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Introduction

The extremal length of a network, which is the reciprocal of the value of a

quadratic programming problem, was first investigated by R. J. Duffin [4] on a

finite graph and next by the second author [7] on an infinite graph. In this paper

we shall be concerned with a generalized form of the extremal length as in [5] along

the same lines as in [4] and [7]. The generalized extremal length of an infinite

network may be regarded as the reciprocal of the value of a convex programming

problem. One of our main purposes is to establish a reciprocal relation between

the generalized extremal distance and the generalized extremal width of an infinite

network which was established by M. Ohtsuka [5] for the continuous case.

We shall also study the generalized extremal length of an infinite network relative

to a finite set and the ideal boundary of the network. A concept of non-linear

flows which was studied in [1] and [3] will appear in § 3 and § 4 in connection

with the extremal width of a network.

§ 1. Preliminaries

Let X be a set of nodes and let Y be a set of directed arcs. Since we always

consider the case where X and Yconsist of a countably infinite number of elements,

we put

Let K = (Kvj) be the node-arc incidence matrix. Namely Kvj = 1 if arc j is directed

toward node v, Kvj= — 1 if arc j is directed away from node v and Kvj = 0 if arc j

and node v do not meet.

We assume that X9 Y and K satisfy the following conditions:

(1.1) {je Y; Kvjφ0} is a nonempty finite set for each veX.

(1.2) e(j) = {veX; Kvj Φ 0} consists of exactly two nodes for each j e Y.

(1.3) F o r a n y α, βeX, t h e r e a r e vl9...,vneX a n d j l 9 . . . 9 j n + 1 e Y s u c h t h a t

e(./ί) = {Vi-i, vj, i = l,..., H + l with vo = α and vn + 1=β.
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Given a strictly positive function r on Y, the quartet <X, Y, K, r> is then

called an infinite network. For simplicity denote by <X, Y> a network <X,

Y, K, r> if there is no confusion from the context.

Let X' and Y' be subsets of X and Y respectively and let K' and r' be the

restrictions of K and r onto X' x Y' and Yr respectively. We say that <X'9 Y' >

= <Xf, Y', K', r> is a subnetwork of <X, Y, K, r> if it is a network in itself.

In case X' (or Y') is a finite set, we call <X\ Yf> a finite subnetwork of <X,

We say that a sequence {<Xn, Yn>} of finite subnetworks of <X, Y> is

an exhaustion of <X, Y> if

(1.4) X= Z Xn and Y= U 7M,
n = l w = l

(1.5) { j e 7 ; i ( v ^ 0 } c y B + 1 for each v e l n .

Let p and g be positive numbers such that

(1.6) llp+l/q = l and p > 1.

Let L(X) and L(Y) be the sets of all real functions on X and Y respectively.

For u e L(X) and w e L( Y), we put

uv = w(v), w;

uvΦ0}, Sw = {jeY; Wj ϊ 0},

(1.7) Dp(u)= ±r)-?\ Σ ^v^vlp

?
j=l v=0

(1.8) Hp(w)= Σ^JIWJIP.

We shall use the following classes of functions on X and Y:

L0(X) = {ue L(X); Su is a finite set},

L0(Y) = {w e L(Y); Sw is a finite set},

L+(Y) = {weL(Y);wj ^ 0 on 7},

L^(Y; r) = {weL+(Y); Hp(w) < α)}.

Note that Lp(Y; r) is a reflexive Banach space with respect to the norm

If Hp(w — w(π))->0 as n->oo, then w ^ 0 - ^ as n->oo for each j.

For a nonempty subset A of X, let us put
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D<P) = D^>A = {ue L(X)\ Dp(u) < oo and u = 0 on A}.

We have

LEMMA 1Λ.1) For any n, there exists a constant Mn such that

n

j= 0

for all u eD^pK

PROPOSITION 1.1. I> ( p ) is a reflexive Banach space with respect to the

norm \_Dp(u)γi* .

PROOF. It follows from Lemma 1.1 and the Minkowski inequality that

[Dp(w)]1 / P is a norm on D(p). We can prove by a standard argument that D ( p )

is a Banach space. Let E be the linear transformation from L(X) into L(Y)

defined by

oo

Wj = (Eu)j — Γ71 Σ Kviuv
3 J J v = 0 J

and denote by E(D(p)) the image of Dip) under E. From the relation Hp(Eu)

= Dp(u), it follows that £ is a Banach space isomorphism from D^ onto E(D(p)).

It is easily seen that E(D(p)) is a closed linear subspace of Lp(Y; r). Since Lp(Y;

r) is a reflexive Banach space, E(D(p)) is also a reflexive Banach space (cf. [2],

p. 116, Proposition 11). Therefore D(p) is reflexive.

LEMMA 1.2.2) Let Tbe a normal contraction of the real line R andueD(p\

Then TueD^ and Dp(Tu)^Dp(u).

We often use the following theorem to assure the existence of an optimal

solution of an extremum problem.

THEOREM A. 3 ) Let Z be a reflexive Banach space with the norm \\z\\ and

C be a nonempty closed convex set in Z. Then there exists a point z eC such

that | |z | |=min{ | |z | | ; zeC}. This minimizing point is unique if every boundary

point of the ball | | z | | ^ l is an extreme point.

§2. Generalized extremal length of a network

A path P from node α to node β is the triple (CX(P), CY{P\ p(P)) of a finite

1) Cf. Lemma 1 in [7].
2) Cf. Lemma 2 in [7].
3) [2], p. 117, Exercise 1.
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ordered set Cx(P) = {vθ9 v,,..., vn} of nodes, a finite ordered set Cγ(P) = {jl9

ΛJ J Λ ) of arcs and a function p(P) on Ycalled the index of P such that

v0 = α, vM = j9, v, # vfc (i # fc),

<Jι) = {V|-i,v<} if jeCγ(P),

(P)
Pj(P) = 0 if j * C y ( P ) ,

py(P) = -XVJ. with v = v,_! if j = ji.

A path P from node α to the ideal boundary oo of <X9 Y> is the triple

(CX(P), CY(P), p(P)) of an infinite ordered set Cx(P) = {v0, vl5...} of nodes, an

infinite ordered set Cγ(P) = {jί9j2,...} of arcs and a function p(P) on 7 called the

index of P which satisfy condition (P) except the terminal condition vn = β.

Denote by Paβ (resp. Pα o o) the set of all paths from node α to node β (resp.

oo). Note that condition (1.3) means PaβΦφ for any α, βeX. For mutually

disjoint nonempty subsets A and B of X, denote by PAB the set of all paths P

such that PePaβ, Cx(P)C\A = {(x} and CX(P) n # = {j3} for some oceA and

β e £ . Let PAfQ0 be the set of all paths P such that PePΛO0 and CX(P) Π A

— {α} for some oceA.

Let Γ be a set of paths in an infinite network <X, Y, K, r > . For every

WeL+(Y\ a value ί(W; Γ) is defined by

(2.1) t(W; Γ) = inf {ΣrjWj; PeΓ},

where Σ r/^» is a n abbreviation of Σ 'Ί ̂ .
P J J jeCY(P) J J

We define the extremal length λp(Γ) of Γ of order p by

(2.2) ^ ( / T 1 = inf {Hp(W)ι WeEp(Γ)},

where Ep(Γ) = {WEL;(Y; r); ί ( ^ ; Γ) ^ 1}.

We use the convention in this paper that the infimum of a real function on the

empty set φ is equal to oo. We shall study some properties of the extremal

length which are analogous to the continuous case (cf. [6]).

Let V\ and Γ2 be sets of paths in <X, Y>. We shall write Γ1<Γ2 if for

any P™eΓ2 there is a P^ e Γ x such that Cγ(P^)c:Cγ(P^).

We easily obtain

LEMMA 2.1. // Γ1 and Γ2 are sets of paths in <X9 Y> such that Γί

<Γ29thenλp(Γ1)^λp(Γ2).

PROPOSITION 2.1. Let P be a path and set R(P)= Σ O τ h e n

=R(py~ί.
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PROOF. Let WeEp({P}). Then ΣrjWj^l.. It follows from Holder's

inequality that l^R(Py^Hp(Wy/p. Thus we have λp({P})^R(Py-K Next
we show the converse inequality. Let {<Xn, Yn>} be an exhaustion of <X, Y>
such that Cγ(P)f] YλΦφ. Set Y'n = Cγ(P)n Yn and define W^eL(Y) by W<jn)

= ( Σ rj)~* if j e Y'n and Wψ = 0 if j φ Y'n. Then W™ e Ep({P}) and
Yn

Yn

By letting n-»oo, we conclude that Ap({P})^JR(P)p~1. This completes the
proof.

Let Γx and Γ2 be sets of paths in <X, Y>. We say that Γx and Γ2 are
mutually disjoint if CY(P(^) n Cγ(P^) = φ for every P ^ e Λ and P^eΓ2.

LEMMA 2.2.4) L ί̂ {ΓM; n = l, 2,...} fce mutually disjoint sets of paths and
Γ be a set of paths. If Γn<Γ for each n, then

PROOF. If λp(Γn) = co for at least one n, our inequality is valid by Lemma
2.1. Therefore we may assume that λp(Γn)<co for each n. Moreover we may
assume that λp(Γn)>09 i.e., Ep(Γn)Φφ for each n. Let Yn= U {CY(P); PeΓn}.
Then

); WeEp(Γn) and FF= 0 on Y-Yn}.

Choose any positive integer m and fix it. Let tl9 t2,. , tm be non-negative num-
m m

bers such that Σ U=\\ they will be determined below. Taking Wf= Σ tnW)n)

n=\ n=l

with W(n)eEp(Γn) such that ^M> = 0 on Y- 7<w>, we have Ŵ  = ίB^.") for each

P J " n"1 P J J n=l

for every P e Γ, so that We Ep(Γ). Therefore

oo m m

λpyi ) ^ Z- ij\ Z- τ n v v j \ — λu
j=l n=ί n=ί

It follows that

m

< y ί̂ 7A c/"" "i~ i

4) Cf. [6], p. 79, Theorem 2.10.
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/ m \-i

Now we choose tn = λp(Γnγ-χ[ £ λp(Γ „)*-*•) and obtain

Σ
Ln=l

which leads to the desired inequality.

Let A and B be mutually disjoint nonempty subsets of X. We define the
extremal distance ELp(A, B) (resp. ELp(A, oo)) of order p of an infinite network
<X, Y, K, r> relative to A and B (resp. A and oo) by

(2.3) ELp(A9B) = λJPΛtB),

(2.4) ELp(A,π) = λp(PA>J.

Next we consider the following extremum problem:

(2.5) Find

dp(A, B) = inf {Dp(u); u ε L(X), u = 0 on A and u = 1 on B}.

We have

LEMMA 2.3.5) Let VeL+(Y). There exists ueL(X) such that w = 0 on A,

(2.6) I £ Kvjuv\ g Vj for each jeY,
v=O

and

(2.7) mf{ΣVj , PePAtB} = inf{κv; veB}.
P

THEOREM 2.1. dp(A, B) = ELp(A, B)~K

PROOF. We set dp = dp(A, B) and ELp = ELp(A, B). First we shall prove
dp^ELp

ι in case EL~1<oo. Let WeEp(PAfB) and put Vj = rjWj. Then

inf{ΣP, ; P G P A , B } = K ^ ; ^ , B ) ^ 1 . We can find ueL(X) by Lemma 2.3
p

such that M = 0 on A and w satisfies (2.6) and (2.7). Then w ^ 1 on B and

W = Σ r}-P\ £ v̂yWvlP ^ Σ r}-*Vpj = Hp(W) < ex).
J=l v=0 j = l

Let t; = min(w, 1). Then v = 0 on A and y = l o n B , so that

dp ^ Dp(ι;) ̂  DP(M) ^ Hp(W)

5) Cf. Theorem 3 in [7].
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by Lemma 1.2. By the arbitrariness of W, we obtain dp^.EL~i. Next we shall
show that EL~1^dp in case dp<co. Let ueL(X) satisfy « = 0 o n i , u = l on

B and Dp(u)<oo. Define WeL\Y) by W~rγ\ Σ Kvjuv\. Then it is easily

seen that We Ep(PA>B) (cf. the proof of Theorem 4 in "[7°]). Hence EL~1 ^ Hp(W)
= Dp(u) and EL~*• g dp. Thus we have dp = EL~1.

By the aid of Theorem A, we have

PROPOSITION 2.2. In case Ep{PAB)Φφ, there exists a unique WeEp(PAt B)
such that ELp(A9 B)~1=Hp(W).

PROPOSITION 2.3. In case {ueD(p)>A; u = [ on B}φφ, there exists a
unique optimal solution ύ of problem (2.5), i.e., ύ e {u eD(p)>A; u = l on B}
such that dp(A,B) = Dp(ύ).

Hereafter in this section, we always assume that A is a nonempty finite subset
of X and that {<^π, Yn>} is an exhaustion of <X, Y> such that AdXx.
We shall be concerned with the relation between ELp(A, X — Xn) and ELp(A, oo).

We prepare

LEMMA 2.4. Let WeL+(Y) and set tn(W) = t(W\ PA,X-Xn) and t(W)
= KWlPA,oo) Then tn(W)^tn+1(W)^t(W) and tn(W)-+t(W) as"n->oo. Fur-
thermore there exists PePAaD such that

PROOF. Since PA,x-Xn<PA,x-Xn+ι<PA,^ we have tn(W)^tn+1(W) ^ t(W).
For each n there exists P{n)ePAtX_Xn such that tn{W)=YΛrjWj. Since A is a

finite set, there is oc0eA such that α0 e CX(P^) for infinitely many n. For each
α e l , w e put

X(OL) = { v e I ; v ^ α a n d X V J . ^ 0 for some j e Y(α)} .

Since ^(αo) is a finite subset of X, there are αx e X(oto) and j \ e Y(oco) such that
e(jί) = {(x0, α j and jίeCγ(P^n)) for infinitely many n. Similarly there are
a2eX(oc1) and j 2 e Y(oct) such that e(j2) = {ccu α2} and {Jι,j2}

ςz^γ(Pin)) for in-
finitely many n. Repeating this process, we can define ordered sets CX(P) and
CY(P) by

Cχ(P) = {α0, α l f α2,...} and Cy(P) = {Λ,j2,...}.

Define p(P) e L(7) by p/P)= - K v i with v = αf_ x if j =j , and p/P) = 0 if j ^ Cy(P).
Then PePao(X). For any m, there are infinitely many n such that {Ji9J2,.. 9jm}
c Cy(P(M0 Thereby we have
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Σ rjkWJk ί Σ/JWJ = tn{W) S lim tn(W).
fc=l P ( " ) u-»oo

By letting m->oo, we have

t(W) ^ Σ rjWj S limίn(W0.
P n->oo

This completes the proof.

We have

THEOREM 2.2. lim ELp(A, X-Xn) = ELp(A, oo).

PROOF. Since PA,x-xn<PA,x-χn+1<PA,ao> we have ELp{A, X-Xn)
<>ELp(A, X-Xn+ί)^ELp(A, oo) by Lemma 2.1. Therefore

lim£1^04, X-Xn)ύ ELp(A, oo).
H-+O0

Let WeEp(PA>J. Then t{W)=t(W; PA>J^ί. Since tn{W)=t{W; PA,X-Xn)

->t(W) as π ̂ oo by Lemma 2.4, we may assume that tn(W)>0 for all n. Writing

W^ = W/tn(W), we see that W^eEp(PA\x_xJ and £LP(

= tn(W)p(Hp(W))-K It follows that

l i m £ L p μ , X-Xn) ^ t{W)P{Hp(W))-ι ^ p
n-*ao

for all WeEp(PA>O0). Hence limELp(A, X-Xn)^ELp(A, oo). This com-

pletes the proof.

We shall give upper and lower bounds for ELp(A, oo).

PROPOSITION 2.4. ELp(A, oo) <^R(P)P-1 for every PePA>a0

PROOF. Let P e PA>o0. Then

ELp(A9 αo) ^ Ap({P}) = R(Py-i

by Lemma 2.1 and Proposition 2.1.

By taking ^ n = jPχM,χn+1-χM and Γ = PAa0 in Lemma 2.2, we obtain

PROPOSITION 2.5. £Lp04, oo)«-ι ^ £ ^ p ( ^ W 5 *„+1 - ^ ^ x

«=i

We have

PROPOSITION 2.6. Lei Zn= Yn+1 - Yn and μn=Σή~p- τ h e n

Zn

ELp(A, oo)*-1 ^ Σ μ Γ 4 -
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PROOF. In view of Proposition 2.5, it suffices to show that λp(Γπ)~1^μn

for all n, where Γn = PXn,Xn+ι_Xn. Put Un= U {CY(P); PeΓn}. Then Un<=Zn.

Define W<">eL(Y) by Wif) = rγ if jeZn and W{Jt) = Q if jφZn. Then W<">e

£P(ΓΠ) and

§ 3. Max-flows and min-cuts

Let A and B be mutually disjoint nonempty subsets of X. We say that a

subset Q of Y is a cut between A and J5 if there exist mutually disjoint subsets

Q(A) and Q(B) of Z such that AczQ(A), BaQ(B% X = Q(A)ΌQ(B) and the set

Q(A) θ Q(B) = {j e Y; KajKbj = -1 for some a e Q(A) and b e Q(B)}

is equal to Q.

Let 4̂ be a nonempty finite subset of X. We say that a subset Q of Y is a cut

between A and the ideal boundary oo of <X, Y> if there exist mutually dis-

joint subsets Q(A) and β(oo) such that AaQ(A), Q(co) = X-Q(A), Q(A) is a

finite set and β = β04)θβ(oo). Denote by QAB (resp. (^ j 0 0) the set of all

cuts between A and 5 (resp. oo). We define the characteristic function u = u(Q)

e L(X) of β G QAJ} and the index s = s(Q) e L(Y) of β by

uv = Oif veQ(A) and uv = 1 if veβ(β) ,

OO

S/ = Σ KvjUv.
v = 0

We have S; = 0 if; £ β and \sj\ = 1 if j e β.

Let 4̂ and 5 be mutually disjoint nonempty finite subsets of X. We say

that w e L( Y) is a flow from ^ to B of strength /(w) if

(3.1) ±^KVJWJ = 0 (vφAϋB),

(3.2) /(w) = - Σ Σ Kvjwj = Σ Σ
veAj=l veβj=l

Denote by ^(^4, B) the set of all flows from AtoB and set

G(A, B) = F(A, B) n L0(Y).

Let F^.4, J3) be the closure of G(A, B) in Lq(Y; r). Thus for any weFq(A, B\

there exists a sequence {w(n)} in G(A, B) such that Hq(w — w(w))->0 as n-^oo. It

follows that w e f ( i , B) and /(w(n))-^/(w) as n->oo.
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Let gp(t) be the real function on the real line R defined by

It is clear that

tgp(t)=\t\p and

We say that weL(Y) is a p-Άow from A to B of strength Ip(w) if gp°w is a

flow from A to B and Ip(w) = I(gpow). Denote by Fip\A, B) the set of all p-

flows from A to B and set

G<*>G4, 5) = FM(A, B) n L o (7) .

It is clear that FW(A9 B) = F(A, B) and I2(w) = I(w). We remark that a p-flow

is a non-linear flow in the sense of Birkhoff [1] and Duffin [3].

REMARK 3.1. we G^\A, B) if and only if gpow e G(A, B).

REMARK 3.2. Let A and B be mutually disjoint nonempty finite subsets of

X and let ύ be the optimal solution of problem (2.5). Define ri> eL(Y) by

v = O

Then it can be shown that n> e F^\A, B).

We prepare

LEMMA 3.1. Let u e L(X) and w e L(Y). Then

o o / σ o \ oo / oo \

(3.3) Σ « i Σ Kvywy ) = Σ w/ Σ XvΛ
v = 0 \j=ί J / j=ί J\v=0 J

holds if any one of the following conditions is fulfilled:

(i) UEL0(X) or weL0(Y).

(ii) Dp(u)<oo and weFq(A,B).

PROOF. If condition (i) is satisfied, then (3.3) is clear. Assume condi-

tion (ii). Then there exists a sequence {w(n)} in G(A, B) such that Hq(w — w(n))

-*Oastt-»oo. We have

Σ w(f\ Σ κVJuv) = Σ «,( Σ ^ X /
y=i \v=o / v=o \j=i
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= Σ UV(±KVJW(J«A
veAUB \j=ί J J

/ 00 \ 00 / 00 \

-> Σ uJ Σ κvjwj)= Σ «,( Σ κvjwj)
veAUB \j=l / v=0 \J=1 /

as n-» oo, since wW-tWj as «->oo for each j ε Y. On the other hand, we have

Σ kj-w^ll Σ Kvjuv\ g IHJw-w
j=ί v = 0

by Holder's inequality, so that
00 / 00 \ 00 , v / 00 \ θ θ / θ θ

Σ w/ Σ ^v^v)= lim Σ w(/>( Σ ^ t t v ) = Σ « i Σ ̂ v
;=1 7\v = 0 / «-oo j=ί J \v=0 J / v = 0 \j= 1 J

This completes the proof.

Let WeL+(Y). Let us consider the following extremum problems which
are generalizations of the max-flow problem in network theory on a finite graph.

(3.4) Find
M(W; Fq(A, B)) = sup{/(w); weFq(A9 B) and \wj\ S Wj on Y}.

(3.5) Find
M(W; G(A, B)) = sup{/(w); weG(A, B) and \wj\ ̂  Wj on Y}.

(3.6) Find
Mp(W; G<*\A9 B)) = sup{/p(w); weG<*>(,4, B) and |w;| ̂  Wj on Y}.

For WeL+(Y) let us denote by W the function VeL(Y) defined by Vi

= Wpj for each j e Y.
On account of Remark 3.1, we have

PROPOSITION 3.1. Mp(W; G^\A, B)) = M(WP~γ G(A, B)).

We shall prove

LEMMA 3.2. Let WeL+(Y;r). Then there exists weFq(A,B) such that
^Wγι on Yand I(w) = M(WP~ί; G(A, B)).

PROOF. There exists a sequence {w^} in G(A, B) such that |w(

y

n)|^ Wpfv

on Y and 7(w(n)) converges to M(VFp-1; G(A, B)). Since L/F; r) is a reflexive
Banach space and {weFq(A, B); \\Vj\^Wp.~ι on Y} is a bounded closed con-
vex set in Lq(Y; r), we may assume that {w(n)} converges weakly to weLq(Y; r).
Then w(jn)->Wj as n->oo for eachy. Hence fieFq(A, B\ \ftj\^Wpfι on 7and

= Σ Σ KvjWj = lim 7(w^>) =
veB j= 1 n->oo
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This completes the proof.

Let WeL+(Y) and consider the following extremum problem which is a

generalization of the min-cut problem in (finite) network theory:

(3.7) Find

M*(W; QAtB) = M{ΣWj; QeQA)B}
Q

We have

LEMMA 3.3.6> M(W; G(A, B)) = M*(W\ QA>B).

By Lemma 3.3 and Proposition 3.1, we have

COROLLARY. MP(W; G(P\A, B)) = M*(Wp~ι QAjB).

% 4. Generalized extremal width of a network

Let A and B be mutually disjoint nonempty subsets of X. We define the

extremal width EWp(A, B) of order p of an infinite network <X, Y, K, r>

relative to two sets A and B by the value of the following extremum problem.

(4.1) Find

EWp(A, B)-1 = inf {Hp(W); WeE*(QΛ9B)},

where E$(QAiB) = {WeL+(Y; r); Σ ^ Γ 1 ^ 1 f o r a 1 1 QCQA,B}.

Hereafter in this section we always assume that A and B are finite subsets

of X. In connection with the above problem, we consider the following extre-

mum problems.

(4.2) Find

d*(A, B) = inf{Hq(w); weFq(A, B) and I(w) = 1}.

(4.3) Find

a*(A, B) = M{Hp(w); w e G^\A9 B) and Ip(w) = 1}.

We shall prove

PROPOSITION 4.1. d*(A, B) = d*(A, B) = inΐ{Hq(w); weG(A, B) and /(w)

= 1}.

PROOF. We set d* = d*(A,B) and d* = d*(A, B). By Remark 3.1 and by

the relations I(gpo\v) = Ip(w) and Hq(gpow) = Hp(w), we have

6) Cf. Theorem 6 in [7].
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(4.4) 5* = M{Hq(z); z e G(A, B) and I(z) = 1},

so that d*^d*. On the other hand, let weFq(A, B) and I(w) = l. There exists

a sequence {w(n)} in G(A9 B) such that Hq(w — w(w))->0 asn-»oo. Since 7(w(n))

-^/(w) as n->oo, we may suppose that J(w ( / l ))>0 for all n. It follows from (4.4)

that

5 S Hq(w^/I(w)) = 7/,(w

By letting n->oo, we have d*^Hq(w), so that <?*^d*. Hence <ί* = d*.

THEOREM 4.1. £^(^4, B)~1 = d*(A, B).

PROOF. We set EWp = EWp(A, B) and d* = d*(A, B). For each w

5) such that I(w) = 1, consider We L+(Y) denned by W, = |w, | ̂ - ^ on Y. Then

we show that WeE*(QAB). Let u = u(Q) be the characteristic function of

Q e C?A,B We have by Lemma 3.1

Σ ± v j j ) Σ / Σ
v=o \y=i J/ j=i /\v=o

S Σ KM Σ κvjuv\= Σ
j = 1

 J

 v = 0 J Q

Therefore We E*(QAtB) and

^ Hp(W) = £ rj\wj\P*P-V = Hq(w).

Thus we have EW'^d* by Proposition 4.1. On the other hand, let WeE*(QAiB),

i.e., WeL$(Y;r) and M^WP'1; QAtB)^l. We can find weFq(A,B) such

that K l g J ^ - 1 on Y and M ^ " 1 ; G(A, J5)) = /(w) by Lemma 3.2. It follows

from Lemma 3.3 that /(w)^ 1. We have

dj g Hq(w/I(w)) ^

^ Σ

so that d^EW-1. Therefore d* =

By the aid of Theorem A, we have

PROPOSITION 4.2. There exists a unique weFq(A, B) such that I(w) = l

and d*(A, B) = Hq(\b), i.e., \v is the optimal solution of problem (4.2).

Let A be a nonempty finite subset of X. We define the extremal width
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EWp(A, oo) of order p of an infinite network relative to A and oo by the value

of the following extremum problem.

(3.5) Find

EWp(A, oo)-1 = inS{Hp{W)\ WeE*(QA,J},

where E*(QAfJ = {WeL;(Y; r); Σ W'f1 ^ 1 for all QeQA>J.

Let {<Xn, Yn>} be an exhaustion of <X, Y> such that AaX1. We shall

be concerned with the relation between EWp(A, X — Xn) and EWp(A, oo).

We shall prove

THEOREM 4.2. lim EWP(A, X-Xn) = EWp(A, oo).
M—•OO

PROOF. Since <k,x-xn

c<?Ax-*rt+1

c:<?,4,oO, we have EWP(A9 oo)^EWp{A,
X-Xn+ί)^EWp(A, X-Xn\ and hence

limEWp(A, X-Xn) ^ EWP(A, oo).
n-*oo

To prove the converse inequality we may assume that limEW(A, X~Xn)>0.

For each n, there is W(n) eE*(QAiX_Xn) such that EWp(AΓx-Xn) = Hp(W(n))'1.

Since {Hp(W(n))} is a bounded sequence and hp(Y\ r) is a reflexive Banach space,

we can choose a weakly convergent subsequence of {FF ( M ) } . Denote by {W(n)}

the subsequence again and let Wbe the weak limit. We show that We E*(QA(Xi).

Let Q eQAyO0 with β = β(^4)©2(oo). Since Q(A) is a finite set, there is a number

n0 such that Q(A)czXno. Then X — XnczQ(oo) and hence Q e ^ j X _ X n for all

n^n0. Therefore Σ [W^Y'1 ^ 1 for all n ^ n 0 . Since {W(n)} converges weakly

to ί^and Q is a finite set, we obtain Σ ^ Γ 1 =*• τ h u s ^ e £ *«?^,oo) s ί n c e

is weakly lower semicontinuous in Lp(Y; r), we have

This completes the proof.

§ 5. A reciprocal relation between ELp and EWp

Let A and B be mutually disjoint nonempty finite subsets of X.

We prepare

LEMMA 5.1. Let w be the optimal solution of problem (4.2). // w' eFq(A,

B) and J(w') = 0, then
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(5.1) Σ rjW'jgq(Wj) = 0.

PROOF. For any real number t, we have w + twr eFq(A, B) and I(w + tw')

= 1, so that d*(A, B) = Hq(w)^Hq(w + tw'). Thus the derivative of Hq(w + tw')

with respect to t vanishes at t = 0. Since Hq(w + tw') can be differentiated term

by term at ί = 0, we obtain (5.1).

COROLLARY 1. Let w be the optimal solution of problem (4.2) and P be

a path from node CUE A to node βeB. Then

(5.2) d*(A, B) = Σ rjPj(P)gq(Wj).

PROOF. Note that p(P) is a flow from {α} to {β} such that I(p(P)) = l.

Taking w' = w-p(P), we see that wΈFq(A, B) and /(w') = 0. Thus we have by

(5.1)

Therefore

d*(A, B) - Hq(w) = Σ^ wjg^wj) = ^

COROLLARY 2. Let w be the optimal solution of problem (4.2) and let

α , v e l (α#v). // P and P' are paths from node a to node v, then

(5.3) Σ rjp£P)gqWj) = | rjPj(P')gq(wj).

PROOF. Taking w ^ p ί P ) - ^ ' ) , we see that w'eFq(A, B) and /(w') = 0.

Then (5.3) follows from (5.1).

Let w be the optimal solution of problem (4.2). For any aeA, we define

vU) e L(X) by

(5.4) υ^ = 0, υP = Σ rjPj(P)gq(w3) (v # α)

for some path P from node α to node v. It follows from Corollary 2 of Lemma

5.1 that v(a) is uniquely determined by w. Define ϋeL(X) by

(5.5) ί)v =

We have

LEMMA 5.2. Let v be the function defined by (5.4) and (5.5). Then ϋ
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= 0 on A, v = d*(A, B) on B and

(5.6) I Σ Kvjvv\ ^ rjlwj]*-1 on Y.
v=O

PROOF. Since ι4α) = 0 for any aeA, we have v = 0 on A. We have ϋ

= d*(A, B) on B by Corollary 1 of Lemma 5.1. The proof of (5.6) is carried

out by the same reasoning as in the proof of Lemma 12 in [7].

We shall prove

THEOREM 5.1. ldp(A, B)yi*[d*(A9 B)] */« = 1.

PROOF. We set dp = dp(A,B) and d* = d*(A, B). First we show that

1 ^ (dp)
x /p(d*)1 /q. For any v e L(X) such that v = 0 on A9 v = 1 on B and Dp(v) < oo

and any w e Fq(A, B) such that 7(w)= 1, we have by Lemma 3.1

1 =

which leads to the desired inequality. Next we show that (dp)
ίίp(^

Let w be the optimal solution of problem (4.2) and define veL(X) by (5.4) and

(5.5). Then we have by (5.6)

Dp(ϋ) = f, r)~v I Σ Kvjϋv\P^ £ rj\tij\**-» = Hq(w) = J*.
j—ί v=0 j=l

Writing ύ = v/d*, we see by Lemma 5.2 that ύ=0 on A and # = 1 on B, so that

dp ^ DP(U) = Dp(ϋ)(d*)-p ^ (d*y-p = (d*r*"9

By Proposition 4.1 and Theorem 5.1, we have

COROLLARY. \_dp(A, B)yι*\2ί*(A9 B)]1/« = l.

By Theorems 2.1, 4.1 and 5.1, we have

THEOREM 5.2. \ELP(A9

Next we shall be concerned with the reciprocal relation between ELp(A, oo)

and EWp(A, oo). Henceforth let A be a nonempty finite subset of X and {<Xn,

Yn>} be an exhaustion of <X, Y> such that

We prepare
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LEMMA 5.3. For every QeQA,xn+ί-xn> there exists Q'eQA,x-xn

 such
that Q'^Q.

PROOF. Let QeQAtXn+ί-Xn and Q = Q(A)QQ(Xn+1-Xn). Let us define
Q'(A) and Q'(X-Xn) by' "

Q'(A) = Q(A)-(X-Xn) and Q\X-Xn) = X-Q'(A).

Since A{\(X-Xn) = φ and Q'(A)[)(X-Xn) = φ, we see that icQ'( i ) and
X-Xn<zQ'{X-Xn\ so that Q'= Q\A)QQ\X-Xn)eQA^Xn. It can be
easily shown that Q' <=Q.

We have

THEOREM 5.3. EWP(A, oo)=ELp(A, αo)1"*.

PROOF. Since PA,x-xn

 = PA,xn+1-xn>
 w e n a v e

ELp(A, X-Xn) = ELp(A, Xn+ί-Xn).

It follows from Lemma 5.3 that

EWp(A, X-Xn) = EWp(A, Xn+1-Xn).

We have by Theorem 5.2

EWp(A9 X-Xn) = £Lp(^, X-Xny-«.

Our assertion follows from Theorems 2.2 and 4.2.
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