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Introduction. This note is intended to parallel some work of Kenmochi,
Mizuta, the author, and others, who have studied potential theoretic properties
for nonlinear monotone operators. It is related to work of Hunt, Yosida,
Yamada, and Sato, who have dealt with linear accretive operators.

Given an accretive operator in a Banach lattice, we establish relationships
between the modulus contraction, the domination principle, the majoration
principle, the principle of the lower envelope, T-accretivity, and order-preserving
resolvents. The results of this paper are presented as a series of definitions and
propositions. Together these imply Theorem 1, which shows that all the con-
ditions are equivalent under strong enough hypotheses.

It is hoped in future work to solve problems concerning the relationship
between the accretive and monotone cases, operators acting in several spaces,
the relation between reductions and variational inequalities, contractions onto
the interval [0, fc], capacities, the principle of the convex envelope, the condenser
principle, the balayage principle, and cones of potentials.

The author is very grateful to Professor Maeda for his helpful comments.

Potential Theoretic Properties. We recall [23] that a Banach lattice is a
Banach space X over the real numbers R, which is a lattice under the ordering
<, satisfying the following. For x9 y, z in X and a>0 in R, (1) x>y implies
x + z<y + z9 (2) x<y implies ax<ay, and (3) \x\<\y\ implies | |x| |<| |y| |. We
write V and Λ for supremum and infimum. We put x+ = xVθ and x" =
-(xΛO). We set \x\=x+ + x~. By xly we mean | X | Λ | J | = 0 .

We let P(X) denote the power set of X the subsets of X. Given A: X^P(X),
we let D(A) be the set of u in X for which Au is nonempty, and R(A) is the union
of the Au for uinX [11]. Given A: X-+P(X), B: X->P(X), one defines A + B:
X-+P(X) by (A + B)x = {a + b:aeAx,beBx}. For λeR, λA:X^P(X) is
defined by λAx = {λa: aeAx}. And A-^.X-^PiX) is defined by xeA-\ά)
if and only if a e Ax.

Nonlinear accretive operators were introduced in [3, Definition 1]. Let
X* be the dual of X. We denote the pairing between X and X* by parentheses.
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Let J: X-+P(X*) be the duality map defined by feJx when (*,/)= ||x||2 = | | / | | 2 .

Let <,>s:XxX^R be defined by <fg>s= lim d-^Wg + dfW2- \\g\\2).

Given A: X->P(X), the following are equivalent [2], [11]:

(1) If λ>0,xxeAx, yteAy, ihm Kx + λxJ-fy + λyJW^Wx-yl
(2) If xt eAx, yt eAy, then <x1 — yί9 x — y>s>0.
(3) If xίeAx, yίeAyi then there is feJ(x — y) with (xι — yl9f)>0.

If any and so all of these hold then A is called accretive.

Nonlinear T-accretive operators (where T stands for truncation) appeared

in [2,4, 5, 6, 7,9,13,14,15,17,20]. Let Jκ: X-+P(X*) be defined by fe Jκx

when/>0, (*,/)= | | * Ί I 2 = II/U2. By [6, Remark], or [17,1.1.4], Jκ(x)^J(x+),

and so JK(x) = {feJ(x+):f>0, (χ~J) = 0}. By [18] or [4, Prop 1.1] for

xeX, 0 {Jκ(y): y+ — χ+) is nonempty.
We let φo( , ):XxX^R be defined by φo(J,g)= lim d

d 0 +

- ll^+ll2) Given A: X^P(X\ the following are equivalent [6], [17]:

(1) If λ>0,x1eAx,y1eAy, then ||((X + ΛXO-CF + A ^ O Π I S: ll(

(2) If xteAx9 yxeAy, then (po(xi-yux-y)>0.
(3) If xx eAx, yί eAy, then there is feJκ{x — y) with (A^— ^

If any and so all of these hold then A is called T-accretive.

Given A:X->P(X), for λ>0 we write J λ = (/ + ̂ ) " 1 and A^λ'^I-J^

[11].

We say A: X^>P(X) is m-accretive (m-T-accretive) when it is accretive (T-

accretive) and R(I + A) = X (giving D(Jλ) = X for all λ>0). We use -• to denote

norm and -* to denote weak convergence.

Definition. We say the modulus contraction operates with respect to

A: X^P(X) if u^Au, w, eA(u + v+) implies that for feJκ(-v\ (wv-uuf)<0.

PROPOSITION 1. Lei X be a Banach lattice. Given A: X^P(X), suppose

that for uteAu and w1eAw and /eJ(w —w), (uι — wί9f)>0. Suppose D(A)

is a sublattίce of X. Suppose the modulus contraction operates with respect

to A. Then A is T-accretive.

PROOF. Let u1eAu,wίeAw. Let feJκ{u — w). Then feJ(u — uΛw).

Since D(A) is a sublattice we may take z1 e A{μ Λ w), giving (uί — zί9f)>0. Since

the modulus contraction operates, and w = (u Λ w) + (w — w)+, (zx — wl5 / ) > 0 .

Adding the two inequalities gives (uί—wί,f)>0. q.e.d.

Definition. We say A: X-*P(X) satisfies the principle of the lower

envelope if uίeAu, vteAv and uAveD(A) implies there is axsA{uhv) with

aί>u1Av1.

LEMMA 1. If X is a Banach lattice, and A:X-+X is hemicontinuous,



Potential Theoretic Properties for Accretive Operators 365

i.e. continuous from strong to weak topologies, and T-accretive, then (Ax —Ay,

f)>OforfeJκ(x-y). (Cf. [16, Remark 4])

PROOF. For λ>09

(Aλx-Aλy,f) = λ-i(x-y,f)-λ-\Jλx-Jλy,f)

> λ-*(x-y,f)-λ-\(Jλx-Jλyr,f)

> λ-\x-y,f)-λ-i\\(Jλx-Jλyr\\\\f\\

Since A is accretive in the equivalent norm | x | κ = ||x+ || + | |x"| |, | /A*"-X|K

X. Thus Jλx-+x as Λ->0, and since A is hemicontinuous, Aλx-*Ax.

It follows that (Ax-Ay,f)>0. q.e.d.

PROPOSITION 2. Let X be a Banach lattice. Let A:X-*P(X) be m-T-

accretive. Suppose X* is uniformly convex or A: X-+X is continuous. Then

A satisfies the principle of the lower envelope.

PROOF. We recall from [9, Lemma 2] the following result. Let X be

a Banach lattice with uniformly convex dual. Let A be m-T-accretive. Let

z e D(A). Define B^z: X-+P(X) by

ί { / < 0 : / ± ( x - z ) } f o r x>z
B^zx =

[ 0 otherwise.

Then A + B^z is m-T-accretive.

Now suppose A: X-*X is continuous and I is a general Banach lattice.

By [9, Lemma 1] B^z is m-T-accretive. Since B^z and A are T-accretive they

are accretive in the norm |x |κ=| |x+ | | + ||x"||. We recall from [1] that the sum

of an m-accretive operator B and a continuous accretive operator A:X-*X

is m-accretive. Consequently, whether X* is uniformly convex or A.X^X

is continuous we have R(εI + A + B^uAv) = X for ε>0. Let εx + a+f=(uί+εu)

Λθχ+ει;) with aeAx and feB^uAvx. Take g in 0 {Jκ(h): h+ = (x-u)+}.

Then (x-u)+±f gives (/, g) = 0, i.e.

(1) (εx + a-ίut+εu) Λ (v^Λ-εv^g) = 0.

From (w 1 + εύ)A(vx +εv)<uί+εu we have

(2) ((wi+βw) Λ (vί+εv)-(u1+εu),g) < 0.
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If X* is uniformly convex, Jκ is single valued and so

(3) (" i-α, 0 ) < O .

If A is continuous then (3) holds by Lemma 1. Adding (1) (2) and (3) gives

ε || (x — u)+1|2 <0 and sox<«. Similarly x<v. Consequently x = u A v. Taking

ax = α gives ε(u A v) + a1>(u1-\-m)A(vί+ευ). Lettingε->0 we obtain ax>uί A vx.

q.e.d.

Definition. We say A: X^>P(X) satisfies the domination principle if

uί eAu, v1 eAv, uί Avt>f and (u1—f)λ(u — v)+ implies u<v.

We say that A is strictly accretive if for uγeAu, vίeAv, uφυ, for all

fe J(u — v) we have (u1 — υί9 f) > 0.

PROPOSITION 3. Let X be a Banach lattice. Let A: X-+P(X) be strictly

accretive. Let D(A) be a sublattice of X. Suppose A satisfies the principle

of the lower envelope. Then A satisfies the domination principle.

PROOF. Suppose u1eAu, vxeAv, uιΛvί>f and (u1-f)l(u-v)+. Take

ax GA(UAV) with ax >uίAv1. Take#e (] {Jκ(h): h+ = (u-v)+}. Then ax>f

gives (/— ax, g) < 0. Since (w γ ~/)l(w - v)+ we have (w x - / , g) = 0. Adding,

we obtain (ux — ax,g)<0. By strict accretivity, u = uAv, and u<v. q.e.d.

We say U: X-+P(X) is order preserving if xx e Ux, yx e Uy, x<y implies

Xi<)>i. We say U: D(U)^X-*X is T-nonexpansive if x, yeD(U) implies

\\(Ux-Uyy\\£\\(x-yy\\ [4].

PROPOSITION 4. Let X be a Banach lattice. Let A satisfy the domination

principle. Then (I + λA)'1 is order preserving for λ>0.

PROOF. Let λ>0,f<g, ux eAu, vx eAv, u + λux=f, v+λvx = g. Then

Mi Λ v± > λ-\f-(u V v)).

Also, since uί—λ~ί(/— (w Vv))=λ~1(u — v)~,

Ui-λ-^f-u V v)±(u-υ)+.

By the domination principle, u <v. q. e. d.

PROPOSITION 5. Let X be a Banach lattice. Let A be accretive and let

(I + λA)'1 be order preserving for /Le(O, ε). Then the modulus contraction

operates with respect to Aλ9 λe(0,έ). If A is m-accretive and X* is uniformly

convex and A is single valued, or A\X-*X is continuous, then the modulus
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contraction operates with respect to A,

PROOF. Given λ e (0, ε), w, u + v+ e D(Aλ), feJκ(-v), since (v+

9 /) = 0

and/>0,

(Aλ(u + v+)-AλuJ) = λ-i((u + v+)-(I + λA)-\u + v+)-u + (I + λA)-iuJ)

< 0 .

If A is continuous, or if A is single valued and m-accretive and X* is uniformly

convex, then Aλu^Au and Aλ(u + v+) -* A (u + v+) as A->0 for u,u+v+ eD(A).

This gives 04(« + t;+)-,4w,/)<0. q.e.d.

PROPOSITION 6. Let A: X-+P(X) be given in the Banach lattice X.

If Aλ is T-accretίve for 0<λ<ε, then A is T-accretive.

PROOF. Given (5>0, let uγeAu, vxeAv, u + δuί=f and v + δvi=g.

For /le(0,(5)n(0,ε), put u + λu1=xλ9v + λΌ1 = yλ. Then xλ + (δ-λ)Aλxλ3f

and yλ + (δ-λ)Aλyλ3g. Since Aλ is T-accretive, \\{xλ-yλY\\ < ll(/-^)+ll.

Letting Λ-0, we have ||(u -z;)+|| < | | (/-^) + | | . q. e. d.

Definition. We say A: X->P(X) satisfies the majoration principle if

for / e l , ux eAu,f<y1 eAy, ε>0, ε(u1—f)<(y — u)+ implies u<y.

REMARK. The next result follows [21], [22], [24]. I have not obtained

the result for R(A) dense as in [21]. Note that one may approximate/in the clo-

sure of R(A) for m-accretive A by (xλ)λ>0 where xλ — A((f— xλ)/λ)3θ. Note

the condition Jλ(y-u + z + λf)<(y-u + z) holds if Ausux>f as in [22], [24]

where /=0, or A is linear as in [21], [22], [24].

PROPOSITION 7. Let X be a Banach lattice. Given A:X->P(X) we

suppose R(A) = X and (λl + A)"1 is order preserving and single valued for

λ>0. Suppose that if f<yιeAy,u1eAu,(uί-f)++feAz and λ>0, then

Then A satisfies the majoration principle.

PROOF. Let feX, uίeAu9f<y1eAy, ε>0, ε(ut— f) < (y — M)+. Define

Af\X-+P{X) by Af(p) = A(p)-f Note that (λl + A/)-1 is order preserving

and single valued for λ > 0. Let (u x —/)+ +/e Az and write x = y — u + z. Then

(I + εAf)-1x = (I + εA)-1(x + εf)<ιx. We have (/ + ε^l/)-1(z + ε(w1-/)+) = z<z

+ ε(w1—/)+. Let ι; = (z + ε(w1—/)+)Λx. Since (J + ε^y.)"1 is order preserving,

(I + εAfY
ιv<v. This implies (Af)εv= ε-ί(v-(I + εAf)-ίv)>0. Now z = (/

4-ε^/)~1(z + ε(M1-/)+)>(/ + ε^/)"1ι; = ί;-ε(^4/)εί;, giving ε^Xt ^ ί -z . Hence

ε(Af)εv>(v-z)+. Now ι; = (ε(M1-/)+Λ(x-z)) + z, giving (ι;-z)+ = ε(M1-/)+
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Λ (x — z)+ = ε iμ! — / ) + Λ (y — u)+ = ε (u t — / ) + by our original supposition. It

follows that ε(A/)εv>ε(u1—f)+. Since Afλ preserves order, (I + εAf)~1v > z.

Hence, x>v>(J + εAf)~xv>z. But x>z means y>u. q.e.d.

W e s a y A : X-+P(X) is s t r i c t l y T - a c c r e t i v e if f o r u j e Au, vίe Av, (u — υ)+ φ 0 ,

we have (u1—vί9/)>0 for all fe Jκ(u — v).

PROPOSITION 8. Let X be a Banach lattice. Let A be strictly T-accretive.

Then A satisfies the majoration principle.

PROOF. Let / e l , uteAu, f<yxeAy, ε>0, ε{ux-f) < (y-u)+. We

want to show u<y, or (u — y)+ = 0. Take g in Π {Jκ(h), h+ — {u — y)+}.

Since ε(u1 -/)<(u-y)~, (ux-f)+±(u-y)+. It follows that

<{{ux-f)\g)

= 0.

Since A is strictly T-accretive, (u — y)+ = 0.

PROPOSITION 9. Let X be a Banach lattice. Suppose A satisfies the

majoration principle. Then (I + εA)'1 is order preserving for ε>0.

PROOF. Let u + εuι<y-\-εyu with ε>0, uίeAu, and yteAy. P u t / ^ i

in the definition of the majoration principle. We have εiμ^— yλ)<y — u<

{y — w)+. By the majoration principle, u < y. q. e. d.

PROPOSITION 10. Let X be a Banach lattice. Let A be m-accretive.

Suppose ε>0 and A + εl is T-accretive. Then A is T-accretive.

PROOF. Let λe(0, ε"1), xt GAX, yι eAy, and suppose x + λxί=f>g = y

+ λyt. Take h in Jκ(y — x) with ((y γ + εy) — (x x + εx), h) > 0. This implies

(l-λε)(y-x,h)<(g-f,h)<0. Since 0<Aε<l, we have | | ( j ;-χ) + | | 2 =0. Thus,

(I + λAy1 is order preserving.

By Proposition 5, the modulus contraction operates with respect to Aλ.

Since A is m-accretive, by [16, Remark 4] (cf. Lemma 1), Aλ satisfies the con-

ditions of Proposition 1. By Proposition 1, Aλ is T-accretive, and by Proposi-

tion 6, A is T-accretive. q. e. d.

THEOREM 1. Let X be a Banach lattice, and let A — εl be m-accretive,

ε>0. Suppose either A:X^X is continuous or A is single valued and X*

is uniformly convex and D(A) is a sublattice of X. Then the following are

equivalent:
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(1) The modulus contraction operates with respect to A.

(2) A is Ύ-accretive.

(3) A satisfies the principle of the lower envelope.

(4) A satisfies the domination principle.

(5) For λ>0, (I + λA)~x is order preserving.

(6) A satisfies the majoration principle.

PROOF. We note J and Jκ are single valued if X* is uniformly convex.

(1) implies (2) by Proposition 1. Note that if A is continuous then for

feJ(u-w), (Au-AwJ)>0 [16, Remark 4].

(2) implies (3) by Proposition 2.

(3) implies (4) by Proposition 3. Note that if A — εl is accretive, ε>0,

then A is strictly accretive in case X* is uniformly convex since J is single valued

and if A is continuous by ((̂ 4 — εl)u — (A — εl)w9f) > 0 for all fe J(u — w).

(4) implies (5) by Proposition 4.

(5) implies (6) by Proposition 5.

(2) implies (1) by Propositions 8 and 10. In fact, by Proposition 10, A — εl

is T-accretive. Note that if A: X-+X is continuous and A — εl is T-accretive then

A is strictly T-accretive, since ((A — εI)u — (A — εI)w,f)>0 for all / i n Jκ(u — w)

by Lemma 1. If X* is uniformly convex and A — εl is T-accretive then A is

strictly T-accretive since Jκ is single valued.

(6) implies (5) by Proposition 9. q. e. d.

REMARK. Without assuming A is continuous or X* is uniformly convex

and A is single valued, we have AE satisfies (3) for ε > 0 implies (2). For by The-

orem 1, Aε is T-accretive, and by Proposition 6, A is T-accretive.
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