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Introduction

In our paper [5], we have introduced an operation on modules over a com-
pletely integrally closed domain, which we called ‘‘divisorial envelope”, and we
have studied some basic properties of the divisorial envelope of a codivisorial
module and also developed a theory of codivisorial and divisorial modules which
shows us that the intrinsic nature of codivisorial and divisorial modules over a
Krull domain is similar to that of modules over a Dedekind domain.

The fundamental theorem of finitely generated abelian groups is based on
the fact that the ring of rational integers is a principal ideal domain, in other
words, a ring in which every ideal is free. It is well known that the above theorem
is generalized to finitely generated modules over a Dedekind domain which is
characterized by the property that any ideal is projective. It seems plausibe to
the authors that the theorem can be formulated for modules over a Krull domain
as far as we are concerned with codivisorial and divisorial modules. In fact,
in [3], N. Bourbaki dealt with the case of noetherian Krull domains. The main
purpose of this Part II is to introduce the notion of an essentially finite module
over a Krull domain and develop a theory of invariants by making use of the
divisorial envelope.

§3. Divisorial equivalence

Throughout this §, 4 is always a strongly integrally closed domain, unless
otherwise specified.

ProrosiTION 30. Let f: M—N be a homomorphism of A-domules and
p: M—>M|M, q: N>N|N be the canonical projections.

(i) There is a unique homomorphism f,: M/M—N|N such that f,p=qf.

(ii) If f is pseudo-injective, then f, is injective, and if f is pseudo-isomor-
phic, then so is f .

(iii) If f is pseudo-isomorphic and M is divisorial, then f, is an isomor-
phism.

Proor. The existence of f, follows from Prop. 3 and the uniqueness is
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clear.
Suppose first that f is pseudo-injective. Since M is contained in f~!(N),
we have the following exact sequence

0 — Ker(f) — f~1(N) — N.

This implies, by Prop. 6 (i), that f~!(N) is pseudo-null; therefore M =f~1(N).
Thus f, must be injective. If, moreover, f is pseudo-surjective, then Coker (f)
is pseudo-null; since the induced homomorphism of Coker (f) to Coker (fy) is
surjective, Coker (f,) must be pseudo-null. This completes the proof of (ii).

Finally, suppose that M is divisorial. Then M~M@M/M by Coroll. 2 to
Prop. 15, and therefore M/M is also divisorial. The assertion (iii) follows from
Coroll. 1 to Prop. 11.

ProPosSITION 31. Let A be a completely integrally closed domain and
M, N be A-modules. Let i be the canonical injection of M to D(M). If N is
codivisorial, then

Hom, (i, D(N)): Hom, (D(M), D(N)) — Hom (M, D(N))
is an isomorphism.

Proor. Since N is codivisorial, so is D(N) by Prop. 4. On the other
hand, D(M)/M is pseudo-null by the definition of a divisorial envelope D. There-
fore Hom,(D(M)/M, D(N))=0, which implies that Hom, (i, D(N)) is an injec-
tion. By Prop. 8, we can see that Hom , (i, D(N)) is a surjection.

COROLLARY. Letf: M— N be a homomorphism of modules over a strongly
integrally closed domain A. Then there exists a unique homomorphism fy,
of D(M|M) to D(N/N) such that fy4i=jf, where i (resp.j) is the canonical
homomorphism of M (resp. N) to D(M|M) (resp. DIN/N)). Moreover, if f is
a pseudo-isomorphism, then fy4 is an isomorphism.

ProOF. The homomorphism induces the homomorphism f, of M/M to
N/N by Prop. 30. Applying Prop. 31 to f,, we can obtain a homomorphism
fex of D(M/M) to D(N/N) such that f,.i=jf.

It is easy to see that, similarly to the proof of Prop. 31, Hom (i, D(N/N))
is an injection. This shows the uniqueness of fy.

Suppose now that f is a pseudo-isomorphism. Then, by Prop. 30, f, is a
pseudo-isomorphism (f, is necessarily injective). Since the canonical injection
of M/M to D(M/M) is an essential extension, f,, must be an injection. Since
both f, and the canonical injection of N/N to D(N/N) are pseudo-surjective,
so is the composition of them by Coroll. 2 to Prop. 6. We can conclude from
this fact that f,, is a pseudo-surjection. Since a pseudo-isomorphism of codi-
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visorial and divisorial modules is an isomorphism by Coroll. 1 to Prop. 11, fu«
must be an isomorphism.

In Lemma 2 ([5]), we have shown that, for non-zero fractional ideals a, b
of a Krull domain A4, ;:\E=&: b, namely D(Hom, (b: a))=Hom, (D(b), D(a)).
More generally, for A-lattices M, N, if N is divisorial, then D(N: M)=N: M=N:
D(M) i.e., D(Hom,(M, N))=Hom,(D(M), N) (See H. Bass [1], Coroll. 8.4, p.
151). Here we shall generalize the above fact for codivisorial modules over a
strongly integrally closed domain.

ProrosITION 32. Let M and N be codivisorial A-modules. If M is a
submodule of a finitely generated A-module L, then we have

D(Hom, (M, N)) = Hom, (D(N), D(M)).
Proor. By Prop. 31, we have only to prove
D(Hom, (M, N)) = Hom, (M, D(N)).
Consider the exact sequence
0 — Hom,(M, N) — Hom (M, D(N)) — Hom (M, D(N)/N).

Since N is codivisorial, so is D(N); therefore, by Coroll. to Prop. 7, Hom, (M, N)
and Hom, (M, D(N)) are codivisorial. Also, by Cor. 3 to Prop. 8, Hom, (M,
D(N)) is divisorial. Since a pseudo-isomorphism of codivisorial modules is an
essential extension, it suffices to show that Hom, (M, D(N)/N) is pseudo-null.

Generally, for a submodule M, of a finitely generated A-module M, and a
pseudo-null A-module N,, we shall show that Hom,(M,, N,) is pseudo-null.
Put N,=E(N,). Then N, is pseudo-null by Th. 2. Let {x,,..., x,} be a system
of generators of M, and f be a homomorphism of M, to N,. Then O(f)=0(f(x,))
n--n O(f(x,). Since each O(f(x;)) is equivalent to A4, so is O(f) by Coroll.
1 to Th. 1. Hence Hom,(M,, N,) is pseudo-null. Therefore, Hom,(M,, N,)
is pseudo-null, because it is a homomorphic image of Hom,(M,, N,), and
Hom ,(M,, N,) must be pseudo-null because it is isomorphic to a submodule of
Hom,(M,, N,).

REMARK 8. Let ¢ be the canonical homomorphism of Hom, (M, N) to
Hom, (M, D(N)). ¢ is not necessarily pseudo-isomorphic.

ExamPLE 3. Let (4, m) be a noetherian normal local domain of Krull
dimension =2. Put N=®% m", M=D(N)=®D(m")=®A (See Coroll. 4 to
Th. 3). Let p be the canonical projection of Hom,(D(N), D(N)) to Coker (¢).
Then O(p(1pw))={ae€ A;alpn(D(N))= N}=Ann,(D(N)/N)=nm"=0. There-
fore Coker (¢) is not pseudo-null.
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DEFINITION 7. Let M and N be A-modules. We say that M is divisorially
equivalent to N if there exists a pseudo-isomorphism of D(M) to D(N).

PrROPOSITION 33. (i) M is divisorially equivalent to N if and only if
D(M|/M) is isomorphic to DIN/N). In particular, the ‘“‘divisorial equivalence”
is an equivalence relation.

(ii) If f is pseudo-isomorphic to N, then M is divisorially equivalent to N.

PrOOF. The ““if” part follows from the facts that D(M)= D(M)@® D(M/M),
D(N)=D(N)@®D(N/N) by Coroll. 2 to Prop. 15 and D(#), D(N) are pseudo-null
by Th. 2. The “‘only if”’ part follows from Prop. 30.

The last assertion follows immediately from Coroll. to Prop. 31.

§4. Codivisorial and divisorial modules over a Krull domain (continued)

1. From now on, A4 is always a Krull domain and K is the quotient field of
A. Let M be an A-module. We shall denote by t,(M), or simply #(M) unless
there is fear of confusion, the torsion part of M. In view of the fact that any
module over a Dedekind domain is divisorial, the following theorem is a gener-
alization of the well-known fact that the injective dimension of any module
over a Dedekind domain is at most 1.

THEOREM 5. Let M be a divisorial torsion module. Then injdim (M)

IIA

ProoF. By Coroll. 2 to Prop. 15, M=~ M®M/M and M is injecitve. Hence
we may assume that M is a codivisorial and divisorial torsion module. There-
fore M=@®M,, where p runs over the elements of Ass,(M) by Th. 4. On the
other hand, E (M)=@®E,M,) by Coroll. 4 to Th. 3. Since Ass,(E4(M,))
=Ass,(M,)={p} and E,M,)=DEM)=E(M,), by Th.4, E,(M,)
=E (M, by Prop.26. Therefore E, (M)/M=®E,,(M,)/M,. Since A,
is a principal valuation ring, E,,(M,)/M, is A,-injective and therefore A-injec-
tive. Since each E,,(M,)/M, is a codivisorial A-module by Coroll. to Prop. 23,
E (M)/M is an injective A-module by [2], Prop. 2.7, namely injdim, (M)=<1.

COROLLARY 1. Let M be a divisorial torsion A-module. Then R?*4(M)
=0.

The assertion follows immediately from Th. 5 and the definition of R2.4".

COROLLARY 2. Let N be a codivisorial and divisorial A-module and M
be a divisorial torsion submodule of N. Then N/M is codivisorial and divisorial.

ProorF. N/M is codivisorial by Coroll. 1 to Prop. 11. Since R.A(N)
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—-R' W/ (N/M)-R24° (M) is exact by Prop. 10 and R?24°(M)=0 by the above
corollary, we have R4 (N/M)=0 bynoting that N is divisorial and hence
R!'A4°(N)=0 by Prop. 11. Therefore N/M is divisorial again by Prop. 11.

COROLLARY 3. Let M be a codivisorial A-module. Then M is divisorial
if and only if (M) and M[{(M) are divisorial.

Proor. The ‘‘if” part follows immediately from Coroll. 1 to Prop. 11.
Assume now that M is divisorial. Since #(M) is divisorial in M, #(M) is divisorial
by Coroll. 1 to Prop. 6. The above Cor. 2 leads to the last assertion.

2. 1. Beck showed in [2] that a direct sum of codivisorial and injective
modules over a Krull domain is still injective. The following result is a gener-
alization of the above fact.

PrOPOSITION 34. Let A be a directed set and {M, f; ,}:,.e4a be an
inductive system of codivisorial A-modules. If each M, is divisorial, then so is
lim M ;.

Proor. Consider the exact sequence
0 — lim {(M;) — lim M, — lim M;/t(M;) — 0.

Since #(M;) and M,/t(M,) are divisorial for any A by Coroll. 3 to Th. 5 and lim M,
is codivisorial by Prop. 29, we may assume that each M, is a torsion module or
a torsion-free module.

Case 1: Suppose that each M, is a torsion module. Let p be the canonical
projection of @ M, to limM,. Put N=Ker(p). Then we have the exact

AeA
sequence

00— N— M, — limM, — 0.

Since lim M, is codivisorial by Prop. 29, N is divisorial in ®@M,. Since @M,
is divisorial by Coroll. to Th. 3, N is divisorial by Coroll. 1 to Prop. 6. There-
fore lim M, is divisorial by Coroll. 2 to Th. 5.

Case 2: Suppose that each M, is torsion free. Then E(M,)=M,® ,K.
Since M, is divisorial, E(M,)/M,=M,® K/M, is codivisorial. Therefore
lim (M, ® ,K)/lim M, ~1im (M ;® ,K/M,) is codivisorial by Prop.29. Namely,
lim M, is divisorial in lim(M,®,K). Since lim(M,;® ,K)=(limM,)® K,
lim (M ;® ,K) is divisorial and hence lim M, is divisorial by Coroll. 1 to Prop. 6.

CoROLLARY 1. Let A be a directed set and {M,, f; ,}1.,.c4 be an inductive
system of codivisorial and injective A-modules. Then lim M, is injecitve.

The assertion follows from Prop. 34 and the fact that an inductive limit of
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divisible modules is divisible.

COROLLARY 2. Let A be a directed set and {M,, f, ,}: .4 be an inductive
system of A-modules. If R (M;)=0 for every A, then R'.4 (lim M,;)=0.

ProoF. By Remark 4 and Prop. 29, lim M l/l_ir/_r;\ﬁllgli_mM JJM,. Since
each M,;/M, is codivisorial and divisorial by Prop. 3 and Coroll. 1 to Prop. 15,
lim M l/ﬁ;\l\//ll is divisorial by Prop. 34 and hence R'."(lim M,;)=0 again by
Coroll. 1 to Prop. 15.

COROLLARY 3. Let A be a directed set and {M,,f; ,}1 .4 be an inductive
system of A-modules. Then

N ~
D(lim M,/lim M) = lim D(M,/M;).

ProorF. By Remark4 and Prop.29, limM A/m/\ﬁlgm M,/M, and
hence we may assume that each M is codivisorial. By Prop. 31, there exists
a unique homomorphism g,, of D(M;) to D(M,) for A<u such that g,,i,=i,f,,
where i, (resp. i,) is the canonical injection of M, (resp. M,) to D(M,) (resp.
D(M)). Hence {D(M,),g,,} is an inductive system over A and {i,} is an mor-
phism of {M,, f; ,} to {D(M,), g,,}. Since each M, is codivisorial, each D(M,)
is codivisorial by Prop. 4 and hence lim D(M ) is codivisorial by Prop. 29. Since
(lim D(M ), =lim D(M ), =lim M, =(lim M,;), by Coroll.2 to Th.3 and
Coroll. to Prop. 23, (lim i,, lim D(M,)) is an essentially isomorphic extension of
lim M, by Coroll. to Prop. 18 and Coroll. to Prop. 20. Therefore D(lim M)
~lim (D(M;)) by Prop. 13 because lim D(M,) is divisorial by Prop. 34.

LEMMA 3. Let B be a noetherian ring and {M,f; 31 uea0 AN 2> Gau}apen
be inductive systems of B-modules over a directed set A and {i,} be a morphism
of {M;,fu} to {Ns,9,,}. If i, is an essential extension for any A, then so is
lim i,.

Proor. Take a non-zero element x of lim N,. Then there exists an
element 4, of A and an element x; of N, such that g, (x;,)=x where g;, is
the canonical homomorphism of N, to Lim N, Let Ay,={ieA|A=4,} and
put x;=g,,.(x;,) for any Ae 4,. Then A, is cofinal in A and g,(x;)=x for any
Ae A, where g, is the canonical homomorphism of N, to lim N,. Since 0(x;)
c0(x;) if A<A'(4, 4 €4,) and lim 0(x,)=0(x), 0(x)=0(x,,) for some i€ A,
because B is noetherian. Therefore Bx; =~Bx. Since i;, is an essential ex-
tension, Bx, Ni,(M;)#0 and hence O0#g, (Bx; Ni,(M;))=g,,(Bx;,)
Ngyi,M;)EBxn(limi;)(lim M,;). This implies that limi, is an essential
extension.

ProrosITION 35. Let {M,,f; .} ea> {N2 9autauea be inductive systems
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of codivisorial A-modules over a directed set A and {i;} be a morphism of {M,,
fau) to {N;,g,,}. If i is an essential extension for any A, then lim i, is an es-
sential extension.

Proor. By Coroll. to Prop. 20 and Prop. 29, it is sufficient to show that
limi,, is an essential extension for any element p of Ht,;(4). Since 4, is a
principal valuation ring, the assertion follows from Lemma 3.

3. Now we study a relation between a divisorial envelope and the torsion
part.

PRrROPOSITION 36. Let M be an A-module. Then
D((M)) =~ (D(M)) and D(M|{(M)) =~ D(M)/D(t(M)).

Proor. First we shall show the assertion in the case that M is codivisorial.
Let p be an element of Ht,(4). Then t(D(M)),=t,,(D(M),)=t,4,(M,)=t,M),
by Coroll. 2 to Th. 3. Therefore t(D(M)) is an essentially isomorphic extension
of t(M) by Prop. 18 and Coroll. to Prop. 20. Hence D(t(M)) = #(D(M)) by Prop.
13 and Coroll. 3 to Th. 5. In what follows, we identify D(¢(M)) with t(D(M)).
Consider the following commutative diagram

0— M) — M -,  M/M) —0

1 I

0 — D(@(M)) — D(M) —> D(M)|D((M)) — 0,

where i is the canonical injection of M to D(M) and p (resp. q) is the canonical
projection of M (resp. D(M)) to M/H(M) (resp. D(M)/D(t(M))). Then there
exists a homomorphism f of M/t{(M) to D(M)/D(t(M)) such that gi=fp. Since
D(M)/D(t(M)) is divisorial by Coroll. 3 to Th. 5, it is sufficient to show that f
is an essentially isomorphic extension by Prop. 13. f is injective because M
N D(#(M))=t(M). Hence we can consider M/t(M) as a submodule of D(M)/
D(t(M)) through f. Let p be an element of Ht,(4). Then by Coroll. 2 to Th. 3,
(DA(M)/D 4(t,(M)), =D ,(M), /D 4(t (M), = M, [t (M),=(M]t(M)),.  Therefore
the assertion follows from Coroll. to Prop. 18 and Coroll. to Prop. 20.

Now we consider the general case. By Coroll. 2 to Prop. 15, D(M)= D(M)
@®D(M/M) and D(M)=6(7\/4). Hence D(M)<t(D(M)). Therefore t(D(M))
~D(M)@t(D(M|M)). Since M/M is codivisorial, {(D(M/M))=D(t(M/M)) and
hence t(D(M))= D(M)@® D(t(M/M)). On the other hand, since M = t(M), D(t(M))
~D(M)@®D(t(M)/M) by Coroll. 2 to Prop. 15. It is easy to see that t(M/M)
=t(M)/M. Therefore D(t(M))=D(M)®D(t(M/M)), namely D(t(M))=t(D(M)).
Since it is obvious that M/t(M)=M|NM/t((M|M), D(M[t(M))=D(M|M|t(M|M))
=~ D(M|M)/D(t(M/M)) because M/M is codivisorial. On the other hand, D(M)/
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D(t(M)) = D(M)® D(M|M)/D(M)® D(t(M|M)) = D(M | M)/ D(t(M|§1)). Hence
D(M[t(M))= D(M)/D({(M)).

§5. A Theory of invariant factors over a Krull domain

1. Throughout this section A stands for a Krull domain and K the quotient
field of A.

DEFINITION 8. Let M be an A-moule. We say that M is essentially flnite
if M|{(M) is an A-lattice and {(M),=0 for almost all primes of Ht,(A4) and
1,(¢(M),) <o for any p of Ht,(A), where 1,(tM),) is the length of the A,-
module t(M),.

REMARK 9. It is easy to see that a finitely generated A-module is essentially
finite and that an essentially finite module over a Dedekind domain is finitely
generated.

PropPOSITION 37. The following statements concerning an A-module M
are equivalent:

(i) M is essentially finite.

(i) MM is essentially finite.

(iii)) D(M) is essentially finite.

(iv) D(M/M) is essentially finite.

PROPOSITION 38. Let S be a multiplicatively closed subset of A. If M
is an essentially finite A-module, then sois S™'M as an S A-module.

ProrosiTION 39. Let 0»L—> M- N—-O0 be an exact sequence of A-mod-
ules. Then M is essentially finite if and only if L and N are essentially
finite.

Proor. The assertion is obvious if M is a torsion module. First we suppose
that M is essentially finite. Since #(M) is essentially finite torsion module, #(L)
is also essentially finite. We put L'=L/t(L), M'=M/t(M) and N’'=N/t(N)
respectively. Then we have the following commutative diagram

0 0 0
! ) l
0 — (L) — t(M) - t(N)
! ! )
0— L — M —>» N —0 ()
ik ! )
0— L' — M' > N —0
! ) !

0 0 0
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where each p; is the canonical homomorphism and the first two rows and all
columns are exact. Since 0—L'—>M’ is exact and M’ is an A-lattice, we can
readily see that L' is also an A4-lattice. Thus L is essentially finite. Next we shall
prove that N is essentially finite. Note first that, since p; is surjective and M’
is an A-lattice, N’ is also an A-lattice. To show that #(N) is essentially finite, by
applying Snake Lemma to the last two columns, we consider the exact sequence

0 — t(L) — L —— Ker(p;) =% Coker(p,) — 0 (%)

where 6 is the connecting homomorphism. Since M’ is an A-lattice, Ker(ps)
is also an A-lattice; therefore L'>~1Im (i) is a sublattice of Ker(p;), because Coker
(py) is a torsion module. By [4], Prop. 5.2, L;=(Ker(p;)), for almost all
primes p of Ht,(A) and, hence, (Coker(p,)), =0 for almost all primes p of Ht;(A).
It is also easy to see that [,(Coker(p,),)<co for any p e Ht,(A4). Thus Coker(p,)
is essentially finite. Now the conclusion follows immediately from this fact.

Conversely we suppose that L and N are essentially finite. We can readily
see that #(M) is essentially finite by observing the first row of the commutative
diagram (¥). We can obtain the following exact sequence from (#x*):

0 — L’ — Ker(p;) -2 Coker(p,) — 0.

Since #(N) is essentially finite, Coker(p,) is an essentially finite torsion module.
Therefore Coker (p,), =0 for almost all primes of Ht,(A4), namely L;=Ker(p;),
for almost all primes p of Ht,(4). Again by [4], Prop. 5.2, nKer(p;), is an 4-
lattice, because L’ is an A-lattice, where p runs over the primes of Ht,(A). Since
Ker (p;) is contained in the above intersection, Ker(p;) is an A-lattice. Now we
consider the exact sequence:

0— Ker(p;) — M —> N' —> 0.

Let F, be a free submodule of M’ which has the same rank as that of M’. Put
F'=F nKer(p;) and F"=p3(F). Then it is easy to see that F’® K=Ker(p;)®K
and FF® K=N'®K. Hence rank (F')=rank (Ker(p,)) and rank (F")=rank (N’).
Therefore Ker(p;),=F; and N;=F; for almost all primes p of Ht;(4). This
implies that M;=F,, for almost all p e Ht;(4). By the preceding argument,
we can see that M’ is an A-lattice. This completes the proof.

2. It is well known that the torsion part of a finitely generated module over
a Dedekind domain is a direct summand. N. Bourbaki showed, in [8], §4,
n°4, Th. 4, that a finitely generated module M over a noetherian Krull domain is
pseudo-isomorphic to t(M)@M/t(M). However, it seems to the authors that
the finiteness condition ‘‘noetherian™ is rather unnatural. By noting that any
module over a Dedekind domain is divisorial, we shall formulate a theorem in
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view of the principle stated in Part I.

THEOREM 6. Let M be an essentially finite A-module. Then D(M)
=D((M))®D(M/{(M)).

Proor. By Coroll. 2 to Prop. 15, Prop. 36 and Prop. 37, we may assume
that M is codivisorial and divisorial. By Prop. 36, #(M) is divisorial. Hence
t(M)=@t(M), where p runs over the primes of Ass,(#(M)). Since 4, is a prin-
cipal valuation ring and M, is a finitely generated A,-module by Remark 9 and
Prop. 38, t(M), is a direct summand of M,. Let ¢, be the canonical projection
of M, to #M), and i, be the canonical homomorphism of M to M,. Since
t(M) is codivisorial and essentially finite, Ass,(t(M)) is a finite set. Hence ¢
=®@,i, is a homomorphism of M to t(M)=@®#M),. We can see that the
restriction of ¢ to t(M) is the identity map. Therefore #(M) is a direct summand
of M.

The following theorem is also a generalization of the fact that a finitely
generated module over a Dedekind domain can be decomposed to a direct sum
of primary cyclic modules and a projective module uniquely up to isomorphisms.

THEOREM 7. Let M be an essentially finite A-module. Then M is divi-
sorially equivalent to @ A/P{""@® N where {p;;i€l} is a finite subset of
Ht,(A), N is a divisorial lattice and p{" means the symbolic n;th power of
p;. Furthermore the set of pairs {(n;, p;);i€l} is uniquely determined up to
permutations and N is uniquely determined up to isomorphisms.

Proof. By Prop. 33 and Prop. 37, we may assume that M is codivisorial
and divisorial. Then, by Th. 6, M~t(M)®M /(M) and M/t(M) is a divisorial
lattice by Coroll. 3 to Th. 5. On the other hand, {(M)=@tM), where p runs
over the primes of Ass, (#(M)) and Ass, (M) is a finite set of primes of height 1.
Since A, is a principal valuation ring and #(M), is a finitely generated 4,-module
by Remark 9, (M), = @ jes(y)4,/P"A,, where I(p) is a finite set. Furthermore
it is well known that (n;) ¢y, is uniquely determined up to permutations. Since
D(A[p"?)= A,[p"iA, by Th.4, M is divisorially equivalent to @A/p"’@M/
t(M), where p runs over the primes of Ass,(((M)) and j runs over the set I(p).
The last assertion is clear.

The results stated for noetherian normal domains in Bourbaki [3], §4, n°S
and n°7 can be generalized to the case of Krull domains by replacing ‘‘pseudo-
isomorphism” by ‘‘divisorial equivalence” and ‘‘finitely generated” by ‘‘es-
sentially finite”,
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