}^{r}\right)$. Thus S contains $Y_{1}^{t}\left(Y_{2}+Y_{3}^{r}\right)+u_{1}$. Therefore $H \cap Q^{\prime}$ contains $\left(Y_{1}^{t}\left(Y_{2}+Y_{3}^{r}\right)\right.$ $\left.+u_{1}\right) Y_{1}^{n}+u_{2} X_{1}$. Thus $S_{1} \cap Q^{\prime} \neq \varnothing$. Since $h t(Q)=2$, the height of $S_{1}^{-1}\left(S^{-1} Q\right)$ is 2 . Thus the proof is completed.

Now we obtain the following proposition which gives our desired example.
Proposition. For each non-maximal ideal \mathfrak{q} in $S_{1}^{-1} B, h t(\mathfrak{q})+\operatorname{dim}\left(S_{1}^{-1} B / \mathfrak{q}\right)$ =3. However, $S_{1}^{-1} B$ has a maximal ideal of height 2 .

Proof. Let $\mathfrak{q}\left(=S_{1}^{-1}\left(S^{-1} \mathfrak{p}\right)\right.$, where $\left.\mathfrak{p} \in \operatorname{Spec}(A)\right)$ be a non-maximal prime ideal in $S_{1}^{-1} B$. To prove that $h t(\mathfrak{q})+\operatorname{dim}\left(S_{1}^{-1} B / q\right)=3$, we may assume that $h t(\mathfrak{q})=1$ because $S_{1}^{-1} B$ is three-dimensional. Since A is a unique factorization domain, $\mathfrak{p}=A f$ for a suitable prime element f of A. If $f \in P_{i}$ for some i, then Lemma 5 of [1] implies that a maximal element with respect to the inclusion relation in the family $\left\{\mathfrak{p}^{\prime} \in \operatorname{Spec}(A) ; \mathfrak{p}^{\prime} \subset P_{i}, \mathfrak{p}^{\prime} \ni f\right.$ and $\left.\mathfrak{p}^{\prime} \not X_{1}\right\}$ has the height 3, and hence $\operatorname{dim}\left(S_{1}^{-1} B / q\right)=2$ by our assertion e) of Lemma 3 and by the fact that B is catenarian. If $f \in P^{\prime}$, then we can express $f=g+h X_{1}$, where $g, h \in A$. Since f is a prime element and f is an element of \mathfrak{q}, g is not zero. We may assume that X_{1} does not appear in g. Therefore, $g \in P$. If g has a prime divisor f_{i} for some i, P_{i} contains f, whence $\operatorname{dim}\left(S_{1}^{-1} B / q\right)=2$. If any f_{i} isn't a prime divisor of g, then g is of the form $Y_{1}^{m} g_{1}$, where $g_{1} \in A-P$. Since f is not an element of H, S does not contain g. Therefore $P_{i} \ni g_{1}$ for some i because $g_{1} \in A-P$. Hence $P_{i} \ni f$, so that $\operatorname{dim}\left(S_{1}^{-1} B / q\right)=2$. Thus for each non-maximal prime ideal \mathfrak{q} in $S_{1}^{-1} B, h t(q)+\operatorname{dim}\left(S_{1}^{-1} B / q\right)=3 . \quad S_{1}^{-1}\left(S^{-1} Q\right)$ is a maximal ideal of height 2 in $S_{1}^{-1} B$ by f) of Lemma 3. Thus our assertion is proved.

Remark 1. Every prime ideal of height one in $S_{1}^{-1} B$ is contained in some maximal ideal of height 3 by the proof of the above Proposition. Therefore $S_{1}^{-1} B$ does not have a maximal ideal of height one. Moreover, we see that for a noetherian ring E the following statements of Remark 2.25 in [7] are not equivalent: b) For each prime ideal \mathfrak{p} in $E, h t(\mathfrak{p})+\operatorname{dim}(E / \mathfrak{p})=\operatorname{dim}(E)$. c) For each height one prime ideal \mathfrak{p} in $E, \operatorname{dim}(E / \mathfrak{p})=\operatorname{dim}(E)-1$.

Remark 2. If every maximal ideal of height 3 in $S_{1}^{-1} B$ is of the form $S_{1}^{-1}\left(S^{-1} \mathfrak{p}\right)$ for some element \mathfrak{p} of $\bigcup_{i=1}^{\infty} U_{i}$, then by using Corollary 10.5.8 in [3], p. 106, we see that $S_{1}^{-1} B$ is a Hilbert ring.
3. In [9], p. 232, Ratliff gave the following conjecture.
H-conjecture: If R is a noetherian local domain such that $h t(\mathfrak{p})+\operatorname{dim}(R / \mathfrak{p})$ $=\operatorname{dim}(R)$ for each height one prime ideal \mathfrak{p} in R, then R is catenarian.

In this section, making use of the example constructed in the previous section, we give a non-noetherian local domain D such that D is not catenarian, but for each height one prime ideal \mathfrak{n} in $D, \operatorname{ht}(\mathfrak{n})+\operatorname{dim}(D / \mathfrak{n})=\operatorname{dim}(D)$.

Lemma 1. Let K be a field and let C be a noetherian integral domain over K. Let $D=K+Z C[[Z]]$, where Z is an indeterminate, and let $\mathfrak{M}=Z C[[Z]]$.

Then the following statements hold.
a) D is a local ring whose unique maximal ideal is \mathfrak{M}.
b) $\mathfrak{M}=\sqrt{\overline{D Z}}$. In particular, \mathfrak{M} is a minimal prime ideal of $D Z$.
c) Let $V=\{\mathfrak{n} \in \operatorname{Spec}(D) ; \mathfrak{n} \subset \mathfrak{M}\}$. Let $\rho(\mathfrak{p})=\mathfrak{p} C[[Z]] \cap D$ for each prime ideal \mathfrak{p} in C. Then $\rho: \operatorname{Spec}(C) \rightarrow V$ is injective.
d) $h t(\mathfrak{p})=h t(\rho(\mathfrak{p}))$ for each prime ideal \mathfrak{p} in C.
e) Let $\mu(\mathfrak{n})=\{g \in C[[Z]] ; Z g \in \mathfrak{n}\}$ for each element \mathfrak{n} of V. Then $\mu(\mathfrak{n})$ is a prime ideal in $C[[Z]]$.
f) For each element \mathfrak{n} of $V, Z \rho(\mathfrak{n})=\mathfrak{n}$ and $n D_{Z}=\rho(\mathfrak{n}) C[[Z]][1 / Z]$. In particular, $\mu: V \rightarrow \operatorname{Spec}(C[[Z]])$ is injective, and $h t(n)=h t(\mu(\mathfrak{n}))$ for each element n of V.
g) $\mu \rho(\mathfrak{p})=p C[[Z]]$ for each prime ideal \mathfrak{p} in C.
h) Let n^{\prime} be a prime ideal in $C[[Z]]$. Then Zn^{\prime} is prime in D if and only if \mathfrak{n}^{\prime} does not contain Z. In particular, for each maximal ideal \mathfrak{M} in $C[[Z]]$, ZM is not prime in D.
i) $h t(\mathfrak{N} / \rho(\mathrm{m}))=1$ for each maximal ideal m in C.
j) $\operatorname{dim}(D)=\operatorname{dim}(C)+1$.

Proof. We see obviously that the assertion a), b), c), f) and g) hold.
d) Since $\quad D_{Z}=C[[Z]][1 / Z], \quad \rho(\mathfrak{p})_{Z}=\mathfrak{p} C[[Z]][1 / Z] \cap D_{Z}=p C[[Z]][1 / Z]$, and hence $h t(\rho(\mathfrak{p}))=h t\left(\rho(\mathfrak{p})_{Z}\right)=h t(\mathfrak{p})$ because C is noetherian.
e) Suppose that $f g$ belongs to $\mu(n)$, where $f, g \in C[[Z]]$. Then $n \ni Z f g$, whence $\mathfrak{n} \ni(Z f)(Z g)$. But \mathfrak{n} is prime in D. Consequently either $Z f \in \mathfrak{n}$ or $Z g \in$ \mathfrak{n}. It follows that either $f \in \mu(\mathfrak{n})$ or $g \in \mu(\mathfrak{n})$. Hence $\mu(\mathfrak{n})$ is prime in $C[[Z]]$.
h) First suppose that $Z \mathfrak{n}^{\prime}$ is prime in D. If \mathfrak{n}^{\prime} contains Z, then $Z \mathfrak{n}^{\prime}$ contains Z^{2}, whence $Z \mathfrak{n}^{\prime} \ni Z$ because $Z \mathfrak{n}^{\prime}$ is prime in D. Hence $\mathfrak{n}^{\prime} \ni 1$. This is a contradiction. Next suppose that \mathfrak{n}^{\prime} does not contain Z. Let $(Z f)(Z g)$ be an element of $Z n^{\prime}$, where $f, g \in C[[Z]]$. Then $Z f g$ belongs to \mathfrak{n}^{\prime}, whence $n^{\prime} \ni f g$ by our assumption. Therefore either $\mathfrak{n}^{\prime} \ni f$ or $\mathfrak{n}^{\prime} \ni g$. It follows that either $\mathbf{Z n}^{\prime} \ni Z f$ or $\mathrm{Zn}^{\prime} \ni Z g$. Thus $Z \mathfrak{n}^{\prime}$ is prime in D. Finally, the radical of $C[[Z]]$ contains Z so that the last assertion is obvious.
i) Suppose that there exists a prime ideal \mathfrak{n} in D such that $\rho(\mathfrak{m}) \subset \mathfrak{n} \subset \mathfrak{N}$.
 maximal in $C[[Z]]$ since \mathfrak{m} is maximal in C. On the other hand, $Z \mu(\mathfrak{n})=\mathfrak{n}$ by the assertion f), this contradicts the assertion h).
j) We may assume that $\operatorname{dim}(C)<\infty$ by the assertion d$)$. Set $n=\operatorname{dim}(C)$. Let \mathfrak{m} be a maximal ideal of height n in C. Since $\mathfrak{N} \supset \rho(\mathfrak{m})$, $h t(\mathfrak{R}) \geq n+1$ by the assertion d). Let \mathfrak{n} be any element of V. The assertion f) and h) imply that $\mu(\mathfrak{n})$ is not maximal in $C[[Z]]$, whence $h t(\mathfrak{n})<\operatorname{dim}(C[[Z]])=n+1$ by the assertion f). Hence $h t(\mathfrak{N}) \leq n+1$. Thus $h t(\mathfrak{P})=n+1$.

Lemma 2. Let C be a noetherian integral domain and let \mathfrak{P} be a prime
ideal in C. Let a be a non-zero element of \mathfrak{P}. Then there exists a prime ideal \mathfrak{p} in C such that $h t(\mathfrak{p})=h t(\mathfrak{P})-1$ and $\mathfrak{p} \nexists a$.

Proof. We prove the assertion by induction on $h t(\mathfrak{P})$. Set $n=h t(\mathfrak{P})$. If $n=2$, then $\cap \mathfrak{p}_{\lambda}=0$, where \mathfrak{p}_{λ} is a prime ideal of height one contained in \mathfrak{P}, whence $\mathfrak{p}_{\lambda} \nexists a$ for some λ. Assume that $n>2$. Let $\mathfrak{P}=\mathfrak{p}_{0} \supset \mathfrak{p}_{1} \supset \cdots \supset \mathfrak{p}_{n-2} \supset \mathfrak{p}_{n-1}$ $\supset 0$ be a chain of prime ideals in C. Similarly, we may assume that \mathfrak{p}_{n-1} does not contain a. Then, applying the induction assumption to $\mathfrak{P} / \mathfrak{p}_{n-1}$, we obtain a prime ideal \mathfrak{p} such that $h t(\mathfrak{p})=n-1$ and \mathfrak{p} does not contain a.

Lemma 3. (Samuel, [10], Theorem 2.1) Let C be a regular unique factorization domain. Then $C[[Z]]$ is also a regular unique factorization domain.

We are now able to state:
Proposition. Let the notation be the same as in Section 2. Let C $=S_{1}^{-1} B$ and let $D=K+Z C[[Z]]$, where Z is an indeterminate. Then D is a non-catenarian local domain, and $\operatorname{dim}(D / \mathfrak{n})=3$ for each height one prime ideal \mathfrak{n} in D.

Proof. C has a maximal ideal of height 2 and a maximal ideal of height 3 by the assertion e) and f) of Lemma 3 of Section 2. Hence the assertions d) and i) of Lemma 1 imply that D is not catenarian. Let \mathfrak{n} be a prime ideal of height one in D. Since C is a regular unique factorization domain, so is $C[[Z]]$ by Lemma 3. Hence $\mu(\mathfrak{n})=(c+Z g(Z)) C[[Z]]$, where $c \in C$ and $g(Z) \in C[[Z]]$. Since $c+Z g(Z)$ is a prime element and since \mathfrak{n} does not contain Z, c is not zero. Let m be a maximal ideal in C of height 3 containing c. The existence of such \mathfrak{m} follows from the proof of Proposition of Section 2. Let $\mathfrak{M}=\mathfrak{m C}[[Z]]$ $+Z C[[Z]]$. Since $h t(\mathfrak{P})=4$ and $C[[Z]]$ is catenarian (cf. [11], p. 24), Lemma 2 implies that there exists a prime ideal $\mathfrak{n}_{1}^{\prime}$ in $C[[Z]]$ such that $h t\left(n_{1}^{\prime}\right)=3, n_{1}^{\prime} \supset \mu(\mathfrak{n})$ and $\mathfrak{n}_{1}^{\prime}$ does not contain Z. Hence there exists a chain of prime ideals $0 \subset \mu(\mathfrak{n})$ $\subset \mathfrak{n}_{2}^{\prime} \subset \mathfrak{n}_{1}^{\prime}$ in $C[[Z]]$ by the fact that $C[[Z]]$ is catenarian. Therefore $0 \subset \mathfrak{n} \subset Z_{n_{2}^{\prime}}$ $\subset \mathrm{Zn}_{1}^{\prime} \subset \mathfrak{N}$ is a chain of prime ideals in D by our assertion f), h) of Lemma 1. Thus $\operatorname{dim}(D / \mathfrak{n})=3$.

Remark. Since K is algebraically closed in C, D is a normal integral domain.

References

[^0][3] A. Grothendieck, Éléments de Géométrie Algébrique IV (Troisième Partie), Publ. Math. No. 28 (1966).
[4] W. Heinzer, Hilbert integral domains with maximal ideals of preassigned height, J. Alg. 29 (1974), 229-231.
[5] M. Nagata, Local Rings, Interscience, New York (1962).
[6] L. J. Ratliff, On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals (I), Amer. J. Math. 91 (1969), 508-528.
[7] L. J. Ratliff, Characterizations of catenary rings, Amer. J. Math. 93 (1971), 1070 1108.
[8] L. J. Ratliff, Catenary rings and the altitude formula, Amer. J. Math. 94 (1972), 458-466.
[9] L. J. Ratliff, Chain conjectures and H-domains, Lecture Notes in Mathematics 311, Springer-Verlag, New York (1973), 222-238.
[10] P. Samuel, On unique factorization domains, Illinois J. Math. 5 (1961), 1-17.
[11] H. Seydi, Anneau Henséliens et condition de chînes, Bull. Soc. Math. France 98 (1970), 9-31.

Department of Mathematics,
Faculty of Science, Hiroshima University

[^0]: [1] K. Fujita, Infinite dimensional noetherian Hilbert domains, Hiroshima Math. J. 5 (1975), 181-185.
 [2] O. Goldman, Hilbert ring and the Hilbert Nullstellensatz, Math. Z. 54 (1951), 136-140,

