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1. Introduction

The study of differential equations with time lag is growing increasingly signi-

ficant due to technological dependence on physical systems with after effects.

Mathematically, such systems [1] are governed by some sort of differential

equation with an appropriate delay term which in itself may be a variable quantity.

The oscillatory behavior of such equations becomes an interesting phenomenon

especially when delay is chiefly responsible for causing oscillations. For example,

following Teodorick [20], (also see Norkin [12, pp. 4-6]), the equation

(1) x»(t) + — x'(t) + — x(t) + -lB—x(t-Δ) = 0
m m ream

represents the working of an electric hammer of mass m. A study of this system

shows that without the delay term Δ, there will be no vibrations.

Results concerning the oscillatory behavior of a wide variety of retarded

equations can be found in [2, 3, 5, 9,10,13,16,19, 21]. However most of these

results are such that the delay term does not play any role at all. But an obvious

example such as

(2) y»(ή-y(t-π) = 0

clearly indicates by its solutions sin t and cos t, that its oscillatory behavior is dif-

ferent from that of the ordinary differential equation

(3) y»(t)-y(t) = O

which is nonoscillatory. This difference in the behavior of equations (2) and

(3) is clearly due to the delay term π.

Recently Ladas and Lakshmikantham [10] showed that if p(t)>0, p'(t)<0

and τ 2 p(ί)>2, then the bounded solutions of the equation

(4) y'V)-p(t)y(t-τ) = o

are oscillatory. Taking p(t)=l and τ = 0, equation (4) reduces to equation (3)

which we know is nonoscillatory. Ladas, Ladde and Pappadakis in [9, Theorem
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3.1] generalized these results to a more general equation

(5) /(O-Σ

where

u i = 1, 2,..., m.

Our purpose, here, is to consider a still more general equation

(6) y ( 2 w ) (0- .Σ PiiϋyigM) =f(t), (n>l an integer)

and accomplish the following:
(a) to find conditions which will ensure that bounded nonoscillatiory

solutions of equation (6) approach zero,
(b) to find conditions such that nonscillatory solutions of equation (6)

do not approach zero.
In what follows, we call a function y(t)eC[ί0, oo), to>0, oscillatory if it

has arbitrarily large zeros. Otherwise call it nonoscillatory. All solutions referr-
ed to equations (2), (3), (4), (5), and (6) will be, henceforth, continuously ex-
tendable solutions on some positive half real axis.

It is assumed and showed by examples that such solutions exist. For more
on this see Gustafson [6].

2. Main restlts

The following assumptions are to hold for the rest of this paper (see [9, p.
386]).

( i ) pi9 gieC[[t0, oo), K], p f>0, ί = l,2 m, and for some index i0, l<i0

ίjPίo(0>0 for t>t0.
(ϋ) 9i{i)<t andlim0j(O=°° forί = l, 2,..., m.

ί-» oo

(iii) 0J(O>O for ί = l, 2,...,m.

(iv) f(t) e C[tθ9 oo) and nonnegative.

THEOREM 1. Suppose

(A) limsupfΓ̂
 (f)L

where g*(i)= max [0j(ί)] Then bounded nonoscillatory solutions of equation
l<.i<>m

(6) are eventually negative.
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PROOF. Let y(t) be a bounded nonoscillatory solution of equation (6).

Then y(t) eventually assumes a constant sign. Suppose, to the contrary, that

y(t) is eventually positive. Let Tbe large enough so that for t>T>tOi y(gi(t))>0

for ί = l , 2,..., m. Due to condition (i) and /(ί)>0, it follows from equation

(6) that y ( 2 n ) (ί)>0. Due to the fact that y(t) is bounded and positive, the con-

clusion yi2n\t)>0 implies the following

for sufficiently large t. Without any loss of generality, we can assume that T

is large enough so that for t>T9 (7) holds. Let p, q>T. By generalized mean

value theorem we have

(8) y(p) = y(q) + (p-q)y'(q)+ ( / ? ~ ^ / M + ' + ̂ Γ " ^ " y{2r

(2Λ)!
 y KP)

where β e (p, q).

Since y(2n\β)>0, we have from (8)

(9) ?

Let

P = 9i(s), 1 = 9i(t).

Then from (9), we obtain

(10) yigM) > y(gi(t)) + (gi(s)-

+ ( 2 Λ - 1 ) ! J ^ ι W J

from which

(11) y^\s) = f Pi(s)y(gi(s))+f(s) > f P&s)y(gίt))
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integrating (11) between [#*(0> t] we get

(12) /2»-1>(O-/2"-1)fo*(O) > Σ yte
g*(t)

Jg*(t)

(12) now yields

m

+ y Σ j '

(2«—1)! Li=iJ^*(o

Due to condition (A) of this theorem, conclusion (7) and the fact that ^(s) — gt(f) < 0

(since s<t), each term to the right of (13) is nonnegative while the left side of (13)

is nonpositive. Since pio>0, at least for one /0, the right hand side of (13) is

positive. This contradiction proves the theorem.

THEOREM 2. Suppose condition (A) of Theorem 1 is satisfied. In ad-

dition to this suppose

Ct+k

(B) there exists /c>0 such that liminf \ Pj(t)dt>ε>0: for some index j ,
f->00 Jt

(C)

Then bounded nonoscillatory solutions of equation (6) approach zero as ί-»oo.

PROOF. Let y{f) be a bounded nonoscillatory solution of equation (6).

By Theorem 1, y(t) and X<7(0) a r e negative to the right of some conveniently

large t9. From condition (B)
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(14) pj(t)dt = oo.
Jto

Integrating equation (6) between t0 and ί, we get

(15) J> ( 2 n - 1 ) (0->> ( 2 w - 1 ) ( io)- Σ Γ Pj(s)y(gj(s))ds = Γ f(s)ds
1 Jto Jto

or

(16) y(2n~1 }(0 — y{2n~1 \t0) — \ Pj(s)y(gj(s))ds < \ f(s)ds.
Jto Jto

Equation (16) suggests that

(17) ίo

In fact if

(18)
Jto

then due to \ f(t)dt<oo, it follows from (15) that y(2n-i)^_co a s ^-^oo.
Jto

But this will force y(t) to be unbounded, a contradiction. Hence (17) holds.

Now we will show that

(19)

From (16) and (17), it follows that

(20) y(2"-{\t)-+0 as t -• oo.

Now we shall make use of Kolmogorov's general theorem that, if |>>|<M0 and

| / 2 « - 1 ) | < M 2 π _ 2 on (0, oo), then

(21) \yd)\<cnti M1

0-^TM-φ1,

where Cni is a numerical constant depending on n and i and 0 < ΐ < 2 n — 1 (see

[14, p. 22]). Thus if J ; < 2 M - 1 > ( 0 - ^ 0 as ί->oo and y(f) is bounded, then

(0<i<2n-l) as ί->oo. Hence (19) holds.

Thus we have shown that

Now from (14) and (17) we have
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(22) limmί(-y(g(t)) = 0.
ί-+oo

The subscript j in (22) is dropped for convenience. For convenience, let

- y(t) = z(0 > 0. If lim z{t) φ 0, then let
t-*oo

(23) limsupz(ί) > r > 0.
ί->oo

In view of (11), there exists a sequence {βv}, v > 0 with the following properties

(see, Singh [16], Hammett [7]):

(24) lim βv = oo, βv > tt for all v, tt is the same as above.
v-+oo

(25) For each v9 z(g(βv))>r.

(26) For each v > l , there exist numbers β'v such that βv-ι< β'v < βγ and

z(g(β'v))<rl2.

Let αv be the largest number less than βv such that z(g(<xv)) = r/2 and δv be

the smallest number greater than βv such that

(27) Z(g(δv)) = ̂  f o r v > l .

Now in the interval [αv, j5v], there exists a £v such that by mean value theorem

(28) g ' a d

or

(29) \g'Uv) όv-ocv 2{dv-ocv)

But z'(#(Cv))->0 as όf(Cv)->oo. Also g'(ζv) is bounded. Therefore from (29),

it follows that

(30) lim(<5v-αv) = oo.
V-»Q0

Also because of the way αv and <5V were chosen

(31) z ( ^ ( 0 ) > r / 2 > 0 on [αv,<5v].

Now from (17), it follows

oo
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> Σ \lvpj(s)z(gj(s))ds
v=Uαv

> τ l Pj{s)ds = oo ,
^ v=lJαv

due to condition (B) of this theorem. This contradiction shows that r = 0 and

the proof is complete.

EXAMPLE 1. Consider the equation

(32) y^IV\t) — e^2~πy(t — π) = e~tll — e~t, t > π;

which has y= — e~ι as nonoscillatory negative solution that goes to zero as ί-»oo.

Now from condition (A), we have

(33) lim sup 1 Γ (g(t) ^g{s)Yp{s)ds
ί-»00 O Jg*(t)

= lim sup 4-Γ (t-sYesi2-nds>\ .
ί-» c» O Jt-π

From condition (B), it follows

Γt+k

(34) liminf\ es/2~πds = 2e~π \imm{e^2(ek-l) = oo9 since fc>0.
ί-+oo Jt ί->oo

Also

f(f) = e~\etl2 — \) > 0, which is integrable on (π, oo)

and

Thus all the conditions of Theorems 1 and 2 are satisfied.

THEOREM 3. Suppose condition (A) of Theorem 1 holds. In addition

to this suppose

(D) lim\ p(s)ds = oo

and

(E) liminf-^ > β > 0 .
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Then no nonoscillatory solution of equation

(35) y'2nKt)-p(t)y(gi(t))=f(t)

approaches zero.

PROOF. Let y(t) be a nonoscillatory solution of equation (6) which approach-

es zero. Then y{t) is bounded on [ ί l 5 oo). By Theorem 1, y(t) is eventually neg-

ative. Without any loss we can assume that y(t)<0 for t>tίt From equation

(6) we have

(36) ^ 2 » - 1 > ( ί ) - / 2 B - 1 ) ( ί i ) = Σ Γ Pk(s)yk(g(s))ds + \t f(s)ds.

Since y(t)-+O as ί->oo and is negative, there exists t2>tί such that

(37) y(9k(t))> -ββ for t>t2.

Replacing t2 for tγ in (37), we get

> - A Γ p(S)ds + [ f(s)ds ,

which yields

08)

Now as ί-^oo, the right hand side of (38) is bounded away from zero due to con-

dition (E). Since

lim \ p(s)ds = oo ,
t-+σo)t2

it follows from (38) that y^2n"ι\i)-^oo which in turn forces y{t) to be positive,

a contradiction since y(t)<0 for t>t2. This contradiction proves the theorem.

EXAMPLE 2. Consider the equation

(39) y(IV\t)-y(t-π) = r + 2sinί, r > 1.

The solution is j/(ί)=— r + 2sinί, a negative nonoscillatory solution which

does not approach zero as ί->oo. From condition (E), we have

(40) hm inf ̂ j1 = lim — ———-.—ι = r > 0
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Similarly for condition (A), we have

(41) lim supi-Γ (g(t)-g(s))3p(s)ds
ί->oo VJg*(t)

> lim sup-U' (t-s)3ds=^r->l.

Thus all the conditions of this theorem are satisfied to justify the solution y(t)

= — r + 2sin t of equation (39).
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