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§ 1. Introduction

A (continuous) mapα: M-*M of a space M into itself is called an involution

if α2 = id. We say that an involution α on M is equivalent to an involution

α' on M' if there exists a homeomorphism h: M^Mf such that a'h = hcn. The

purpose of this note is to classify (fixed point) free invoultions on compact con-

nected surfaces by this equivalence relation.

For an involution α on M, we obtain its orbit space M/α from M by identify-

ing x with a(x) for xeM. Then, we have the following

THEOREM 1.1. Assume that X is a compact connected surface of genus

g and the boundary dX consists of I components. Then the number n of equiva-

lence classes of free involutions on connected surfaces, whose orbit spaces are

homeomorphic to X, is given by

{ [//2] + min {g, 1} if X is orientable,

min{#, 3} if X is non-orientable.

Now, we use the following notation:

(1.2) Let α: M-+M be an involution on a surface M of genus g such that

the boundary dM has / components and the number of α invariant components

is l0 ( g /). Then, the type of such α is (g, I, l0, 1) if M is orientable and α preserves

the orientation, (g, /, /0, — 1) if M is orientable and α reverses the orientation,

and (g, /, /0, 0) if M is non-orientable.

Then we have the following classification theorem of free involutions on com-

pact connected surfaces.

THEOREM 1.3. (i) There exists a free involution of type (g, Z, Zo, ε) if

and only if we have the following (I), (II) or (III):

( I ) ε = l , Zo^0 is even, l^l0 is even and 0-b2min{/o, 1} —Zo/2^1 is odd',

(II) ε = - l , /0 = 0, J^O is even and g^O;

(III) ε = 0, Zo^0 is even, l^l0 is even and # + 2min{Z0, 1} —Zo^2 is even.

(ii) There exist two free involutions of type (g, I, l0, ε) up to equivalence

ΐ / ε = / o = 0, Z^O is even and g^4 is even, and otherwise a free involution of

type (g, I, l0, ε) is unique up to equivalence.
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In §2, we construct some typical free involutions on compact connected

surfaces, and prove Theorem 1.3 in Proposition 2.14, by assuming Theorem 1.1.

By using the well-known classification theorem of double coverings, we

prove Theorem 1.1 for an orientable surface X in §3 and for a non-orientable

surface X in § 4.

The author wishes to express his gratitude to Professor M. Sugawara for

his valuable suggestions and reading this manuscript.

§ 2. Constructions of typical involutions

In this section, we construct some typical free involutions.

On the torus Sι x S1, we have the free involution

(2.1) α o : S o > Sθ9 S0 = SixS1, αo(z, z') = (-z, z').

We construct the free involution

(2.2) ai:Si • St (i £ 1)

as follows: For i = 1,

S, = S 1 x / ( / = [0, 1]), β l (z, ί) = (-z, ί)

We consider the involution

α 2: S1 x S1 > S1 x S1, α2(z, z') = (z, z') (~ denotes the conjugation),

which has four fixed points ( ± 1 , ±1). Then, by removing the interiors of four

disjoint α2 invariant disks around these points, we obtain the desired surface S2

and the restricted involution α2. Inductively, we construct Sf and α£ from the

disjoint union Si-1\J S2 and the involutions ai_1 and α2 by identifying one com-

ponent of dSi-ί with one component of dS2.

Also, on the 2-sphere S2 and the torus S 1 x S1, we have the free involutions

(2.3) β:S2 >S2, β(to,tl9t2) = (-tΌ9-tl9-t2);

(2.4) β' .S^xS1 >SίxS\ β'(z,z') = (-z,z').

By (1.2) and the definitions, we have easily the following

LEMMA 2.5. The types of these involutions α0, αf ( i^ l ) , β and β' are

(1, 0, 0, 1), ( i - 1 , 2i, 2ί, 1), (0, 0, 0,-1) and (1, 0, 0, -1), respectively.

Now, let α: M-+M be a free involution on a compact connected surface

M, and we consider the following constructions:

(2.6) Let fc^O. By removing the interiors of 2/c disjoint disks Dί9...9 D2k
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in M — dM such that αD2 ι _ 1 = D 2 i ( l^ i^ fe) , we obtain the surface Mk = M

— \Jfi\ IntZ); and the restricted free involution α: Mk^>Mk.

(2.7) Let k^j^l. By attaching 2/ Mobius bands on dDt (1 g i£2j) to the

surface Mk of (2.6), we obtain the non-orientable surface M%tj and the free

involution α on M%tJ is induced from α on Mk.

(2.8) Consider the case that M is orientable, and let k^2j^0. Then, by

attaching 2j handles on dDt U dDi+2 for ΐ = 1, 2 (4) and 1 g ί ̂ 4/ — 2 to the surface

MΛ of (2.6), we obtain the surface MkJ and the free involution α on M Λ y is induced

from α on Mfc.

From these definitions, we have immediately the following

LEMMA 2.9. Assume that a is a free involution on M of type (α, /, /0, ±1).

(i) The type of a on MξfJ of (2.7) is (2g 4- 2/, / + 2k - 2j, l0, 0) for k^j^\.

(ii) The type of a on MkJ o/(2.8) is (g + 2j, l + 2k-4j, /0, ±\)for k^2j^0.

By Lemmas 2.5 and 2.9, we have the following

LEMMA 2.10. (i) By applying the construction (2.8) to the involution

(Xii Si-tSi (/^0) 0/(2.1), (2.2), we obtain the involution

oci on (Sdkj for i ^ 0, fe ^ 2/ ^ 0,

w/ioŝ  ίyp^ is (/ + 2/+l-2min{ϊ, 1}, 2i + 2k-4j, 2f, 1).
(ii) By applying (2.8) to the involutions β:S2^>S2 of (2.3) and

β': S1 x S ^ S 1 x S 1 o/(2.4), we obtain ί/?e involutions

β on (S2\j and β' on (S1 x S1)^- /or k^2j^ 0,

w/wse ίy/7̂ 5 are (2y, 2k — 4/, 0, —1) and (2/+1, 2/c — 4/, 0, —1) respectively.

(iii) J5y applying the constructions (2.7) to ί/?e involutions af 0*^0) o/

(2.1), (2.2) ana1 β o/(2.3), we obίa/n the involutions

oίi on (Sdlj and β on (S2)lj for ί^O,k^j^ 1,

whose types are (2/ + 2/ + 2-4min{/, 1}, 2/ + 2fe-2j, 2/, 0) and (2j9 2k-2j, 0, 0)
respectively.

LEMMA 2.11. In the above lemma, the involutions a 0 on (S0)^j and β on

(S2)°+i,y+i of (iii) have the same type (2/+ 2, 2fc-2/, 0, 0) /or fc^j^l, bwί

ί/zese are noί equivalent.

PROOF. Consider the involution a 0 on M^iSo)*]^-. From the definitions

of (2.1) and (2.7), we see easily that the homology group HX(M; Z) is generated

by cycles α, b (of S0 = S1 xS1) and c1 ?..., c2j (of the attaching Mobius bands)

with the relation 2{cιΛ h c 2 j ) = 0, and that the induced automorphism αOsjί
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of H^M Z) is given by

Therefore, for odd prime p, the induced automorphism OLO* of the vector

space HX{M\ Zp) = Zp{a, b, c1 ?..., c2j-1} is given by the above equalities with

c2j= — Έϊ=ϊlcb a n d s o i t s determinant detα 0* is equal to (— l)j.

For the involution β on N = (S2)ς}+ίtj+1, we see by the same way from the

definitions of (2.3) and (2.7) that the induced automorphism β* of the vector space

Hί(N;Zp) = Zp{c1,...,c2j+1} is given by

and so its determinant detβ* is equal to (—

By the above facts, there is not a homeomorphism h: M~gN satisfying

/?#ft# = ft*αOί|ί, and we have the desired result for k=j.

Assume that there is a homeomorphism ft: (S0)£ f i aKS 2)£+ 1 > < / + 1 such that

βh = hoίo for k>j. Then, by attaching 2k —2j disks, we can extend ft to a homeo-

morphism ft: (S 0 ) j , j » (S 2 )^ + 1 > i + 1 such that βh = hoco, which contradicts the

above result. q.e.d.

For the orbit space of a free involution, we have

LEMMA 2.12. Let a be a free involution on M of type (g9 Z, l0, ε). Then

the boundary of the orbit space M/oc consists o/(/ + /0)/2 components, and M/a

is orientable for ε= 1 and non-orίentable for ε = — 1, 0. Furthermore, the genus

of Mjoi is equal to (2 + 2g-Zo)/4, (2 + 2g-Zo)/2 and (2 + #-Z0)/2, according to

ε = l , - 1 cmdO.

PROOF. The first half is clear. Since M-^M/a is a double covering, we

have the equality 2χ(M/α) = χ(M) of the Euler characteristics. By this equality, we

see easily the second half of the lemma. q.e.d.

By this lemma, we have immediately the following

LEMMA 2.13. (i) The orbit space (S^j/oti of the involution αf of Lemma

2.10 (i) is orientable, its genus is j + 1 — min{i, 1}, and its boundary consists of

2i + k — 2j components.

(ii) The orbit spaces (S2)kJβ and (S^xS^Jβ' of Lemma 2.10 (ii) are

non-orient able, their genuses are 2/4-1 and 2j + 2, respectively, and their boun-

daries consist of k — 2j components.

(iii) The orbit spaces (S^g^/α, and (S2)$tj/β of Lemma 2.10 (iii) are non-

orientable, their genuses are j +2 —2min{i, 1} and 7 + 1, and their boundaries
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consist of2i + k—j and k—j components, respectively.

Now, we are ready to prove the following

PROPOSITION 2.14. Theorem 1.3 holds if Theorem 1.1 is valid.

PROOF. By Lemmas 2.10 and 2.11, the free involutions in Lemma 2.10

show the existence in Theorem 1.3. Also by Lemma 2.13, we see easily that

there are n equivalence classes of these involutions whose orbit spaces are homeo-

morphic to X, where n is the number given in the end of Theorem 1.1. There-

fore we have Theorem 1.3, if Theorem 1.1 is valid. q.e.d.

§3. Orientable surfaces

Let α be a free involution on a connected surface M, whose orbit space M/α

is homeomorphic to a given compact connected surface X. Then, we have a

double covering M-^MJOL^X and its Stiefel-Whitney class w^oO^O in the coho-

mology group H1(X; Z 2). Furthermore, if α' is equivalent to α, then we see

easily that w1(α')^w1(α) by the definition of the equivalence of involutions,

where ~ is the equivalence relation defined by

(3.1) x~y in H1(X;Z2) if x = t*(y) by the induced automorphism

t^'.H^X; Z2)->H1(X; Z2) of some homeomorphism t: X^X.

Therefore, by the classification theorem of double coverings, we have the

following

LEMMA 3.2. The equivalence classes of free involutions on connected sur-

faces, whose orbit spaces are homeomorphic to X, are in one-to-one correspon-

dence with the equivalence classes of H1(X; Z 2) —{0} under ~ of (3.1).

Now assume that X is a compact connected orientable surface of genus g

and the boundary dX has I components. Then X has a cellular decomposition

induced from the convex region with the boundary polygon

aίbιa-lίb~1

ί...agbga~1b-1w1d1wj1...wιdιwj1 .

Therefore, the (co)homology groups of X are given by

HX(X9 Z2) = Z2{al9 bl9...9 ag, bg, dl9...9 dι.ι), d1 + -+dι = 0 ;
(3.3)

H*(X; Z 2) = Z2{a\, b\9...9 a\, b\, d\-d*l9...9dU-d\} .

To determine the equivalence relation ~ of (3.1) on H1(X; Z2), we use

the following results of P. A. Smith [2, (8.1)].

(3.4) There exist homeomorphisms tu, t2i (l^i^g), t3ij, t4ij(l^i, j^g,
tk (1^/c^/—1) of X onto itself, and the induced automorphisms of
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HX{X\ Z2) satisfy the following conditions:

where these conditions mean that the remaining basis elements in (3.3) are un-

changed.

The following lemma is clear, since ί* is given by the transposed matrix of t*.

LEMMA 3.5. These homeomorphisms induce the automorphisms of

Hι(X;Z2) given by

where these conditions mean that the remaining basis elements in (3.3) are

unchanged.

Also, we have the following by [2, (8.1)].

LEMMA 3.6. For any permutation τ of {1,..., /}, there exists a homeo-

morphism tτ of X onto itself, satisfying

t^(ad = at9 tτ*(bi) = bi, tτ*(dk). = dm in H1(X;Z2).

Thus we have ίf(af)=af9 tf(bf) = bf and

By using these results, we prove the following lemmas for the equivalence

relation - of (3.1) on H^X; Z 2 ).

LEMMA 3.7. (i) a~a\ for any ae A — {0}.

(ii) a + d~d for any aeA and deD — {0}.
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(iii) Any deD — {0} is not equivalent to a\.

Here Λ = Z2{«*, b*l9...9 a*,b*}9 D = Z2{d\ -rff,..., d\.x -rff} czH\X; Z 2).

PROOF, (i) Let α = αf1H hafj> + *51H hΛ5β, it<-<ip, Λ < </β.

If ςr = 0 and /x = 1, then a~a^ by the composition of ίfπ (i = i2,..., ίp) of

Lemma 3.5. If g = 0 and iί>\, then a~a\ +a by i * U l .

Assume g = l. By applying t\j of Lemma 3.5, we may assume that {iί9...9

ip} and {jί9...,jq} are disjoint. Then, by the composition of ί| l 7 (i = / l 5..., ίp;

7=7,) we see that a^b^Λ hbj g, which is equivalent to b\ by the similar proof

to the above. Also, b\~a\ by using if x and ί^i

(ii) If α^O, we see that a + d~a\+d by the same proof as in (i). Also,

a\+d~d by if.

(iii) Any homeomorphism i X ^ X satisfies t(dX) = dX9 and so i*(X)c:^4

since /4 = I m { / / 1 ( ^ 3X; Z2)-+HX(X\ Z2)}. This shows (iii). q.e.d.

L E M M A 3.8. (i) (d«kί-d*) + ••• + (d*kn-d*ι)~(d\ -d\) + ••• + (dft-df)Jor

any l^fe1< <feJI</.

(ii) For integers n and m such that

if and only if n = m + ί is even.

PROOF, (i) It is evident by considering if of Lemma 3.6.

(ii) (Sufficiency) By tτ of Lemma 3.6 for the transposition τ = (n, /), we see

that

which is equal to (d{ — d\)Λ \-(d?n — d\) since n = m + l is even.

(Necessity) Any homeomorphism t: X~£X induces a permutation of

components of δX9 and so t*(dτ(k)) = dk in Hγ{X\ Z 2) for some permutation

τ of {1,..., /}. Then we have

t*(d*k - d\) = xk + (d*w - d\) - 0/*(l) - d\) in H' (X; Z 2 )

for some xk e A, and so

If this is equal to Σl=ι{dl-d\) (l>n>m), we have m + l = n and m is odd

by (3.3). q.e.d.

Now, we obtain the first half of Theorem 1.1.

PROPOSITION 3.9. Theorem 1.1 holds for an orientable surface X.
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PROOF. By Lemmas 3.7 and 3.8, the equivalence classes of H1(X; Z 2)

-{0} are represented by a\ (when g>0) and Σ * " * 1 (<**-<**) f ° Γ 1^2n + l < / .

Therefore, we have the desired result by Lemma 3.2. q. e. d.

§4. Non-orientable surfaces

In this section, we assume that X is a compact connected non-orientable sur-

face of genus g and the boundary dX has / components.

Then, X has a cellular decomposition induced from the convex region with

the boundary polygon

c1cί...cgcgw1dίw-1

ι...wιdιwjί,

and the (co) homology groups of X are given by

H^X; Z2) = Z2{cu...9 cg9 dl9...9 d , ^ } , dι + ~>+dι = 0;
(4.1)

HHX; z2) = z2M,..., cj, rff-rff rff-i-rff}.

To determine the equivalence relation ~ of (3.1) on H1(X;Z2), we construct

some homeomorphisms of X onto itself as follows.

LEMMA 4.2. For each permutation σ of {1,...,</}, τ of {1,...,/} and 1

^/c</, ί/?ere exΐsί homeomorphisms sσ9 tτ and tk of X onto itself such that

tτ*(dk) = dm (1 ύ k ^ I)

and the remaining basis elements in Hλ(X\ Z2) o/(4.1) are unchanged.

PROOF. TO prove the existence of sσ, we may assume that σ is a transposi-

tion (/, Ϊ + 1). Write the surface symbol of X by aabbP (a = ci9 b — ci+ι). By

the equivalences

aabbP - a^b^a^ (aγ = abb) - bα2b~1α2P (a2 = b~ιax) - bba3a3P

(a3 = b-*a2)

of surface symbols, we have a homeomorphism s:X~£X such that s%(a) = b9

s^(b) = a3 and the other basis cycles are unchanged. In H^X; Z 2), we have

aΐ = a + b + b = a, a2 = b-{"aί, a3 = b + a2 and so a3 = a as desired.

By the same way, we can prove the existences of tτ and tk, by using the equiva-

lences
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wdw~ίvev~1P ~ vev~1w^1dwίP (wx = w~1vev~1)9

ccwdw~ιP ~ c1wd~ίw~1cίP (cx = cwdw'1) ~ cίcίwj1d~1w1P

( W l = w " 1 ^ )

of surface symbols. q. e. d.

LEMMA 4.3. Assume g^A. Then there exists a homeomorphism s:

such that s#: Hγ(X\ Z2)-*Hί(X; Z2) satisfies

s*(ct) = cί + c2 + c4, s*(c2) = ct + c2 + c3,

5*(c3) = c2 + c3 + c49 s*(c4) = C l + c3 + c4,

s*(cj) = ^ (Ϊ > 4), s*(dk) = dk.

PROOF. Consider the following equivalences of surface symbols:

\P (c\ = cxc2, c\ =

(c'ί = C21c'ιc2c3)

(cj = c\c-^c-^c\c\c-^

(c'2 = c2clc\-\ c 3 = c\^cl

Then, c/

2 = c1 + c2 + c4, c^ =c 1 H-c 2 + c3, c 4 = c 2 + c 3 + c 4 and c'3 = c1 + c3 + c 4 in

H^X; Z 2), and we have the desired result in the same way as the proof of the above

lemma. q.e.d.

By using these lemmas, we have the following lemmas for the equivalence

- of (3.1) mHι(X\ Z 2), where

C=Z2{c*u...9 c*}, D = Z2{d\-d\9...9 dU-d\} .

LEMMA 4.4. Any element ce C — {0} is equivalent to

c\, c\+c\ ifg ^ 2, or cϊ + -.. + c* z/^^3,

ί/zese are noί equivalent to each other.

PROOF. We have

s*(Φ = cj-1 ( i )(l ^ i ^ g), sΐ(dl-d\) = rfϊ-rff(l ^ k < I) ,

^•*(cl) = cί + c 2 + c%9 s*(c*2) = c\ + c2 + c 3 ,
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s*(c*3) = c*2 + c% + c\9 s*(c%) = c\ + c% + c\ ,

s*(cΐ) = cf(i > 4), s*(dl-d\) = d\-d\

for sσ of Lemma 4.2 and s of Lemma 4.3. By using these homeomorphisms,

we see easily that

if p<g, q<g and p = ̂  (2). This shows the first half.

Now, we can consider cf eH1(X, dX; Z2) and the cup product cfcj is equal

to δtjlX], where [X]eH2(X9 OX; Z2) is the fundamental class (cf. [1, §75.2,

p. 270]).

Assume c\+c*2~c\. Then c\ +c\=t*(c%) in Hι(X9dX;Z2) for some

homeomorphism t: (X, dX)^(X, OX), and so

0 = (c\+c*2)(c\ +c\) = t*(c\c\) = ί*[X] ^ 0 in H2(X, ^ Z 2 ) ,

which is a contradiction.

We notice that c1-\ hCgβH^X, dX\ Z) is the unique element of order 2.

Therefore, for any homeomorphism t: X-*X9 t^{c1 H t-cg) = cί-\ Ycg in

HX(X9 dX; Z), and so in HX(X9 dX; Z 2 ) . This shows that t*(c\ + ••• +c*g) = c\

H Yc\ by the Poincare duality. Thus, c\ Λ Yc\τ=t*(c\Λ l-c*) im-

plies p = g. q.e.d.

LEMMA 4.5. (i) c + d~d for any ceC and deD — {0}.

(ii) Any ceC — {0} and deD — {0} are not equivalent.

PROOF, (i) is proved by using tk and sσ of Lemma 4.2. (ii) is proved by

the same way as Lemma 3.7 (iii). q. e. d.

By the exactly same proof, we have

LEMMA 4.6. Lemma 3.8 holds also for a non-orientable surface X.

By Lemmas 4.4-4.6 and 3.2, we have immediately

PROPOSITION 4.7. Theorem 1.1 holds for a non-orientable surface X.

Combining Propositions 3.9 and 4.7, we have completely shown Theorem

1.1, and so Theorem 1.3 by Proposition 2.14.
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