Tadashi NAKAMURA and Maretsugu YAMASAKI (Received September 2, 1975)

Introduction

The extremal length of a network, which is the reciprocal of the value of a quadratic programming problem, was first investigated by R. J. Duffin [4] on a finite graph and next by the second author [7] on an infinite graph. In this paper we shall be concerned with a generalized form of the extremal length as in [5] along the same lines as in [4] and [7]. The generalized extremal length of an infinite network may be regarded as the reciprocal of the value of a convex programming problem. One of our main purposes is to establish a reciprocal relation between the generalized extremal distance and the generalized extremal width of an infinite network which was established by M. Ohtsuka [5] for the continuous case. We shall also study the generalized extremal length of an infinite network relative to a finite set and the ideal boundary of the network. A concept of non-linear flows which was studied in [1] and [3] will appear in §3 and §4 in connection with the extremal width of a network.

§1. Preliminaries

Let X be a set of nodes and let Y be a set of directed arcs. Since we always consider the case where X and Y consist of a countably infinite number of elements, we put

$$X = \{0, 1, 2, \dots, n, \dots\},\$$
$$Y = \{1, 2, \dots, n, \dots\}.$$

Let $K = (K_{vj})$ be the node-arc incidence matrix. Namely $K_{vj} = 1$ if arc j is directed toward node v, $K_{vj} = -1$ if arc j is directed away from node v and $K_{vj} = 0$ if arc j and node v do not meet.

We assume that X, Y and K satisfy the following conditions:

- (1.1) $\{j \in Y; K_{\nu j} \neq 0\}$ is a nonempty finite set for each $\nu \in X$.
- (1.2) $e(j) = \{v \in X; K_{vj} \neq 0\}$ consists of exactly two nodes for each $j \in Y$.
- (1.3) For any α , $\beta \in X$, there are $v_1, \dots, v_n \in X$ and $j_1, \dots, j_{n+1} \in Y$ such that $e(j_i) = \{v_{i-1}, v_i\}, i=1,\dots, n+1$ with $v_0 = \alpha$ and $v_{n+1} = \beta$.

Given a strictly positive function r on Y, the quartet $\langle X, Y, K, r \rangle$ is then called an infinite network. For simplicity denote by $\langle X, Y \rangle$ a network $\langle X, Y, K, r \rangle$ if there is no confusion from the context.

Let X' and Y' be subsets of X and Y respectively and let K' and r' be the restrictions of K and r onto $X' \times Y'$ and Y' respectively. We say that $\langle X', Y' \rangle = \langle X', Y', K', r' \rangle$ is a subnetwork of $\langle X, Y, K, r \rangle$ if it is a network in itself. In case X' (or Y') is a finite set, we call $\langle X', Y' \rangle$ a finite subnetwork of $\langle X, Y \rangle$.

We say that a sequence $\{\langle X_n, Y_n \rangle\}$ of finite subnetworks of $\langle X, Y \rangle$ is an exhaustion of $\langle X, Y \rangle$ if

(1.4)
$$X = \bigcup_{n=1}^{\infty} X_n \text{ and } Y = \bigcup_{n=1}^{\infty} Y_n,$$

(1.5) $\{j \in Y; K_{\nu j} \neq 0\} \subset Y_{n+1}$ for each $\nu \in X_n$.

Let p and q be positive numbers such that

(1.6)
$$1/p+1/q = 1$$
 and $p > 1$.

Let L(X) and L(Y) be the sets of all real functions on X and Y respectively. For $u \in L(X)$ and $w \in L(Y)$, we put

(1.7)

$$u_{v} = u(v), \quad w_{j} = w(j),$$

$$Su = \{v \in X; u_{v} \neq 0\}, \quad Sw = \{j \in Y; w_{j} \neq 0\},$$

$$D_{p}(u) = \sum_{j=1}^{\infty} r_{j}^{1-p} |\sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu}|^{p},$$

(1.8)
$$H_p(w) = \sum_{j=1}^{\infty} r_j |w_j|^p.$$

We shall use the following classes of functions on X and Y:

 $L_{0}(X) = \{ u \in L(X); Su \text{ is a finite set} \},\$ $L_{0}(Y) = \{ w \in L(Y); Sw \text{ is a finite set} \},\$ $L^{+}(Y) = \{ w \in L(Y); w_{j} \ge 0 \text{ on } Y \},\$ $L_{p}(Y; r) = \{ w \in L(Y); H_{p}(w) < \infty \},\$ $L_{p}^{+}(Y; r) = \{ w \in L^{+}(Y); H_{p}(w) < \infty \}.\$

Note that $L_p(Y; r)$ is a reflexive Banach space with respect to the norm $[H_p(w)]^{1/p}$. If $H_p(w-w^{(n)}) \to 0$ as $n \to \infty$, then $w_j^{(n)} \to w_j$ as $n \to \infty$ for each j.

For a nonempty subset A of X, let us put

$$D^{(p)} = D^{(p),A} = \{ u \in L(X); D_p(u) < \infty \text{ and } u = 0 \text{ on } A \}.$$

We have

LEMMA 1.1.¹⁾ For any n, there exists a constant M_n such that

$$\sum_{i=0}^{n} |u_i| \leq M_n [D_p(u)]^{1/p}$$

for all $u \in \mathbf{D}^{(p)}$.

PROPOSITION 1.1. $D^{(p)}$ is a reflexive Banach space with respect to the norm $[D_p(u)]^{1/p}$.

PROOF. It follows from Lemma 1.1 and the Minkowski inequality that $[D_p(u)]^{1/p}$ is a norm on $D^{(p)}$. We can prove by a standard argument that $D^{(p)}$ is a Banach space. Let *E* be the linear transformation from L(X) into L(Y) defined by

$$w_j = (Eu)_j = r_j^{-1} \sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu}$$

and denote by $E(\mathbf{D}^{(p)})$ the image of $\mathbf{D}^{(p)}$ under *E*. From the relation $H_p(Eu) = D_p(u)$, it follows that *E* is a Banach space isomorphism from $\mathbf{D}^{(p)}$ onto $E(\mathbf{D}^{(p)})$. It is easily seen that $E(\mathbf{D}^{(p)})$ is a closed linear subspace of $L_p(Y; r)$. Since $L_p(Y; r)$ is a reflexive Banach space, $E(\mathbf{D}^{(p)})$ is also a reflexive Banach space (cf. [2], p. 116, Proposition 11). Therefore $\mathbf{D}^{(p)}$ is reflexive.

LEMMA 1.2.²⁾ Let T be a normal contraction of the real line R and $u \in \mathbf{D}^{(p)}$. Then $Tu \in \mathbf{D}^{(p)}$ and $D_p(Tu) \leq D_p(u)$.

We often use the following theorem to assure the existence of an optimal solution of an extremum problem.

THEOREM A.³⁾ Let Z be a reflexive Banach space with the norm ||z|| and C be a nonempty closed convex set in Z. Then there exists a point $\hat{z} \in C$ such that $||\hat{z}|| = \min\{||z||; z \in C\}$. This minimizing point is unique if every boundary point of the ball $||z|| \leq 1$ is an extreme point.

§2. Generalized extremal length of a network

A path P from node α to node β is the triple $(C_X(P), C_Y(P), p(P))$ of a finite

¹⁾ Cf. Lemma 1 in [7].

²⁾ Cf. Lemma 2 in [7].

^{3) [2],} p. 117, Exercise 1.

ordered set $C_X(P) = \{v_0, v_1, ..., v_n\}$ of nodes, a finite ordered set $C_Y(P) = \{j_1, j_2, ..., j_n\}$ of arcs and a function p(P) on Y called the index of P such that

(P)

$$v_{0} = \alpha, v_{n} = \beta, v_{i} \neq v_{k} \quad (i \neq k),$$

$$e(j_{i}) = \{v_{i-1}, v_{i}\} \quad \text{if} \quad j \in C_{Y}(P),$$

$$p_{j}(P) = 0 \quad \text{if} \quad j \notin C_{Y}(P),$$

$$p_{j}(P) = -K_{vj} \text{ with } v = v_{i-1} \quad \text{if} \quad j = j_{i}.$$

A path P from node α to the ideal boundary ∞ of $\langle X, Y \rangle$ is the triple $(C_X(P), C_Y(P), p(P))$ of an infinite ordered set $C_X(P) = \{v_0, v_1, ...\}$ of nodes, an infinite ordered set $C_Y(P) = \{j_1, j_2, ...\}$ of arcs and a function p(P) on Y called the index of P which satisfy condition (P) except the terminal condition $v_n = \beta$.

Denote by $P_{\alpha\beta}$ (resp. $P_{\alpha\infty}$) the set of all paths from node α to node β (resp. ∞). Note that condition (1.3) means $P_{\alpha\beta} \neq \phi$ for any α , $\beta \in X$. For mutually disjoint nonempty subsets A and B of X, denote by $P_{A,B}$ the set of all paths P such that $P \in P_{\alpha\beta}$, $C_X(P) \cap A = \{\alpha\}$ and $C_X(P) \cap B = \{\beta\}$ for some $\alpha \in A$ and $\beta \in B$. Let $P_{A,\infty}$ be the set of all paths P such that $P \in P_{\alpha\infty}$ and $C_X(P) \cap A = \{\alpha\}$ for some $\alpha \in A$.

Let Γ be a set of paths in an infinite network $\langle X, Y, K, r \rangle$. For every $W \in L^+(Y)$, a value $t(W; \Gamma)$ is defined by

(2.1)
$$t(W; \Gamma) = \inf \left\{ \sum_{P} r_j W_j; P \in \Gamma \right\},$$

where $\sum_{P} r_{j}W_{j}$ is an abbreviation of $\sum_{j \in C_{Y}(P)} r_{j}W_{j}$. We define the extremal length $\lambda_{p}(\Gamma)$ of Γ of order p by

(2.2)
$$\lambda(\Gamma)^{-1} = \inf \{H(W) \colon W \in F(\Gamma)\}$$

(2.2)
$$\lambda_p(I) = \min\{\Pi_p(W), W \in L_p(I)\},\$$

where
$$E_p(\Gamma) = \{W \in L_p^+(Y; r); t(W; \Gamma) \ge 1\}.$$

We use the convention in this paper that the infimum of a real function on the empty set ϕ is equal to ∞ . We shall study some properties of the extremal length which are analogous to the continuous case (cf. [6]).

Let Γ_1 and Γ_2 be sets of paths in $\langle X, Y \rangle$. We shall write $\Gamma_1 \langle \Gamma_2$ if for any $P^{(2)} \in \Gamma_2$ there is a $P^{(1)} \in \Gamma_1$ such that $C_Y(P^{(1)}) \subset C_Y(P^{(2)})$.

We easily obtain

LEMMA 2.1. If Γ_1 and Γ_2 are sets of paths in $\langle X, Y \rangle$ such that $\Gamma_1 \langle \Gamma_2$, then $\lambda_p(\Gamma_1) \leq \lambda_p(\Gamma_2)$.

PROPOSITION 2.1. Let P be a path and set $R(P) = \sum_{P} r_{j}$. Then $\lambda_{p}(\{P\}) = R(P)^{p-1}$.

PROOF. Let $W \in E_p(\{P\})$. Then $\sum_P r_j W_j \ge 1$. It follows from Hölder's inequality that $1 \le R(P)^{1/q} H_p(W)^{1/p}$. Thus we have $\lambda_p(\{P\}) \le R(P)^{p-1}$. Next we show the converse inequality. Let $\{<X_n, Y_n>\}$ be an exhaustion of <X, Y> such that $C_Y(P) \cap Y_1 \ne \phi$. Set $Y'_n = C_Y(P) \cap Y_n$ and define $W^{(n)} \in L(Y)$ by $W_j^{(n)} = (\sum_{Y'_n} r_j)^{-1}$ if $j \in Y'_n$ and $W_j^{(n)} = 0$ if $j \notin Y'_n$. Then $W^{(n)} \in E_p(\{P\})$ and

$$\lambda_p(\{P\}) \ge H_p(W^{(n)})^{-1} = (\sum_{Y'_n} r_j)^{p-1}.$$

By letting $n \to \infty$, we conclude that $\lambda_p(\{P\}) \ge R(P)^{p-1}$. This completes the proof.

Let Γ_1 and Γ_2 be sets of paths in $\langle X, Y \rangle$. We say that Γ_1 and Γ_2 are mutually disjoint if $C_Y(P^{(1)}) \cap C_Y(P^{(2)}) = \phi$ for every $P^{(1)} \in \Gamma_1$ and $P^{(2)} \in \Gamma_2$.

LEMMA 2.2.⁴⁾ Let $\{\Gamma_n; n=1, 2,...\}$ be mutually disjoint sets of paths and Γ be a set of paths. If $\Gamma_n < \Gamma$ for each n, then

$$\lambda_p(\Gamma)^{q-1} \geq \sum_{n=1}^{\infty} \lambda_p(\Gamma_n)^{q-1}.$$

PROOF. If $\lambda_p(\Gamma_n) = \infty$ for at least one *n*, our inequality is valid by Lemma 2.1. Therefore we may assume that $\lambda_p(\Gamma_n) < \infty$ for each *n*. Moreover we may assume that $\lambda_p(\Gamma_n) > 0$, i.e., $E_p(\Gamma_n) \neq \phi$ for each *n*. Let $Y_n = \bigcup \{C_Y(P); P \in \Gamma_n\}$. Then

$$\lambda_p(\Gamma_n)^{-1} = \inf \left\{ H_p(W); \ W \in E_p(\Gamma_n) \text{ and } W = 0 \text{ on } Y - Y_n \right\}.$$

Choose any positive integer *m* and fix it. Let $t_1, t_2, ..., t_m$ be non-negative numbers such that $\sum_{n=1}^{m} t_n = 1$; they will be determined below. Taking $W_j = \sum_{n=1}^{m} t_n W_j^{(n)}$ with $W^{(n)} \in E_p(\Gamma_n)$ such that $W^{(n)} = 0$ on $Y - Y^{(n)}$, we have $W_j = t_n W_j^{(n)}$ for each $j \in Y_n$ and

$$\sum_{P} r_{j} W_{j} = \sum_{n=1}^{m} t_{n} \sum_{P} r_{j} W_{j}^{(n)} \ge \sum_{n=1}^{m} t_{n} = 1$$

for every $P \in \Gamma$, so that $W \in E_p(\Gamma)$. Therefore

$$\lambda_p(\Gamma)^{-1} \leq \sum_{j=1}^{\infty} r_j |\sum_{n=1}^{m} t_n W_j^{(n)}|^p = \sum_{n=1}^{m} t_n^p H_p(W^{(n)}).$$

It follows that

$$\lambda_p(\Gamma)^{-1} \leq \sum_{n=1}^m t_n^p \lambda_p(\Gamma_n)^{-1}$$

4) Cf. [6], p. 79, Theorem 2.10.

Now we choose $t_n = \lambda_p(\Gamma_n)^{q-1} \left(\sum_{n=1}^m \lambda_p(\Gamma_n)^{q-1} \right)^{-1}$ and obtain

$$\lambda_p(\Gamma)^{-1} \leq \left[\sum_{n=1}^m \lambda_p(\Gamma_n)^{q-1}\right]^{1-p},$$

which leads to the desired inequality.

Let A and B be mutually disjoint nonempty subsets of X. We define the extremal distance $EL_p(A, B)$ (resp. $EL_p(A, \infty)$) of order p of an infinite network $\langle X, Y, K, r \rangle$ relative to A and B (resp. A and ∞) by

(2.3)
$$EL_p(A, B) = \lambda_p(\boldsymbol{P}_{A,B}),$$

(2.4)
$$EL_p(A, \infty) = \lambda_p(\boldsymbol{P}_{A,\infty}).$$

Next we consider the following extremum problem:

(2.5) Find

$$d_p(A, B) = \inf \{D_p(u); u \in L(X), u = 0 \text{ on } A \text{ and } u = 1 \text{ on } B\}$$

We have

LEMMA 2.3.5) Let $V \in L^+(Y)$. There exists $u \in L(X)$ such that u = 0 on A,

(2.6)
$$|\sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu}| \leq V_{j} \quad \text{for each } j \in Y,$$

and

(2.7)
$$\inf \left\{ \sum_{\boldsymbol{p}} V_j; \, \boldsymbol{P} \in \boldsymbol{P}_{\boldsymbol{A},\boldsymbol{B}} \right\} = \inf \left\{ u_v; \, v \in \boldsymbol{B} \right\}.$$

THEOREM 2.1. $d_p(A, B) = EL_p(A, B)^{-1}$.

PROOF. We set $d_p = d_p(A, B)$ and $EL_p = EL_p(A, B)$. First we shall prove $d_p \leq EL_p^{-1}$ in case $EL_p^{-1} < \infty$. Let $W \in E_p(\mathbf{P}_{A,B})$ and put $V_j = r_j W_j$. Then inf $\{\sum_{P} V_j; P \in \mathbf{P}_{A,B}\} = t(W; \mathbf{P}_{A,B}) \geq 1$. We can find $u \in L(X)$ by Lemma 2.3 such that u = 0 on A and u satisfies (2.6) and (2.7). Then $u \geq 1$ on B and

$$D_p(u) = \sum_{j=1}^{\infty} r_j^{1-p} |\sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu}|^p \leq \sum_{j=1}^{\infty} r_j^{1-p} V_j^p = H_p(W) < \infty.$$

Let $v = \min(u, 1)$. Then v = 0 on A and v = 1 on B, so that

$$d_p \leq D_p(v) \leq D_p(u) \leq H_p(W)$$

5) Cf. Theorem 3 in [7].

by Lemma 1.2. By the arbitrariness of W, we obtain $d_p \leq EL_p^{-1}$. Next we shall show that $EL_p^{-1} \leq d_p$ in case $d_p < \infty$. Let $u \in L(X)$ satisfy u = 0 on A, u = 1 on *B* and $D_p(u) < \infty$. Define $W \in L^+(Y)$ by $W_j = r_j^{-1} |\sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu}|$. Then it is easily seen that $W \in E_p(\mathbf{P}_{A,\mathbf{B}})$ (cf. the proof of Theorem 4 in [7]). Hence $EL_p^{-1} \leq H_p(W)$ $=D_n(u)$ and $EL_n^{-1} \leq d_n$. Thus we have $d_n = EL_n^{-1}$.

By the aid of Theorem A, we have

PROPOSITION 2.2. In case $E_p(\mathbf{P}_{A,B}) \neq \phi$, there exists a unique $\hat{W} \in E_p(\mathbf{P}_{A,B})$ such that $EL_p(A, B)^{-1} = H_p(\widehat{W})$.

PROPOSITION 2.3. In case $\{u \in \mathbf{D}^{(p),A}; u=1 \text{ on } B\} \neq \phi$, there exists a unique optimal solution \hat{u} of problem (2.5), i.e., $\hat{u} \in \{u \in D^{(p),A}; u=1 \text{ on } B\}$ such that $d_p(A, B) = D_p(\hat{u})$.

Hereafter in this section, we always assume that A is a nonempty finite subset of X and that $\{\langle X_n, Y_n \rangle\}$ is an exhaustion of $\langle X, Y \rangle$ such that $A \subset X_1$. We shall be concerned with the relation between $EL_p(A, X - X_n)$ and $EL_p(A, \infty)$. We prepare

LEMMA 2.4. Let $W \in L^+(Y)$ and set $t_n(W) = t(W; \mathbf{P}_{A,X-X_n})$ and t(W)= $t(W; \mathbf{P}_{A,\infty})$. Then $t_n(W) \leq t_{n+1}(W) \leq t(W)$ and $t_n(W) \rightarrow t(W)$ as $n \rightarrow \infty$. Furthermore there exists $P \in \mathbf{P}_{A,\infty}$ such that $t(W) = \sum_{i=1}^{n} r_{i}W_{j}$.

PROOF. Since $P_{A,X-X_n} < P_{A,X-X_{n+1}} < P_{A,\infty}$, we have $t_n(W) \leq t_{n+1}(W) \leq t(W)$. For each *n* there exists $P^{(n)} \in \mathbf{P}_{A,X-X_n}$ such that $t_n(W) = \sum_{p(n)} r_j W_j$. Since *A* is a finite set, there is $\alpha_0 \in A$ such that $\alpha_0 \in C_X(P^{(n)})$ for infinitely many n. For each $\alpha \in X$, we put

> $Y(\alpha) = \{ j \in Y; K_{\alpha i} \neq 0 \},\$ $X(\alpha) = \{ v \in X ; v \neq \alpha \text{ and } K_{vi} \neq 0 \text{ for some } j \in Y(\alpha) \}.$

Since $X(\alpha_0)$ is a finite subset of X, there are $\alpha_1 \in X(\alpha_0)$ and $j_1 \in Y(\alpha_0)$ such that $e(j_1) = \{\alpha_0, \alpha_1\}$ and $j_1 \in C_Y(P^{(n)})$ for infinitely many *n*. Similarly there are $\alpha_2 \in X(\alpha_1)$ and $j_2 \in Y(\alpha_1)$ such that $e(j_2) = \{\alpha_1, \alpha_2\}$ and $\{j_1, j_2\} \subset C_Y(P^{(n)})$ for infinitely many n. Repeating this process, we can define ordered sets $C_x(P)$ and $C_{\mathbf{y}}(P)$ by

$$C_{\chi}(P) = \{\alpha_0, \alpha_1, \alpha_2, ...\}$$
 and $C_{\chi}(P) = \{j_1, j_2, ...\}.$

Define $p(P) \in L(Y)$ by $p_i(P) = -K_{v_i}$ with $v = \alpha_{i-1}$ if $j = j_i$ and $p_i(P) = 0$ if $j \notin C_Y(P)$. Then $P \in \mathbf{P}_{a_0\infty}$. For any *m*, there are infinitely many *n* such that $\{j_1, j_2, ..., j_m\}$ $\subset C_{\gamma}(P^{(n)})$. Thereby we have

Tadashi NAKAMURA and Maretsugu YAMASAKI

$$\sum_{k=1}^{m} r_{j_k} W_{j_k} \leq \sum_{P(n)} r_j W_j = t_n(W) \leq \lim_{n \to \infty} t_n(W).$$

By letting $m \rightarrow \infty$, we have

$$t(W) \leq \sum_{P} r_{j}W_{j} \leq \lim_{n \to \infty} t_{n}(W).$$

This completes the proof.

We have

Theorem 2.2. $\lim_{n\to\infty} EL_p(A, X-X_n) = EL_p(A, \infty).$

PROOF. Since $P_{A,X-X_n} < P_{A,X-X_{n+1}} < P_{A,\infty}$, we have $EL_p(A, X-X_n) \le EL_p(A, X-X_{n+1}) \le EL_p(A,\infty)$ by Lemma 2.1. Therefore

$$\lim_{n\to\infty} EL_p(A, X-X_n) \leq EL_p(A, \infty).$$

Let $W \in E_p(\mathbf{P}_{A,\infty})$. Then $t(W) = t(W; \mathbf{P}_{A,\infty}) \ge 1$. Since $t_n(W) = t(W; \mathbf{P}_{A,X-X_n}) \to t(W)$ as $n \to \infty$ by Lemma 2.4, we may assume that $t_n(W) > 0$ for all n. Writing $W^{(n)} = W/t_n(W)$, we see that $W^{(n)} \in E_p(\mathbf{P}_{A,X-X_n})$ and $EL_p(A, X-X_n) \ge H_p(W^{(n)})^{-1} = t_n(W)^p(H_p(W))^{-1}$. It follows that

$$\lim_{n \to \infty} EL_p(A, X - X_n) \ge t(W)^p(H_p(W))^{-1} \ge H_p(W)^{-1}$$

for all $W \in E_p(\mathbf{P}_{A,\infty})$. Hence $\lim_{n \to \infty} EL_p(A, X - X_n) \ge EL_p(A, \infty)$. This completes the proof.

We shall give upper and lower bounds for $EL_p(A, \infty)$.

PROPOSITION 2.4. $EL_p(A, \infty) \leq R(P)^{p-1}$ for every $P \in P_{A,\infty}$.

PROOF. Let $P \in P_{A,\infty}$. Then

$$EL_p(A, \infty) \leq \lambda_p(\{P\}) = R(P)^{p-1}$$

by Lemma 2.1 and Proposition 2.1.

By taking $\Gamma_n = \mathbf{P}_{X_n, X_{n+1}-X_n}$ and $\Gamma = \mathbf{P}_{A,\infty}$ in Lemma 2.2, we obtain PROPOSITION 2.5. $EL_p(A, \infty)^{q-1} \ge \sum_{n=1}^{\infty} EL_p(X_n, X_{n+1}-X_n)^{q-1}$. We have

PROPOSITION 2.6. Let $Z_n = Y_{n+1} - Y_n$ and $\mu_n = \sum_{Z_n} r_j^{1-p}$. Then $EL_p(A, \infty)^{q-1} \ge \sum_{n=1}^{\infty} \mu_n^{1-q}$.

PROOF. In view of Proposition 2.5, it suffices to show that $\lambda_p(\Gamma_n)^{-1} \leq \mu_n$ for all *n*, where $\Gamma_n = \mathbf{P}_{X_n, X_{n+1} - X_n}$. Put $U_n = \bigcup \{C_Y(P); P \in \Gamma_n\}$. Then $U_n \subset Z_n$. Define $W^{(n)} \in L(Y)$ by $W_j^{(n)} = r_j^{-1}$ if $j \in Z_n$ and $W_j^{(n)} = 0$ if $j \notin Z_n$. Then $W^{(n)} \in E_p(\Gamma_n)$ and

$$\lambda_p(\Gamma_n)^{-1} \leq H_p(W^{(n)}) = \sum_{Z_n} r_j^{1-p} = \mu_n.$$

§3. Max-flows and min-cuts

Let A and B be mutually disjoint nonempty subsets of X. We say that a subset Q of Y is a cut between A and B if there exist mutually disjoint subsets Q(A) and Q(B) of X such that $A \subset Q(A)$, $B \subset Q(B)$, $X = Q(A) \cup Q(B)$ and the set

$$Q(A) \ominus Q(B) = \{j \in Y; K_{ai}K_{bi} = -1 \text{ for some } a \in Q(A) \text{ and } b \in Q(B)\}$$

is equal to Q.

Let A be a nonempty finite subset of X. We say that a subset Q of Y is a cut between A and the ideal boundary ∞ of $\langle X, Y \rangle$ if there exist mutually disjoint subsets Q(A) and $Q(\infty)$ such that $A \subset Q(A), Q(\infty) = X - Q(A), Q(A)$ is a finite set and $Q = Q(A) \ominus Q(\infty)$. Denote by $Q_{A,B}$ (resp. $Q_{A,\infty}$) the set of all cuts between A and B (resp. ∞). We define the characteristic function u = u(Q) $\in L(X)$ of $Q \in Q_{A,B}$ and the index $s = s(Q) \in L(Y)$ of Q by

$$u_{\nu} = 0 \text{ if } \nu \in Q(A) \text{ and } u_{\nu} = 1 \text{ if } \nu \in Q(B),$$
$$s_{j} = \sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu}.$$

We have $s_j = 0$ if $j \notin Q$ and $|s_j| = 1$ if $j \in Q$.

Let A and B be mutually disjoint nonempty finite subsets of X. We say that $w \in L(Y)$ is a flow from A to B of strength I(w) if

(3.1)
$$\sum_{j=1}^{\infty} K_{vj} w_j = 0 \qquad (v \notin A \cup B),$$

(3.2)
$$I(w) = -\sum_{v \in A} \sum_{j=1}^{\infty} K_{vj} w_j = \sum_{v \in B} \sum_{j=1}^{\infty} K_{vj} w_j.$$

Denote by F(A, B) the set of all flows from A to B and set

$$G(A, B) = F(A, B) \cap L_0(Y).$$

Let $F_q(A, B)$ be the closure of G(A, B) in $L_q(Y; r)$. Thus for any $w \in F_q(A, B)$, there exists a sequence $\{w^{(n)}\}$ in G(A, B) such that $H_q(w - w^{(n)}) \to 0$ as $n \to \infty$. It follows that $w \in F(A, B)$ and $I(w^{(n)}) \to I(w)$ as $n \to \infty$. Let $g_{p}(t)$ be the real function on the real line R defined by

$$g_{p}(t) = |t|^{p-1} \operatorname{sign}(t).$$

It is clear that

$$tg_p(t) = |t|^p$$
 and $\frac{d}{dt} |t|^p = pg_p(t)$.

We say that $w \in L(Y)$ is a p-flow from A to B of strength $I_p(w)$ if $g_p \circ w$ is a

flow from A to B and $I_p(w) = I(g_p \circ w)$. Denote by $F^{(p)}(A, B)$ the set of all p-flows from A to B and set

$$G^{(p)}(A, B) = F^{(p)}(A, B) \cap L_0(Y).$$

It is clear that $F^{(2)}(A, B) = F(A, B)$ and $I_2(w) = I(w)$. We remark that a *p*-flow is a non-linear flow in the sense of Birkhoff [1] and Duffin [3].

REMARK 3.1. $w \in G^{(p)}(A, B)$ if and only if $g_p \circ w \in G(A, B)$.

REMARK 3.2. Let A and B be mutually disjoint nonempty finite subsets of X and let \hat{u} be the optimal solution of problem (2.5). Define $\hat{w} \in L(Y)$ by

$$\hat{w}_j = r_j^{-1} \sum_{\nu=0}^{\infty} K_{\nu j} \hat{u}_{\nu}.$$

Then it can be shown that $\hat{w} \in F^{(p)}(A, B)$.

We prepare

LEMMA 3.1. Let $u \in L(X)$ and $w \in L(Y)$. Then

(3.3)
$$\sum_{\nu=0}^{\infty} u_{\nu} \left(\sum_{j=1}^{\infty} K_{\nu j} w_j \right) = \sum_{j=1}^{\infty} w_j \left(\sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu} \right)$$

holds if any one of the following conditions is fulfilled:

(i)
$$u \in L_0(X)$$
 or $w \in L_0(Y)$.

(ii)
$$D_p(u) < \infty$$
 and $w \in F_q(A, B)$.

PROOF. If condition (i) is satisfied, then (3.3) is clear. Assume condition (ii). Then there exists a sequence $\{w^{(n)}\}$ in G(A, B) such that $H_q(w - w^{(n)}) \rightarrow 0$ as $n \rightarrow \infty$. We have

$$\sum_{j=1}^{\infty} w_j^{(n)} \left(\sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu} \right) = \sum_{\nu=0}^{\infty} u_{\nu} \left(\sum_{j=1}^{\infty} K_{\nu j} w_j^{(n)} \right)$$

$$= \sum_{v \in A \cup B} u_v \left(\sum_{j=1}^{\infty} K_{vj} w_j^{(n)} \right)$$

$$\rightarrow \sum_{v \in A \cup B} u_v \left(\sum_{j=1}^{\infty} K_{vj} w_j \right) = \sum_{v=0}^{\infty} u_v \left(\sum_{j=1}^{\infty} K_{vj} w_j \right)$$

as $n \to \infty$, since $w_j^{(n)} \to w_j$ as $n \to \infty$ for each $j \in Y$. On the other hand, we have

$$\sum_{j=1}^{\infty} |w_j - w_j^{(n)}| | \sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu}| \leq [H_q(w - w^{(n)})]^{1/q} [D_p(u)]^{1/p}$$

by Hölder's inequality, so that

$$\sum_{j=1}^{\infty} w_j \left(\sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu} \right) = \lim_{n \to \infty} \sum_{j=1}^{\infty} w_j^{(n)} \left(\sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu} \right) = \sum_{\nu=0}^{\infty} u_{\nu} \left(\sum_{j=1}^{\infty} K_{\nu j} w_j \right).$$

This completes the proof.

Let $W \in L^+(Y)$. Let us consider the following extremum problems which are generalizations of the max-flow problem in network theory on a finite graph.

- (3.4) Find $M(W; F_a(A, B)) = \sup \{I(w); w \in F_a(A, B) \text{ and } |w_i| \le W_i \text{ on } Y\}.$

 $M(W; G(A, B)) = \sup \{I(w); w \in G(A, B) \text{ and } |w_j| \leq W_j \text{ on } Y\}.$

(3.6) Find

 $M_p(W; G^{(p)}(A, B)) = \sup \{I_p(w); w \in G^{(p)}(A, B) \text{ and } |w_j| \leq W_j \text{ on } Y\}.$

For $W \in L^+(Y)$ let us denote by W^p the function $V \in L(Y)$ defined by $V_j = W_j^p$ for each $j \in Y$.

On account of Remark 3.1, we have

PROPOSITION 3.1. $M_p(W; G^{(p)}(A, B)) = M(W^{p-1}; G(A, B)).$

We shall prove

LEMMA 3.2. Let $W \in L_p^+(Y; r)$. Then there exists $\hat{w} \in F_q(A, B)$ such that $|\hat{w}_j| \leq W_j^{p-1}$ on Y and $I(\hat{w}) = M(W^{p-1}; G(A, B))$.

PROOF. There exists a sequence $\{w^{(n)}\}$ in G(A, B) such that $|w_j^{(n)}| \leq W_j^{p-1}$ on Y and $I(w^{(n)})$ converges to $M(W^{p-1}; G(A, B))$. Since $L_q(Y; r)$ is a reflexive Banach space and $\{w \in F_q(A, B); |w_j| \leq W_j^{p-1} \text{ on } Y\}$ is a bounded closed convex set in $L_q(Y; r)$, we may assume that $\{w^{(n)}\}$ converges weakly to $\hat{w} \in L_q(Y; r)$. Then $w_j^{(n)} \rightarrow \hat{w}_j$ as $n \rightarrow \infty$ for each j. Hence $\hat{w} \in F_q(A, B)$, $|\hat{w}_j| \leq W_j^{p-1}$ on Y and

$$I(\hat{w}) = \sum_{v \in B} \sum_{j=1}^{\infty} K_{vj} \hat{w}_j = \lim_{n \to \infty} I(w^{(n)}) = M(W^{p-1}; G(A, B)).$$

This completes the proof.

Let $W \in L^+(Y)$ and consider the following extremum problem which is a generalization of the min-cut problem in (finite) network theory:

(3.7) Find

$$M^*(W; \boldsymbol{Q}_{A,B}) = \inf \left\{ \sum_{Q} W_j; Q \in \boldsymbol{Q}_{A,B} \right\}.$$

We have

LEMMA 3.3.⁶) $M(W; G(A, B)) = M^*(W; Q_{A,B}).$

By Lemma 3.3 and Proposition 3.1, we have

COROLLARY. $M_p(W; G^{(p)}(A, B)) = M^*(W^{p-1}; Q_{A,B}).$

§4. Generalized extremal width of a network

Let A and B be mutually disjoint nonempty subsets of X. We define the extremal width $EW_p(A, B)$ of order p of an infinite network $\langle X, Y, K, r \rangle$ relative to two sets A and B by the value of the following extremum problem.

(4.1) Find

$$EW_{p}(A, B)^{-1} = \inf \{H_{p}(W); W \in E_{p}^{*}(Q_{A,B})\},\$$

where $E_p^*(\boldsymbol{Q}_{A,B}) = \{ W \in L_p^+(Y; r); \sum_{O} W_j^{p-1} \ge 1 \text{ for all } Q \in \boldsymbol{Q}_{A,B} \}.$

Hereafter in this section we always assume that A and B are finite subsets of X. In connection with the above problem, we consider the following extremum problems.

(4.2) Find

$$d_a^*(A, B) = \inf \{H_a(w); w \in F_a(A, B) \text{ and } I(w) = 1\}.$$

(4.3) Find

$$\hat{d}_{p}^{*}(A, B) = \inf \{ H_{p}(w); w \in G^{(p)}(A, B) \text{ and } I_{p}(w) = 1 \}.$$

We shall prove

PROPOSITION 4.1. $\hat{d}_p^*(A, B) = d_q^*(A, B) = \inf \{H_q(w); w \in G(A, B) \text{ and } I(w) = 1\}.$

PROOF. We set $\hat{d}_p^* = \hat{d}_p^*(A, B)$ and $d_q^* = d_q^*(A, B)$. By Remark 3.1 and by the relations $I(g_p \circ w) = I_p(w)$ and $H_q(g_p \circ w) = H_p(w)$, we have

6) Cf. Theorem 6 in [7].

(4.4)
$$\hat{d}_{p}^{*} = \inf \{ H_{q}(z); z \in G(A, B) \text{ and } I(z) = 1 \},$$

so that $\hat{d}_p^* \ge d_q^*$. On the other hand, let $w \in F_q(A, B)$ and I(w)=1. There exists a sequence $\{w^{(n)}\}$ in G(A, B) such that $H_q(w-w^{(n)})\to 0$ as $n\to\infty$. Since $I(w^{(n)})\to I(w)$ as $n\to\infty$, we may suppose that $I(w^{(n)})>0$ for all n. It follows from (4.4) that

$$\hat{d}_p^* \leq H_q(w^{(n)}/I(w^{(n)})) = H_q(w^{(n)})/(I(w^{(n)}))^q.$$

By letting $n \to \infty$, we have $\hat{d}_p^* \leq H_q(w)$, so that $\hat{d}_p^* \leq d_q^*$. Hence $\hat{d}_p^* = d_q^*$.

THEOREM 4.1. $EW_p(A, B)^{-1} = d_q^*(A, B)$.

PROOF. We set $EW_p = EW_p(A, B)$ and $d_q^* = d_q^*(A, B)$. For each $w \in G(A, B)$ such that I(w) = 1, consider $W \in L^+(Y)$ defined by $W_j = |w_j|^{1/(p-1)}$ on Y. Then we show that $W \in E_p^*(Q_{A,B})$. Let u = u(Q) be the characteristic function of $Q \in Q_{A,B}$. We have by Lemma 3.1

$$1 = I(w) = \sum_{\nu=0}^{\infty} u_{\nu} \left(\sum_{j=1}^{\infty} K_{\nu j} w_j \right) = \sum_{j=1}^{\infty} w_j \left(\sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu} \right)$$
$$\leq \sum_{j=1}^{\infty} |w_j| \left| \sum_{\nu=0}^{\infty} K_{\nu j} u_{\nu} \right| = \sum_{\mathbf{Q}} W_j^{p-1}.$$

Therefore $W \in E_p^*(Q_{A,B})$ and

$$EW_p^{-1} \leq H_p(W) = \sum_{j=1}^{\infty} r_j |w_j|^{p/(p-1)} = H_q(w).$$

Thus we have $EW_p^{-1} \leq d_q^*$ by Proposition 4.1. On the other hand, let $W \in E_p^*(Q_{A,B})$, i.e., $W \in L_p^+(Y; r)$ and $M^*(W^{p-1}; Q_{A,B}) \geq 1$. We can find $w \in F_q(A, B)$ such that $|w_j| \leq W_j^{p-1}$ on Y and $M(W^{p-1}; G(A, B)) = I(w)$ by Lemma 3.2. It follows from Lemma 3.3 that $I(w) \geq 1$. We have

$$d_q^* \leq H_q(w/I(w)) \leq H_q(w) = \sum_{j=1}^{\infty} r_j |w_j|^q$$
$$\leq \sum_{j=1}^{\infty} r_j W_j^{q(p-1)} = H_p(W),$$

so that $d_q^* \leq EW_p^{-1}$. Therefore $d_q^* = EW_p^{-1}$.

By the aid of Theorem A, we have

PROPOSITION 4.2. There exists a unique $\hat{w} \in F_q(A, B)$ such that $I(\hat{w})=1$ and $d_q^*(A, B) = H_q(\hat{w})$, i.e., \hat{w} is the optimal solution of problem (4.2).

Let A be a nonempty finite subset of X. We define the extremal width

 $EW_p(A, \infty)$ of order p of an infinite network relative to A and ∞ by the value of the following extremum problem.

(3.5) Find

$$EW_{p}(A, \infty)^{-1} = \inf \{H_{p}(W); W \in E_{p}^{*}(Q_{A,\infty})\},\$$

where $E_p^*(\boldsymbol{Q}_{A,\infty}) = \{ W \in L_p^+(Y; r); \sum_{\boldsymbol{Q}} W_j^{p-1} \ge 1 \text{ for all } \boldsymbol{Q} \in \boldsymbol{Q}_{A,\infty} \}.$

Let $\{\langle X_n, Y_n \rangle\}$ be an exhaustion of $\langle X, Y \rangle$ such that $A \subset X_1$. We shall be concerned with the relation between $EW_p(A, X - X_n)$ and $EW_p(A, \infty)$.

We shall prove

THEOREM 4.2.
$$\lim_{n \to \infty} EW_p(A, X - X_n) = EW_p(A, \infty).$$

PROOF. Since $Q_{A,X-X_n} \subset Q_{A,X-X_{n+1}} \subset Q_{A,\infty}$, we have $EW_p(A, \infty) \leq EW_p(A, X-X_{n+1}) \leq EW_p(A, X-X_n)$, and hence

$$\lim_{n\to\infty} EW_p(A, X-X_n) \ge EW_p(A, \infty).$$

To prove the converse inequality we may assume that $\lim_{n\to\infty} EW(A, X-X_n)>0$. For each *n*, there is $W^{(n)} \in E_p^*(Q_{A,X-X_n})$ such that $EW_p(A, X-X_n) = H_p(W^{(n)})^{-1}$. Since $\{H_p(W^{(n)})\}$ is a bounded sequence and $L_p(Y; r)$ is a reflexive Banach space, we can choose a weakly convergent subsequence of $\{W^{(n)}\}$. Denote by $\{W^{(n)}\}$ the subsequence again and let \hat{W} be the weak limit. We show that $\hat{W} \in E_p^*(Q_{A,\infty})$. Let $Q \in Q_{A,\infty}$ with $Q = Q(A) \ominus Q(\infty)$. Since Q(A) is a finite set, there is a number n_0 such that $Q(A) \subset X_{n_0}$. Then $X - X_n \subset Q(\infty)$ and hence $Q \in Q_{A,X-X_n}$ for all $n \ge n_0$. Therefore $\sum_{Q} [W_j^{(n)}]^{p-1} \ge 1$ for all $n \ge n_0$. Since $\{W^{(n)}\}$ converges weakly to \hat{W} and Q is a finite set, we obtain $\sum_{Q} \hat{W}_j^{p-1} \ge 1$. Thus $\hat{W} \in E_p^*(Q_{A,\infty})$. Since $[H_p(w)]^{1/p}$ is weakly lower semicontinuous in $L_p(Y; r)$, we have

$$\lim_{n \to \infty} [EW_p(A, X - X_n)]^{-1} = \lim_{n \to \infty} H_p(W^{(n)})$$
$$\geq H_p(\widehat{W}) \geq [EW_p(A, \infty)]^{-1}$$

This completes the proof.

§5. A reciprocal relation between EL_p and EW_p

Let A and B be mutually disjoint nonempty finite subsets of X. We prepare

LEMMA 5.1. Let \hat{w} be the optimal solution of problem (4.2). If $w' \in F_q(A, B)$ and I(w')=0, then

(5.1)
$$\sum_{j=1}^{\infty} r_j w_j' g_q(\hat{w}_j) = 0.$$

PROOF. For any real number t, we have $\hat{w} + tw' \in F_q(A, B)$ and $I(\hat{w} + tw') = 1$, so that $d_q^*(A, B) = H_q(\hat{w}) \leq H_q(\hat{w} + tw')$. Thus the derivative of $H_q(\hat{w} + tw')$ with respect to t vanishes at t=0. Since $H_q(\hat{w} + tw')$ can be differentiated term by term at t=0, we obtain (5.1).

COROLLARY 1. Let \hat{w} be the optimal solution of problem (4.2) and P be a path from node $\alpha \in A$ to node $\beta \in B$. Then

(5.2)
$$d_q^*(A, B) = \sum_{j=1}^{\infty} r_j p_j(P) g_q(\hat{w}_j).$$

PROOF. Note that p(P) is a flow from $\{\alpha\}$ to $\{\beta\}$ such that I(p(P))=1. Taking $w' = \hat{w} - p(P)$, we see that $w' \in F_q(A, B)$ and I(w')=0. Thus we have by (5.1)

$$\sum_{j=1}^{\infty} r_j(\hat{w}_j - p_j(P)) g_q(\hat{w}_j) = 0.$$

Therefore

$$d_{q}^{*}(A, B) = H_{q}(\hat{w}) = \sum_{j=1}^{\infty} r_{j} \hat{w}_{j} g_{q}(\hat{w}_{j}) = \sum_{j=1}^{\infty} r_{j} p_{j}(P) g_{q}(\hat{w}_{j}).$$

COROLLARY 2. Let \hat{w} be the optimal solution of problem (4.2) and let $\alpha, v \in X$ ($\alpha \neq v$). If P and P' are paths from node α to node v, then

(5.3)
$$\sum_{j=1}^{\infty} r_j p_j(P) g_q(\hat{w}_j) = \sum_{j=1}^{\infty} r_j p_j(P') g_q(\hat{w}_j).$$

PROOF. Taking w' = p(P) - p(P'), we see that $w' \in F_q(A, B)$ and I(w') = 0. Then (5.3) follows from (5.1).

Let \hat{w} be the optimal solution of problem (4.2). For any $\alpha \in A$, we define $v^{(\alpha)} \in L(X)$ by

(5.4)
$$v_{\alpha}^{(\alpha)} = 0, \quad v_{\nu}^{(\alpha)} = \sum_{j=1}^{\infty} r_j p_j(P) g_q(\hat{w}_j) \qquad (\nu \neq \alpha)$$

for some path P from node α to node v. It follows from Corollary 2 of Lemma 5.1 that $v^{(\alpha)}$ is uniquely determined by \hat{w} . Define $\hat{v} \in L(X)$ by

(5.5)
$$\hat{v}_{v} = \inf \{ |v_{v}^{(\alpha)}|; \alpha \in A \}.$$

We have

LEMMA 5.2. Let \hat{v} be the function defined by (5.4) and (5.5). Then \hat{v}

=0 on A, $\hat{v} = d_a^*(A, B)$ on B and

(5.6)
$$|\sum_{\nu=0}^{\infty} K_{\nu j} \hat{v}_{\nu}| \leq r_j |\hat{w}_j|^{q-1} \quad on \quad Y.$$

PROOF. Since $v_{\alpha}^{(\alpha)} = 0$ for any $\alpha \in A$, we have $\hat{v} = 0$ on A. We have $\hat{v} = d_q^*(A, B)$ on B by Corollary 1 of Lemma 5.1. The proof of (5.6) is carried out by the same reasoning as in the proof of Lemma 12 in [7].

We shall prove

THEOREM 5.1. $[d_p(A, B)]^{1/p}[d_q^*(A, B)]^{1/q} = 1.$

PROOF. We set $d_p = d_p(A, B)$ and $d_q^* = d_q^*(A, B)$. First we show that $1 \leq (d_p)^{1/p} (d_q^*)^{1/q}$. For any $v \in L(X)$ such that v = 0 on A, v = 1 on B and $D_p(v) < \infty$ and any $w \in F_q(A, B)$ such that I(w) = 1, we have by Lemma 3.1

$$1 = I(w) = \sum_{\nu=0}^{\infty} v_{\nu} \left(\sum_{j=1}^{\infty} K_{\nu j} w_j \right) = \sum_{j=1}^{\infty} w_j \left(\sum_{\nu=0}^{\infty} K_{\nu j} v_{\nu} \right)$$
$$\leq [D_p(v)]^{1/p} [H_q(w)]^{1/q},$$

which leads to the desired inequality. Next we show that $(d_p)^{1/p}(d_q^*)^{1/q} \leq 1$. Let \hat{w} be the optimal solution of problem (4.2) and define $\hat{v} \in L(X)$ by (5.4) and (5.5). Then we have by (5.6)

$$D_p(\hat{v}) = \sum_{j=1}^{\infty} r_j^{1-p} |\sum_{\nu=0}^{\infty} K_{\nu j} \hat{v}_{\nu}|^p \leq \sum_{j=1}^{\infty} r_j |\hat{w}_j|^{p(q-1)} = H_q(\hat{w}) = d_q^*.$$

Writing $\hat{u} = \hat{v}/d_a^*$, we see by Lemma 5.2 that $\hat{u} = 0$ on A and $\hat{u} = 1$ on B, so that

$$d_p \leq D_p(\hat{u}) = D_p(\hat{v})(d_q^*)^{-p} \leq (d_q^*)^{1-p} = (d_q^*)^{-p/q},$$

or $(d_p)^{1/p} (d_q^*)^{1/q} \leq 1$.

By Proposition 4.1 and Theorem 5.1, we have

COROLLARY. $[d_n(A, B)]^{1/p} [\hat{d}_n^*(A, B)]^{1/q} = 1.$

By Theorems 2.1, 4.1 and 5.1, we have

THEOREM 5.2. $[EL_p(A, B)]^{1/p} [EW_p(A, B)]^{1/q} = 1.$

Next we shall be concerned with the reciprocal relation between $EL_p(A, \infty)$ and $EW_p(A, \infty)$. Henceforth let A be a nonempty finite subset of X and $\{<X_n, Y_n>\}$ be an exhaustion of <X, Y> such that $A \subset X_1$.

We prepare

LEMMA 5.3. For every $Q \in Q_{A,X_{n+1}-X_n}$, there exists $Q' \in Q_{A,X-X_n}$ such that $Q' \subset Q$.

PROOF. Let $Q \in Q_{A,X_{n+1}-X_n}$ and $Q = Q(A) \ominus Q(X_{n+1}-X_n)$. Let us define Q'(A) and $Q'(X-X_n)$ by

$$Q'(A) = Q(A) - (X - X_n)$$
 and $Q'(X - X_n) = X - Q'(A)$.

Since $A \cap (X - X_n) = \phi$ and $Q'(A) \cap (X - X_n) = \phi$, we see that $A \subset Q'(A)$ and $X - X_n \subset Q'(X - X_n)$, so that $Q' = Q'(A) \ominus Q'(X - X_n) \in Q_{A,X-X_n}$. It can be easily shown that $Q' \subset Q$.

We have

THEOREM 5.3. $EW_p(A, \infty) = EL_p(A, \infty)^{1-q}$.

PROOF. Since $P_{A,X-X_n} = P_{A,X_{n+1}-X_n}$, we have

$$EL_p(A, X-X_n) = EL_p(A, X_{n+1}-X_n).$$

It follows from Lemma 5.3 that

$$EW_p(A, X-X_n) = EW_p(A, X_{n+1}-X_n).$$

We have by Theorem 5.2

$$EW_{p}(A, X-X_{n}) = EL_{p}(A, X-X_{n})^{1-q}$$

Our assertion follows from Theorems 2.2 and 4.2.

References

- G. Birkhoff: A variational principle for nonlinear networks, Quart. Appl. Math., 21 (1963), 160–162.
- [2] N. Bourbaki: Espaces vectoriels topologiques, Chap. III-V, Paris, 1955.
- [3] R. J. Duffin: Nonlinear networks, IIa, Bull. Amer. Math. Soc., 53 (1947), 963-971.
- [4] R. J. Duffin: The extremal length of a network, J. Math. Anal. Appl., 5 (1962), 200-215.
- [5] M. Ohtsuka: On Duffin's problem concerning extremal length, An abstract of a talk given at the Fall Meeting of the Math. Soc. Japan, 1970.
- [6] M. Ohtsuka: Dirichlet problem, extremal length and prime ends, Van Nostrand, 1970.
- [7] M. Yamasaki: Extremum problems on an infinite network, Hiroshima Math. J., 5 (1975), 223-250.

Kawasaki Medical College and School of Engineering, Okayama University