Generalized Extremal Length of an Infinite Network

Tadashi Nakamura and Maretsugu Yamasaki
(Received September 2, 1975)

Introduction

The extremal length of a network, which is the reciprocal of the value of a quadratic programming problem, was first investigated by R. J. Duffin [4] on a finite graph and next by the second author [7] on an infinite graph. In this paper we shall be concerned with a generalized form of the extremal length as in [5] along the same lines as in [4] and [7]. The generalized extremal length of an infinite network may be regarded as the reciprocal of the value of a convex programming problem. One of our main purposes is to establish a reciprocal relation between the generalized extremal distance and the generalized extremal width of an infinite network which was established by M. Ohtsuka [5] for the continuous case. We shall also study the generalized extremal length of an infinite network relative to a finite set and the ideal boundary of the network. A concept of non-linear flows which was studied in [1] and [3] will appear in § 3 and §4 in connection with the extremal width of a network.

§ 1. Preliminaries

Let X be a set of nodes and let Y be a set of directed arcs. Since we always consider the case where X and Y consist of a countably infinite number of elements, we put

$$
\begin{aligned}
& X=\{0,1,2, \ldots, n, \ldots\}, \\
& Y=\{1,2, \ldots, n, \ldots\} .
\end{aligned}
$$

Let $K=\left(K_{v j}\right)$ be the node-arc incidence matrix. Namely $K_{v j}=1$ if arc j is directed toward node $v, K_{v j}=-1$ if arc j is directed away from node v and $K_{v j}=0$ if arc j and node v do not meet.

We assume that X, Y and K satisfy the following conditions:
(1.1) $\left\{j \in Y ; K_{v j} \neq 0\right\}$ is a nonempty finite set for each $v \in X$.
(1.2) $e(j)=\left\{v \in X ; K_{v j} \neq 0\right\}$ consists of exactly two nodes for each $j \in Y$.
(1.3) For any $\alpha, \beta \in X$, there are $v_{1}, \ldots, v_{n} \in X$ and $j_{1}, \ldots, j_{n+1} \in Y$ such that $e\left(j_{i}\right)=\left\{v_{i-1}, v_{i}\right\}, i=1, \ldots, n+1$ with $v_{0}=\alpha$ and $v_{n+1}=\beta$.

Given a strictly positive function r on Y, the quartet $\langle X, Y, K, r\rangle$ is then called an infinite network. For simplicity denote by $\langle X, Y>$ a network $<X$, $Y, K, r>$ if there is no confusion from the context.

Let X^{\prime} and Y^{\prime} be subsets of X and Y respectively and let K^{\prime} and r^{\prime} be the restrictions of K and r onto $X^{\prime} \times Y^{\prime}$ and Y^{\prime} respectively. We say that $\left\langle X^{\prime}, Y^{\prime}\right\rangle$ $\left.=<X^{\prime}, Y^{\prime}, K^{\prime}, r^{\prime}\right\rangle$ is a subnetwork of $\langle X, Y, K, r>$ if it is a network in itself. In case X^{\prime} (or Y^{\prime}) is a finite set, we call $<X^{\prime}, Y^{\prime}>$ a finite subnetwork of $<X$, $Y>$.

We say that a sequence $\left\{\left\langle X_{n}, Y_{n}\right\rangle\right\}$ of finite subnetworks of $\langle X, Y\rangle$ is an exhaustion of $\langle X, Y\rangle$ if

$$
\begin{equation*}
X=\bigcup_{n=1}^{\infty} X_{n} \quad \text { and } \quad Y=\bigcup_{n=1}^{\infty} Y_{n}, \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\left\{j \in Y ; K_{v j} \neq 0\right\} \subset Y_{n+1} \quad \text { for each } \quad v \in X_{n} . \tag{1.5}
\end{equation*}
$$

Let p and q be positive numbers such that

$$
\begin{equation*}
1 / p+1 / q=1 \quad \text { and } \quad p>1 \tag{1.6}
\end{equation*}
$$

Let $L(X)$ and $L(Y)$ be the sets of all real functions on X and Y respectively. For $u \in L(X)$ and $w \in L(Y)$, we put

$$
\begin{gather*}
u_{v}=u(v), \quad w_{j}=w(j), \\
S u=\left\{v \in X ; u_{v} \neq 0\right\}, \quad S w=\left\{j \in Y ; w_{j} \neq 0\right\}, \\
D_{p}(u)=\sum_{j=1}^{\infty} r_{j}^{1-p}\left|\sum_{v=0}^{\infty} K_{v j} u_{v}\right|^{p}, \tag{1.7}\\
H_{p}(w)=\sum_{j=1}^{\infty} r_{j}\left|w_{j}\right|^{p} . \tag{1.8}
\end{gather*}
$$

We shall use the following classes of functions on X and Y :

$$
\begin{aligned}
& L_{0}(X)=\{u \in L(X) ; S u \text { is a finite set }\}, \\
& L_{0}(Y)=\{w \in L(Y) ; S w \text { is a finite set }\}, \\
& L^{+}(Y)=\left\{w \in L(Y) ; w_{j} \geqq 0 \text { on } Y\right\}, \\
& L_{p}(Y ; r)=\left\{w \in L(Y) ; H_{p}(w)<\infty\right\}, \\
& L_{p}^{+}(Y ; r)=\left\{w \in L^{+}(Y) ; H_{p}(w)<\infty\right\}
\end{aligned}
$$

Note that $L_{p}(Y ; r)$ is a reflexive Banach space with respect to the norm $\left[H_{p}(w)\right]^{1 / p}$. If $H_{p}\left(w-w^{(n)}\right) \rightarrow 0$ as $n \rightarrow \infty$, then $w_{j}^{(n)} \rightarrow w_{j}$ as $n \rightarrow \infty$ for each j.

For a nonempty subset A of X, let us put

$$
\boldsymbol{D}^{(p)}=\boldsymbol{D}^{(p), A}=\left\{u \in L(X) ; D_{p}(u)<\infty \text { and } u=0 \text { on } A\right\} .
$$

We have
Lemma 1.1. ${ }^{1)}$ For any n, there exists a constant M_{n} such that

$$
\sum_{i=0}^{n}\left|u_{i}\right| \leqq M_{n}\left[D_{p}(u)\right]^{1 / p}
$$

for all $u \in \boldsymbol{D}^{(p)}$.
Proposition 1.1. $\boldsymbol{D}^{(p)}$ is a reflexive Banach space with respect to the norm $\left[D_{p}(u)\right]^{1 / p}$.

Proof. It follows from Lemma 1.1 and the Minkowski inequality that $\left[D_{p}(u)\right]^{1 / p}$ is a norm on $\boldsymbol{D}^{(p)}$. We can prove by a standard argument that $\boldsymbol{D}^{(p)}$ is a Banach space. Let E be the linear transformation from $L(X)$ into $L(Y)$ defined by

$$
w_{j}=(E u)_{j}=r_{j}^{-1} \sum_{v=0}^{\infty} K_{v j} u_{v}
$$

and denote by $E\left(\boldsymbol{D}^{(p)}\right)$ the image of $\boldsymbol{D}^{(p)}$ under E. From the relation $H_{p}(E u)$ $=D_{p}(u)$, it follows that E is a Banach space isomorphism from $\boldsymbol{D}^{(p)}$ onto $E\left(\boldsymbol{D}^{(p)}\right)$. It is easily seen that $E\left(\boldsymbol{D}^{(p)}\right)$ is a closed linear subspace of $L_{p}(Y ; r)$. Since $L_{p}(Y$; r) is a reflexive Banach space, $E\left(\boldsymbol{D}^{(p)}\right)$ is also a reflexive Banach space (cf. [2], p. 116, Proposition 11). Therefore $\boldsymbol{D}^{(p)}$ is reflexive.

Lemma 1.2. ${ }^{2)} \quad$ Let Tbe a normal contraction of the real line R and $u \in \boldsymbol{D}^{(p)}$. Then $T u \in \boldsymbol{D}^{(p)}$ and $D_{p}(T u) \leqq D_{p}(u)$.

We often use the following theorem to assure the existence of an optimal solution of an extremum problem.

Theorem A. ${ }^{3)}$ Let Z be a reflexive Banach space with the norm $\|z\|$ and C be a nonempty closed convex set in Z. Then there exists a point $\hat{z} \in C$ such that $\|\hat{z}\|=\min \{\|z\| ; z \in C\}$. This minimizing point is unique if every boundary point of the ball $\|z\| \leqq 1$ is an extreme point.

§2. Generalized extremal length of a network

A path P from node α to node β is the triple $\left(C_{X}(P), C_{Y}(P), p(P)\right)$ of a finite

1) Cf. Lemma 1 in [7].
2) Cf. Lemma 2 in [7].
3) [2], p. 117, Exercise 1.
ordered set $C_{X}(P)=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ of nodes, a finite ordered set $C_{Y}(P)=\left\{j_{1}\right.$, $\left.j_{2}, \ldots, j_{n}\right\}$ of arcs and a function $p(P)$ on Y called the index of P such that

$$
\begin{aligned}
& v_{0}=\alpha, v_{n}=\beta, v_{i} \neq v_{k} \quad(i \neq k), \\
& e\left(j_{i}\right)=\left\{v_{i-1}, v_{i}\right\} \quad \text { if } \quad j \in C_{Y}(P),
\end{aligned}
$$

$$
\begin{align*}
& p_{j}(P)=0 \quad \text { if } \quad j \notin C_{Y}(P), \tag{P}\\
& p_{j}(P)=-K_{v j} \text { with } v=v_{i-1} \quad \text { if } j=j_{i} .
\end{align*}
$$

A path P from node α to the ideal boundary ∞ of $\langle X, Y\rangle$ is the triple $\left(C_{X}(P), C_{Y}(P), p(P)\right)$ of an infinite ordered set $C_{X}(P)=\left\{v_{0}, v_{1}, \ldots\right\}$ of nodes, an infinite ordered set $C_{Y}(P)=\left\{j_{1}, j_{2}, \ldots\right\}$ of arcs and a function $p(P)$ on Y called the index of P which satisfy condition (P) except the terminal condition $v_{n}=\beta$.

Denote by $\boldsymbol{P}_{\alpha \beta}\left(\right.$ resp. $\left.\boldsymbol{P}_{\alpha \infty}\right)$ the set of all paths from node α to node β (resp. ∞). Note that condition (1.3) means $\boldsymbol{P}_{\alpha \beta} \neq \phi$ for any $\alpha, \beta \in X$. For mutually disjoint nonempty subsets A and B of X, denote by $\boldsymbol{P}_{A, B}$ the set of all paths P such that $P \in \boldsymbol{P}_{\alpha \beta}, C_{X}(P) \cap A=\{\alpha\}$ and $C_{X}(P) \cap B=\{\beta\}$ for some $\alpha \in A$ and $\beta \in B$. Let $\boldsymbol{P}_{A, \infty}$ be the set of all paths P such that $P \in \boldsymbol{P}_{\alpha \infty}$ and $C_{X}(P) \cap A$ $=\{\alpha\}$ for some $\alpha \in A$.

Let Γ be a set of paths in an infinite network $\langle X, Y, K, r\rangle$. For every $W \in L^{+}(Y)$, a value $t(W ; \Gamma)$ is defined by

$$
\begin{equation*}
t(W ; \Gamma)=\inf \left\{\sum_{P} r_{j} W_{j} ; P \in \Gamma\right\}, \tag{2.1}
\end{equation*}
$$

where $\sum_{P} r_{j} W_{j}$ is an abbreviation of $\sum_{j \in C_{Y}(P)} r_{j} W_{j}$.
We define the extremal length $\lambda_{p}(\Gamma)$ of Γ of order p by

$$
\begin{equation*}
\lambda_{p}(\Gamma)^{-1}=\inf \left\{H_{p}(W) ; W \in E_{p}(\Gamma)\right\}, \tag{2.2}
\end{equation*}
$$

where

$$
E_{p}(\Gamma)=\left\{W \in L_{p}^{+}(Y ; r) ; t(W ; \Gamma) \geqq 1\right\} .
$$

We use the convention in this paper that the infimum of a real function on the empty set ϕ is equal to ∞. We shall study some properties of the extremal length which are analogous to the continuous case (cf. [6]).

Let Γ_{1} and Γ_{2} be sets of paths in $\langle X, Y\rangle$. We shall write $\Gamma_{1}<\Gamma_{2}$ if for any $P^{(2)} \in \Gamma_{2}$ there is a $P^{(1)} \in \Gamma_{1}$ such that $C_{Y}\left(P^{(1)}\right) \subset C_{Y}\left(P^{(2)}\right)$.

We easily obtain
Lemma 2.1. If Γ_{1} and Γ_{2} are sets of paths in $\langle X, Y\rangle$ such that Γ_{1} $<\Gamma_{2}$, then $\lambda_{p}\left(\Gamma_{1}\right) \leqq \lambda_{p}\left(\Gamma_{2}\right)$.

Proposition 2.1. Let P be a path and set $R(P)=\sum_{P} r_{j}$. Then $\lambda_{p}(\{P\})$ $=R(P)^{p-1}$.

Proof. Let $W \in E_{p}(\{P\})$. Then $\sum_{P} r_{j} W_{j} \geqq 1$. It follows from Hölder's inequality that $1 \leqq R(P)^{1 / q} H_{p}(W)^{1 / p}$. Thus we have $\lambda_{p}(\{P\}) \leqq R(P)^{p-1}$. Next we show the converse inequality. Let $\left.\left\{<X_{n}, Y_{n}\right\rangle\right\}$ be an exhaustion of $\langle X, Y\rangle$ such that $C_{Y}(P) \cap Y_{1} \neq \phi$. Set $Y_{n}^{\prime}=C_{Y}(P) \cap Y_{n}$ and define $W^{(n)} \in L(Y)$ by $W_{j}^{(n)}$ $=\left(\sum_{Y_{n}^{\prime}} r_{j}\right)^{-1}$ if $j \in Y_{n}^{\prime}$ and $W_{j}^{(n)}=0$ if $j \notin Y_{n}^{\prime}$. Then $W^{(n)} \in E_{p}(\{P\})$ and

$$
\lambda_{p}(\{P\}) \geqq H_{p}\left(W^{(n)}\right)^{-1}=\left(\sum_{Y_{n}^{\prime}} r_{j}\right)^{p-1}
$$

By letting $n \rightarrow \infty$, we conclude that $\lambda_{p}(\{P\}) \geqq R(P)^{p-1}$. This completes the proof.

Let Γ_{1} and Γ_{2} be sets of paths in $\langle X, Y\rangle$. We say that Γ_{1} and Γ_{2} are mutually disjoint if $C_{Y}\left(P^{(1)}\right) \cap C_{Y}\left(P^{(2)}\right)=\phi$ for every $P^{(1)} \in \Gamma_{1}$ and $P^{(2)} \in \Gamma_{2}$.

Lemma 2.2.4) Let $\left\{\Gamma_{n} ; n=1,2, \ldots\right\}$ be mutually disjoint sets of paths and Γ be a set of paths. If $\Gamma_{n}<\Gamma$ for each n, then

$$
\lambda_{p}(\Gamma)^{q-1} \geqq \sum_{n=1}^{\infty} \lambda_{p}\left(\Gamma_{n}\right)^{q-1}
$$

Proof. If $\lambda_{p}\left(\Gamma_{n}\right)=\infty$ for at least one n, our inequality is valid by Lemma 2.1. Therefore we may assume that $\lambda_{p}\left(\Gamma_{n}\right)<\infty$ for each n. Moreover we may assume that $\lambda_{p}\left(\Gamma_{n}\right)>0$, i.e., $E_{p}\left(\Gamma_{n}\right) \neq \phi$ for each n. Let $Y_{n}=\cup\left\{C_{Y}(P) ; P \in \Gamma_{n}\right\}$. Then

$$
\lambda_{p}\left(\Gamma_{n}\right)^{-1}=\inf \left\{H_{p}(W) ; W \in E_{p}\left(\Gamma_{n}\right) \text { and } W=0 \text { on } Y-Y_{n}\right\}
$$

Choose any positive integer m and fix it. Let $t_{1}, t_{2}, \ldots, t_{m}$ be non-negative numbers such that $\sum_{n=1}^{m} t_{n}=1$; they will be determined below. Taking $W_{j}=\sum_{n=1}^{m} t_{n} W_{j}^{(n)}$ with $W^{(n)} \in E_{p}\left(\Gamma_{n}\right)$ such that $W^{(n)}=0$ on $Y-Y^{(n)}$, we have $W_{j}=t_{n} W_{j}^{(n)}$ for each $j \in Y_{n}$ and

$$
\sum_{P} r_{j} W_{j}=\sum_{n=1}^{m} t_{n} \sum_{P} r_{j} W_{j}^{(n)} \geqq \sum_{n=1}^{m} t_{n}=1
$$

for every $P \in \Gamma$, so that $W \in E_{p}(\Gamma)$. Therefore

$$
\lambda_{p}(\Gamma)^{-1} \leqq \sum_{j=1}^{\infty} r_{j}\left|\sum_{n=1}^{m} t_{n} W_{j}^{(n)}\right|^{p}=\sum_{n=1}^{m} t_{n}^{p} H_{p}\left(W^{(n)}\right) .
$$

It follows that

$$
\lambda_{p}(\Gamma)^{-1} \leqq \sum_{n=1}^{m} t_{n}^{p} \lambda_{p}\left(\Gamma_{n}\right)^{-1}
$$

4) Cf. [6], p. 79, Theorem 2.10.

Now we choose $t_{n}=\lambda_{p}\left(\Gamma_{n}\right)^{q-1}\left(\sum_{n=1}^{m} \lambda_{p}\left(\Gamma_{n}\right)^{q-1}\right)^{-1}$ and obtain

$$
\lambda_{p}(\Gamma)^{-1} \leqq\left[\sum_{n=1}^{m} \lambda_{p}\left(\Gamma_{n}\right)^{q-1}\right]^{1-p},
$$

which leads to the desired inequality.
Let A and B be mutually disjoint nonempty subsets of X. We define the extremal distance $E L_{p}(A, B)$ (resp. $E L_{p}(A, \infty)$) of order p of an infinite network $<X, Y, K, r>$ relative to A and B (resp. A and ∞) by

$$
\begin{align*}
E L_{p}(A, B) & =\lambda_{p}\left(\boldsymbol{P}_{A, B}\right) \tag{2.3}\\
E L_{p}(A, \infty) & =\lambda_{p}\left(\boldsymbol{P}_{A, \infty}\right) \tag{2.4}
\end{align*}
$$

Next we consider the following extremum problem:
Find

$$
\begin{equation*}
d_{p}(A, B)=\inf \left\{D_{p}(u) ; u \in L(X), u=0 \text { on } A \text { and } u=1 \text { on } B\right\} . \tag{2.5}
\end{equation*}
$$

We have
Lemma 2.3. ${ }^{5)}$ Let $V \in L^{+}(Y)$. There exists $u \in L(X)$ such that $u=0$ on A,

$$
\begin{equation*}
\left|\sum_{v=0}^{\infty} K_{v j} u_{v}\right| \leqq V_{j} \quad \text { for each } \quad j \in Y \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf \left\{\sum_{P} V_{j} ; P \in \boldsymbol{P}_{A, B}\right\}=\inf \left\{u_{v} ; v \in B\right\} . \tag{2.7}
\end{equation*}
$$

Theorem 2.1. $\quad d_{p}(A, B)=E L_{p}(A, B)^{-1}$.
Proof. We set $d_{p}=d_{p}(A, B)$ and $E L_{p}=E L_{p}(A, B)$. First we shall prove $d_{p} \leqq E L_{p}^{-1}$ in case $E L_{p}^{-1}<\infty$. Let $W \in E_{p}\left(\boldsymbol{P}_{A, B}\right)$ and put $V_{j}=r_{j} W_{j}$. Then $\inf \left\{\sum_{P} V_{j} ; \quad P \in \boldsymbol{P}_{A, B}\right\}=t\left(W ; \boldsymbol{P}_{A, B}\right) \geqq 1$. We can find $u \in L(X)$ by Lemma 2.3 such that $u=0$ on A and u satisfies (2.6) and (2.7). Then $u \geqq 1$ on B and

$$
D_{p}(u)=\sum_{j=1}^{\infty} r_{j}^{1-p}\left|\sum_{v=0}^{\infty} K_{v j} u_{v}\right|^{p} \leqq \sum_{j=1}^{\infty} r_{j}^{1-p} V_{j}^{p}=H_{p}(W)<\infty .
$$

Let $v=\min (u, 1)$. Then $v=0$ on A and $v=1$ on B, so that

$$
d_{p} \leqq D_{p}(v) \leqq D_{p}(u) \leqq H_{p}(W)
$$

5) Cf. Theorem 3 in [7].
by Lemma 1.2. By the arbitrariness of W, we obtain $d_{p} \leqq E L_{p}^{-1}$. Next we shall show that $E L_{p}^{-1} \leqq d_{p}$ in case $d_{p}<\infty$. Let $u \in L(X)$ satisfy $u=0$ on $A, u=1$ on B and $D_{p}(u)<\infty$. Define $W \in L^{+}(Y)$ by $W_{j}=r_{j}^{-1}\left|\sum_{v=0}^{\infty} K_{v j} u_{v}\right|$. Then it is easily seen that $W \in E_{p}\left(\boldsymbol{P}_{A, B}\right)$ (cf. the proof of Theorem 4 in [7]). Hence $E L_{p}^{-1} \leqq H_{p}(W)$ $=D_{p}(u)$ and $E L_{p}^{-1} \leqq d_{p}$. Thus we have $d_{p}=E L_{p}^{-1}$.

By the aid of Theorem A, we have
Proposition 2.2. In case $E_{p}\left(\boldsymbol{P}_{A, B}\right) \neq \phi$, there exists a unique $\hat{W} \in E_{p}\left(\boldsymbol{P}_{A}, B\right)$ such that $E L_{p}(A, B)^{-1}=H_{p}(\hat{W})$.

Proposition 2.3. In case $\left\{u \in \boldsymbol{D}^{(p), A} ; u=1\right.$ on $\left.B\right\} \neq \phi$, there exists a unique optimal solution \hat{u} of problem (2.5), i.e., $\hat{u} \in\left\{u \in \boldsymbol{D}^{(p), A} ; u=1\right.$ on $\left.B\right\}$ such that $d_{p}(A, B)=D_{p}(\hat{u})$.

Hereafter in this section, we always assume that A is a nonempty finite subset of X and that $\left.\left\{<X_{n}, Y_{n}\right\rangle\right\}$ is an exhaustion of $\langle X, Y\rangle$ such that $A \subset X_{1}$. We shall be concerned with the relation between $E L_{p}\left(A, X-X_{n}\right)$ and $E L_{p}(A, \infty)$.

We prepare
Lemma 2.4. Let $W \in L^{+}(Y)$ and set $t_{n}(W)=t\left(W ; \boldsymbol{P}_{A, X-x_{n}}\right)$ and $t(W)$ $=t\left(W ; \boldsymbol{P}_{A, \infty}\right)$. Then $t_{n}(W) \leqq t_{n+1}(W) \leqq t(W)$ and $t_{n}(W) \rightarrow t(W)$ as $n \rightarrow \infty$. Furthermore there exists $P \in \boldsymbol{P}_{A, \infty}$ such that $t(W)=\sum_{\boldsymbol{P}} r_{j} W_{j}$.

Proof. Since $\boldsymbol{P}_{A, X-X_{n}}<\boldsymbol{P}_{A, X-X_{n+1}}<\boldsymbol{P}_{A, \infty}$, we have $t_{n}(W) \leqq t_{n+1}(W) \leqq t(W)$. For each n there exists $P^{(n)} \in \boldsymbol{P}_{A, X-X_{n}}$ such that $t_{n}(W)=\sum_{P^{(n)}} r_{j} W_{j}$. Since A is a finite set, there is $\alpha_{0} \in A$ such that $\alpha_{0} \in C_{X}\left(P^{(n)}\right)$ for infinitely many n. For each $\alpha \in X$, we put

$$
\begin{aligned}
& Y(\alpha)=\left\{j \in Y ; K_{\alpha j} \neq 0\right\} \\
& X(\alpha)=\left\{v \in X ; v \neq \alpha \text { and } K_{v j} \neq 0 \text { for some } j \in Y(\alpha)\right\}
\end{aligned}
$$

Since $X\left(\alpha_{0}\right)$ is a finite subset of X, there are $\alpha_{1} \in X\left(\alpha_{0}\right)$ and $j_{1} \in Y\left(\alpha_{0}\right)$ such that $e\left(j_{1}\right)=\left\{\alpha_{0}, \alpha_{1}\right\}$ and $j_{1} \in C_{Y}\left(P^{(n)}\right)$ for infinitely many n. Similarly there are $\alpha_{2} \in X\left(\alpha_{1}\right)$ and $j_{2} \in Y\left(\alpha_{1}\right)$ such that $e\left(j_{2}\right)=\left\{\alpha_{1}, \alpha_{2}\right\}$ and $\left\{j_{1}, j_{2}\right\} \subset C_{Y}\left(P^{(n)}\right)$ for infinitely many n. Repeating this process, we can define ordered sets $C_{X}(P)$ and $C_{Y}(P)$ by

$$
C_{X}(P)=\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right\} \quad \text { and } \quad C_{Y}(P)=\left\{j_{1}, j_{2}, \ldots\right\}
$$

Define $p(P) \in L(Y)$ by $p_{j}(P)=-K_{v j}$ with $v=\alpha_{i-1}$ if $j=j_{i}$ and $p_{j}(P)=0$ if $j \notin C_{Y}(P)$. Then $P \in \boldsymbol{P}_{\alpha_{0} \infty}$. For any m, there are infinitely many n such that $\left\{j_{1}, j_{2}, \ldots, j_{m}\right\}$ $\subset C_{Y}\left(P^{(n)}\right)$. Thereby we have

$$
\sum_{k=1}^{m} r_{j_{k}} W_{j_{k}} \leqq \sum_{P(n)} r_{j} W_{j}=t_{n}(W) \leqq \lim _{n \rightarrow \infty} t_{n}(W)
$$

By letting $m \rightarrow \infty$, we have

$$
t(W) \leqq \sum_{P} r_{j} W_{j} \leqq \lim _{n \rightarrow \infty} t_{n}(W)
$$

This completes the proof.
We have
Theorem 2.2. $\lim _{n \rightarrow \infty} E L_{p}\left(A, X-X_{n}\right)=E L_{p}(A, \infty)$.
Proof. Since $\boldsymbol{P}_{A, X-X_{n}}<\boldsymbol{P}_{A, X-X_{n+1}}<\boldsymbol{P}_{A, \infty}$, we have $E L_{p}\left(A, X-X_{n}\right)$ $\leqq E L_{p}\left(A, X-X_{n+1}\right) \leqq E L_{p}(A, \infty)$ by Lemma 2.1. Therefore

$$
\lim _{n \rightarrow \infty} E L_{p}\left(A, X-X_{n}\right) \leqq E L_{p}(A, \infty) .
$$

Let $W \in E_{p}\left(\boldsymbol{P}_{A, \infty}\right)$. Then $t(W)=t\left(W ; \boldsymbol{P}_{A, \infty}\right) \geqq 1$. Since $t_{n}(W)=t\left(W ; \boldsymbol{P}_{A, x-X_{n}}\right)$ $\rightarrow t(W)$ as $n \rightarrow \infty$ by Lemma 2.4, we may assume that $t_{n}(W)>0$ for all n. Writing $W^{(n)}=W / t_{n}(W)$, we see that $W^{(n)} \in E_{p}\left(\boldsymbol{P}_{A, X-X_{n}}\right)$ and $E L_{p}\left(A, X-X_{n}\right) \geqq H_{p}\left(W^{(n)}\right)^{-1}$ $=t_{n}(W)^{p}\left(H_{p}(W)\right)^{-1}$. It follows that

$$
\lim _{n \rightarrow \infty} E L_{p}\left(A, X-X_{n}\right) \geqq t(W)^{p}\left(H_{p}(W)\right)^{-1} \geqq H_{p}(W)^{-1}
$$

for all $W \in E_{p}\left(\boldsymbol{P}_{A, \infty}\right)$. Hence $\lim _{n \rightarrow \infty} E L_{p}\left(A, X-X_{n}\right) \geqq E L_{p}(A, \infty)$. This completes the proof.

We shall give upper and lower bounds for $E L_{p}(A, \infty)$.
Proposition 2.4. $E L_{p}(A, \infty) \leqq R(P)^{p-1}$ for every $P \in \boldsymbol{P}_{A, \infty}$.
Proof. Let $P \in \boldsymbol{P}_{A, \infty}$. Then

$$
E L_{p}(A, \infty) \leqq \lambda_{p}(\{P\})=R(P)^{p-1}
$$

by Lemma 2.1 and Proposition 2.1.
By taking $\Gamma_{n}=\boldsymbol{P}_{X_{n}, X_{n+1}-X_{n}}$ and $\Gamma=\boldsymbol{P}_{A, \infty}$ in Lemma 2.2, we obtain
Proposition 2.5. $E L_{p}(A, \infty)^{q-1} \geqq \sum_{n=1}^{\infty} E L_{p}\left(X_{n}, X_{n+1}-X_{n}\right)^{q-1}$.
We have
Proposition 2.6. Let $Z_{n}=Y_{n+1}-Y_{n}$ and $\mu_{n}=\sum_{Z_{n}} r_{j}^{1-p}$. Then

$$
E L_{p}(A, \infty)^{q-1} \geqq \sum_{n=1}^{\infty} \mu_{n}^{1-q} .
$$

Proof. In view of Proposition 2.5, it suffices to show that $\lambda_{p}\left(\Gamma_{n}\right)^{-1} \leqq \mu_{n}$ for all n, where $\Gamma_{n}=\boldsymbol{P}_{X_{n}, X_{n+1}-X_{n}}$. Put $U_{n}=\cup\left\{C_{Y}(P) ; P \in \Gamma_{n}\right\}$. Then $U_{n} \subset Z_{n}$. Define $W^{(n)} \in L(Y)$ by $W_{j}^{(n)}=r_{j}^{-1}$ if $j \in Z_{n}$ and $W_{j}^{(n)}=0$ if $j \notin Z_{n}$. Then $W^{(n)} \in$ $E_{p}\left(\Gamma_{n}\right)$ and

$$
\lambda_{p}\left(\Gamma_{n}\right)^{-1} \leqq H_{p}\left(W^{(n)}\right)=\sum_{Z_{n}} r_{j}^{1-p}=\mu_{n} .
$$

§3. Max-flows and min-cuts

Let A and B be mutually disjoint nonempty subsets of X. We say that a subset Q of Y is a cut between A and B if there exist mutually disjoint subsets $Q(A)$ and $Q(B)$ of X such that $A \subset Q(A), B \subset Q(B), X=Q(A) \cup Q(B)$ and the set
$Q(A) \ominus Q(B)=\left\{j \in Y ; K_{a j} K_{b j}=-1\right.$ for some $a \in Q(A)$ and $\left.b \in Q(B)\right\}$ is equal to Q.

Let A be a nonempty finite subset of X. We say that a subset Q of Y is a cut between A and the ideal boundary ∞ of $\langle X, Y\rangle$ if there exist mutually disjoint subsets $Q(A)$ and $Q(\infty)$ such that $A \subset Q(A), Q(\infty)=X-Q(A), Q(A)$ is a finite set and $Q=Q(A) \ominus Q(\infty)$. Denote by $\boldsymbol{Q}_{A, B}\left(\operatorname{resp} . \boldsymbol{Q}_{A, \infty}\right)$ the set of all cuts between A and B (resp. ∞). We define the characteristic function $u=u(Q)$ $\in L(X)$ of $Q \in \boldsymbol{Q}_{A, B}$ and the index $s=s(Q) \in L(Y)$ of Q by

$$
\begin{aligned}
& u_{v}=0 \text { if } v \in Q(A) \text { and } u_{v}=1 \text { if } v \in Q(B), \\
& s_{j}=\sum_{v=0}^{\infty} K_{v j} u_{v} .
\end{aligned}
$$

We have $s_{j}=0$ if $j \notin Q$ and $\left|s_{j}\right|=1$ if $j \in Q$.
Let A and B be mutually disjoint nonempty finite subsets of X. We say that $w \in L(Y)$ is a flow from A to B of strength $I(w)$ if

$$
\begin{align*}
& \sum_{j=1}^{\infty} K_{v j} w_{j}=0 \quad(v \notin A \cup B), \tag{3.1}\\
& I(w)=-\sum_{v \in A} \sum_{j=1}^{\infty} K_{v j} w_{j}=\sum_{v \in B} \sum_{j=1}^{\infty} K_{v j} w_{j} . \tag{3.2}
\end{align*}
$$

Denote by $F(A, B)$ the set of all flows from A to B and set

$$
G(A, B)=F(A, B) \cap L_{0}(Y) .
$$

Let $F_{q}(A, B)$ be the closure of $G(A, B)$ in $L_{q}(Y ; r)$. Thus for any $w \in F_{q}(A, B)$, there exists a sequence $\left\{w^{(n)}\right\}$ in $G(A, B)$ such that $H_{q}\left(w-w^{(n)}\right) \rightarrow 0$ as $n \rightarrow \infty$. It follows that $w \in F(A, B)$ and $I\left(w^{(n)}\right) \rightarrow I(w)$ as $n \rightarrow \infty$.

Let $g_{p}(t)$ be the real function on the real line R defined by

$$
g_{p}(t)=|t|^{p-1} \operatorname{sign}(t) .
$$

It is clear that

$$
t g_{p}(t)=|t|^{p} \quad \text { and } \quad \frac{d}{d t}|t|^{p}=p g_{p}(t) .
$$

We say that $w \in L(Y)$ is a p-flow from A to B of strength $I_{p}(w)$ if $g_{p} \circ w$ is a flow from A to B and $I_{p}(w)=I\left(g_{p} \circ w\right)$. Denote by $F^{(p)}(A, B)$ the set of all p flows from A to B and set

$$
G^{(p)}(A, B)=F^{(p)}(A, B) \cap L_{0}(Y) .
$$

It is clear that $F^{(2)}(A, B)=F(A, B)$ and $I_{2}(w)=I(w)$. We remark that a p-flow is a non-linear flow in the sense of Birkhoff [1] and Duffin [3].

Remark 3.1. $w \in G^{(p)}(A, B)$ if and only if $g_{p} \circ w \in G(A, B)$.
Remark 3.2. Let A and B be mutually disjoint nonempty finite subsets of X and let $\hat{\imath}$ be the optimal solution of problem (2.5). Define $\hat{w} \in L(Y)$ by

$$
\hat{w}_{j}=r_{j}^{-1} \sum_{v=0}^{\infty} K_{v j} \hat{u}_{v} .
$$

Then it can be shown that $\hat{w} \in F^{(p)}(A, B)$.
We prepare
Lemma 3.1. Let $u \in L(X)$ and $w \in L(Y)$. Then

$$
\begin{equation*}
\sum_{v=0}^{\infty} u_{v}\left(\sum_{j=1}^{\infty} K_{v j} w_{j}\right)=\sum_{j=1}^{\infty} w_{j}\left(\sum_{v=0}^{\infty} K_{v j} u_{v}\right) \tag{3.3}
\end{equation*}
$$

holds if any one of the following conditions is fulfilled:

$$
\begin{equation*}
u \in L_{0}(X) \quad \text { or } \quad w \in L_{0}(Y) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
D_{p}(u)<\infty \quad \text { and } \quad w \in F_{q}(A, B) . \tag{ii}
\end{equation*}
$$

Proof. If condition (i) is satisfied, then (3.3) is clear. Assume condition (ii). Then there exists a sequence $\left\{w^{(n)}\right\}$ in $G(A, B)$ such that $H_{q}\left(w-w^{(n)}\right)$ $\rightarrow 0$ as $n \rightarrow \infty$. We have

$$
\sum_{j=1}^{\infty} w_{j}^{(n)}\left(\sum_{v=0}^{\infty} K_{v j} u_{v}\right)=\sum_{v=0}^{\infty} u_{v}\left(\sum_{j=1}^{\infty} K_{v j} w_{j}^{(n)}\right)
$$

$$
\begin{aligned}
& =\sum_{v \in A \cup B} u_{v}\left(\sum_{j=1}^{\infty} K_{v j} w_{j}^{(n)}\right) \\
& \rightarrow \sum_{v \in A \cup B} u_{v}\left(\sum_{j=1}^{\infty} K_{v j} w_{j}\right)=\sum_{v=0}^{\infty} u_{v}\left(\sum_{j=1}^{\infty} K_{v j} w_{j}\right)
\end{aligned}
$$

as $n \rightarrow \infty$, since $w_{j}^{(n)} \rightarrow w_{j}$ as $n \rightarrow \infty$ for each $j \in Y$. On the other hand, we have

$$
\sum_{j=1}^{\infty}\left|w_{j}-w_{j}^{(n)}\right|\left|\sum_{v=0}^{\infty} K_{v j} u_{v}\right| \leqq\left[H_{q}\left(w-w^{(n)}\right)\right]^{1 / q}\left[D_{p}(u)\right]^{1 / p}
$$

by Hölder's inequality, so that

$$
\sum_{j=1}^{\infty} w_{j}\left(\sum_{v=0}^{\infty} K_{v j} u_{v}\right)=\lim _{n \rightarrow \infty} \sum_{j=1}^{\infty} w_{j}^{(n)}\left(\sum_{v=0}^{\infty} K_{v j} u_{v}\right)=\sum_{v=0}^{\infty} u_{v}\left(\sum_{j=1}^{\infty} K_{v j} w_{j}\right) .
$$

This completes the proof.
Let $W \in L^{+}(Y)$. Let us consider the following extremum problems which are generalizations of the max-flow problem in network theory on a finite graph.
(3.4) Find

$$
M\left(W ; F_{q}(A, B)\right)=\sup \left\{I(w) ; w \in F_{q}(A, B) \text { and }\left|w_{j}\right| \leqq W_{j} \text { on } Y\right\}
$$

(3.5) Find

$$
M(W ; G(A, B))=\sup \left\{I(w) ; w \in G(A, B) \text { and }\left|w_{j}\right| \leqq W_{j} \text { on } Y\right\}
$$

(3.6) Find

$$
M_{p}\left(W ; G^{(p)}(A, B)\right)=\sup \left\{I_{p}(w) ; w \in G^{(p)}(A, B) \text { and }\left|w_{j}\right| \leqq W_{j} \text { on } Y\right\}
$$

For $W \in L^{+}(Y)$ let us denote by W^{p} the function $V \in L(Y)$ defined by V_{j} $=W_{j}^{p}$ for each $j \in Y$.

On account of Remark 3.1, we have
Proposition 3.1. $\quad M_{p}\left(W ; G^{(p)}(A, B)\right)=M\left(W^{p-1} ; G(A, B)\right)$.
We shall prove
Lemma 3.2. Let $W \in L_{p}^{+}(Y ; r)$. Then there exists $\hat{w} \in F_{q}(A, B)$ such that $\left|\hat{w}_{j}\right| \leqq W_{j}^{p-1}$ on Y and $I(\hat{w})=M\left(W^{p-1} ; G(A, B)\right)$.

Proof. There exists a sequence $\left\{w^{(n)}\right\}$ in $G(A, B)$ such that $\left|w_{j}^{(n)}\right| \leqq W_{j}^{p-1}$ on Y and $I\left(w^{(n)}\right)$ converges to $M\left(W^{p-1} ; G(A, B)\right)$. Since $L_{q}(Y ; r)$ is a reflexive Banach space and $\left\{w \in F_{q}(A, B) ;\left|w_{j}\right| \leqq W_{j}^{p-1}\right.$ on $\left.Y\right\}$ is a bounded closed convex set in $L_{q}(Y ; r)$, we may assume that $\left\{w^{(n)}\right\}$ converges weakly to $\hat{w} \in L_{q}(Y ; r)$. Then $w_{j}^{(n)} \rightarrow \hat{w}_{j}$ as $n \rightarrow \infty$ for each j. Hence $\hat{w} \in F_{q}(A, B),\left|\hat{w}_{j}\right| \leqq W_{j}^{p-1}$ on Y and

$$
I(\hat{w})=\sum_{v \in B} \sum_{j=1}^{\infty} K_{v j} \hat{w}_{j}=\lim _{n \rightarrow \infty} I\left(w^{(n)}\right)=M\left(W^{p-1} ; G(A, B)\right) .
$$

This completes the proof.
Let $W \in L^{+}(Y)$ and consider the following extremum problem which is a generalization of the min-cut problem in (finite) network theory:
(3.7) Find

$$
M^{*}\left(W ; \boldsymbol{Q}_{A, B}\right)=\inf \left\{\sum_{\boldsymbol{Q}} W_{j} ; Q \in \boldsymbol{Q}_{A, B}\right\}
$$

We have
Lemma 3.3. ${ }^{6)} \quad M(W ; G(A, B))=M^{*}\left(W ; \boldsymbol{Q}_{A, B}\right)$.
By Lemma 3.3 and Proposition 3.1, we have
Corollary. $\quad M_{p}\left(W ; G^{(p)}(A, B)\right)=M^{*}\left(W^{p-1} ; \boldsymbol{Q}_{A, B}\right)$.

§4. Generalized extremal width of a network

Let A and B be mutually disjoint nonempty subsets of X. We define the extremal width $E W_{p}(A, B)$ of order p of an infinite network $<X, Y, K, r>$ relative to two sets A and B by the value of the following extremum problem.
(4.1) Find

$$
E W_{p}(A, B)^{-1}=\inf \left\{H_{p}(W) ; W \in E_{p}^{*}\left(\boldsymbol{Q}_{A, B}\right)\right\},
$$

where $E_{p}^{*}\left(\boldsymbol{Q}_{A, B}\right)=\left\{W \in L_{p}^{+}(Y ; r) ; \sum_{\boldsymbol{Q}} W_{j}^{p-1} \geqq 1\right.$ for all $\left.Q \in \boldsymbol{Q}_{A, B}\right\}$.
Hereafter in this section we always assume that A and B are finite subsets of X. In connection with the above problem, we consider the following extremum problems.
(4.2) Find

$$
d_{q}^{*}(A, B)=\inf \left\{H_{q}(w) ; w \in F_{q}(A, B) \text { and } I(w)=1\right\} .
$$

(4.3) Find

$$
\hat{d}_{p}^{*}(A, B)=\inf \left\{H_{p}(w) ; w \in G^{(p)}(A, B) \text { and } I_{p}(w)=1\right\} .
$$

We shall prove
Proposition 4.1. $\hat{d}_{p}^{*}(A, B)=d_{q}^{*}(A, B)=\inf \left\{H_{q}(w) ; w \in G(A, B)\right.$ and $I(w)$ $=1\}$.

Proof. We set $\hat{d}_{p}^{*}=\hat{d}_{p}^{*}(A, B)$ and $d_{q}^{*}=d_{q}^{*}(A, B)$. By Remark 3.1 and by the relations $I\left(g_{p} \circ w\right)=I_{p}(w)$ and $H_{q}\left(g_{p} \circ w\right)=H_{p}(w)$, we have
6) Cf. Theorem 6 in [7].

$$
\begin{equation*}
\hat{d}_{p}^{*}=\inf \left\{H_{q}(z) ; z \in G(A, B) \text { and } I(z)=1\right\} \tag{4.4}
\end{equation*}
$$

so that $\hat{d}_{p}^{*} \geqq d_{q}^{*}$. On the other hand, let $w \in F_{q}(A, B)$ and $I(w)=1$. There exists a sequence $\left\{w^{(n)}\right\}$ in $G(A, B)$ such that $H_{q}\left(w-w^{(n)}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $I\left(w^{(n)}\right)$ $\rightarrow I(w)$ as $n \rightarrow \infty$, we may suppose that $I\left(w^{(n)}\right)>0$ for all n. It follows from (4.4) that

$$
\hat{d}_{p}^{*} \leqq H_{q}\left(w^{(n)} / I\left(w^{(n)}\right)\right)=H_{q}\left(w^{(n)}\right) /\left(I\left(w^{(n)}\right)\right)^{q} .
$$

By letting $n \rightarrow \infty$, we have $\hat{d}_{p}^{*} \leqq H_{q}(w)$, so that $\hat{d}_{p}^{*} \leqq d_{q}^{*}$. Hence $\hat{d}_{p}^{*}=d_{q}^{*}$.
Theorem 4.1. $E W_{p}(A, B)^{-1}=d_{q}^{*}(A, B)$.
Proof. We set $E W_{p}=E W_{p}(A, B)$ and $d_{q}^{*}=d_{q}^{*}(A, B)$. For each $w \in G(A$, B) such that $I(w)=1$, consider $W \in L^{+}(Y)$ defined by $W_{j}=\left|w_{j}\right|^{1 /(p-1)}$ on Y. Then we show that $W \in E_{p}^{*}\left(\boldsymbol{Q}_{A, B}\right)$. Let $u=u(Q)$ be the characteristic function of $Q \in \boldsymbol{Q}_{A, B}$. We have by Lemma 3.1

$$
\begin{aligned}
1=I(w) & =\sum_{v=0}^{\infty} u_{v}\left(\sum_{j=1}^{\infty} K_{v j} w_{j}\right)=\sum_{j=1}^{\infty} w_{j}\left(\sum_{v=0}^{\infty} K_{v j} u_{v}\right) \\
& \leqq \sum_{j=1}^{\infty}\left|w_{j}\right|\left|\sum_{v=0}^{\infty} K_{v j} u_{v}\right|=\sum_{Q} W_{j}^{p-1} .
\end{aligned}
$$

Therefore $W \in E_{p}^{*}\left(\boldsymbol{Q}_{A, B}\right)$ and

$$
E W_{p}^{-1} \leqq H_{p}(W)=\sum_{j=1}^{\infty} r_{j}\left|w_{j}\right|^{p /(p-1)}=H_{q}(w) .
$$

Thus we have $E W_{p}^{-1} \leqq d_{q}^{*}$ by Proposition 4.1. On the other hand, let $W \in E_{p}^{*}\left(\boldsymbol{Q}_{A, B}\right)$, i.e., $W \in L_{p}^{+}(Y ; r)$ and $M^{*}\left(W^{p-1} ; \boldsymbol{Q}_{A, B}\right) \geqq 1$. We can find $w \in F_{q}(A, B)$ such that $\left|w_{j}\right| \leqq W_{j}^{p-1}$ on Y and $M\left(W^{p-1} ; G(A, B)\right)=I(w)$ by Lemma 3.2. It follows from Lemma 3.3 that $I(w) \geqq 1$. We have

$$
\begin{aligned}
d_{q}^{*} \leqq H_{q}(w / I(w)) & \leqq H_{q}(w)=\sum_{j=1}^{\infty} r_{j}\left|w_{j}\right|^{q} \\
& \leqq \sum_{j=1}^{\infty} r_{j} W_{j}^{q(p-1)}=H_{p}(W),
\end{aligned}
$$

so that $d_{q}^{*} \leqq E W_{p}^{-1}$. Therefore $d_{q}^{*}=E W_{p}^{-1}$.
By the aid of Theorem A, we have
Proposition 4.2. There exists a unique $\hat{w} \in F_{q}(A, B)$ such that $I(\hat{w})=1$ and $d_{q}^{*}(A, B)=H_{q}(\hat{w})$, i.e., \hat{w} is the optimal solution of problem (4.2).

Let A be a nonempty finite subset of X. We define the extremal width
$E W_{p}(A, \infty)$ of order p of an infinite network relative to A and ∞ by the value of the following extremum problem.

Find

$$
\begin{equation*}
E W_{p}(A, \infty)^{-1}=\inf \left\{H_{p}(W) ; W \in E_{p}^{*}\left(\boldsymbol{Q}_{A, \infty}\right)\right\} \tag{3.5}
\end{equation*}
$$

where $E_{p}^{*}\left(\boldsymbol{Q}_{A, \infty}\right)=\left\{W \in L_{p}^{+}(Y ; r) ; \sum_{\boldsymbol{Q}} W_{j}^{p-1} \geqq 1\right.$ for all $\left.Q \in \boldsymbol{Q}_{A, \infty}\right\}$.
Let $\left.\left\{<X_{n}, Y_{n}\right\rangle\right\}$ be an exhaustion of $\langle X, Y\rangle$ such that $A \subset X_{1}$. We shall be concerned with the relation between $E W_{p}\left(A, X-X_{n}\right)$ and $E W_{p}(A, \infty)$.

We shall prove
Theorem 4.2. $\lim _{n \rightarrow \infty} E W_{p}\left(A, X-X_{n}\right)=E W_{p}(A, \infty)$.
Proof. Since $\boldsymbol{Q}_{A, X-X_{n}} \subset \boldsymbol{Q}_{A, X-X_{n+1}} \subset \boldsymbol{Q}_{A, \infty}$, we have $E W_{p}(A, \infty) \leqq E W_{p}(A$, $\left.X-X_{n+1}\right) \leqq E W_{p}\left(A, X-X_{n}\right)$, and hence

$$
\lim _{n \rightarrow \infty} E W_{p}\left(A, X-X_{n}\right) \geqq E W_{p}(A, \infty)
$$

To prove the converse inequality we may assume that $\lim E W\left(A, X-X_{n}\right)>0$. For each n, there is $W^{(n)} \in E_{p}^{*}\left(\boldsymbol{Q}_{A, X-X_{n}}\right)$ such that $E W_{p}\left(A, \stackrel{n \rightarrow \infty}{X}-X_{n}\right)=H_{p}\left(W^{(n)}\right)^{-1}$. Since $\left\{H_{p}\left(W^{(n)}\right)\right\}$ is a bounded sequence and $L_{p}(Y ; r)$ is a reflexive Banach space, we can choose a weakly convergent subsequence of $\left\{W^{(n)}\right\}$. Denote by $\left\{W^{(n)}\right\}$ the subsequence again and let \hat{W} be the weak limit. We show that $\hat{W} \in E_{p}^{*}\left(\boldsymbol{Q}_{A, \infty}\right)$. Let $Q \in \boldsymbol{Q}_{A, \infty}$ with $Q=Q(A) \ominus Q(\infty)$. Since $Q(A)$ is a finite set, there is a number n_{0} such that $Q(A) \subset X_{n_{0}}$. Then $X-X_{n} \subset Q(\infty)$ and hence $Q \in \boldsymbol{Q}_{A, X-X_{n}}$ for all $n \geqq n_{0}$. Therefore $\sum_{Q}\left[W_{j}^{(n)}\right]^{p-1} \geqq 1$ for all $n \geqq n_{0}$. Since $\left\{W^{(n)}\right\}$ converges weakly to \hat{W} and Q is a finite set, we obtain $\sum_{Q} \hat{W}_{j}^{p-1} \geqq 1$. Thus $\hat{W} \in E_{p}^{*}\left(\boldsymbol{Q}_{A, \infty}\right)$. Since $\left[H_{p}(w)\right]^{1 / p}$ is weakly lower semicontinuous in $L_{p}(Y ; r)$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left[E W_{p}\left(A, X-X_{n}\right)\right]^{-1} & =\lim _{n \rightarrow \infty} H_{p}\left(W^{(n)}\right) \\
& \geqq H_{p}(\hat{W}) \geqq\left[E W_{p}(A, \infty)\right]^{-1}
\end{aligned}
$$

This completes the proof.

§5. A reciprocal relation between $E L_{p}$ and $E W_{p}$

Let A and B be mutually disjoint nonempty finite subsets of X.
We prepare
Lemma 5.1. Let \hat{w} be the optimal solution of problem (4.2). If $w^{\prime} \in F_{q}(A$, B) and $I\left(w^{\prime}\right)=0$, then

$$
\begin{equation*}
\sum_{j=1}^{\infty} r_{j} w_{j}^{\prime} g_{q}\left(\hat{w}_{j}\right)=0 \tag{5.1}
\end{equation*}
$$

Proof. For any real number t, we have $\hat{w}+t w^{\prime} \in F_{q}(A, B)$ and $I\left(\hat{w}+t w^{\prime}\right)$ $=1$, so that $d_{q}^{*}(A, B)=H_{q}(\hat{w}) \leqq H_{q}\left(\hat{w}+t w^{\prime}\right)$. Thus the derivative of $H_{q}\left(\hat{w}+t w^{\prime}\right)$ with respect to t vanishes at $t=0$. Since $H_{q}\left(\hat{w}+t w^{\prime}\right)$ can be differentiated term by term at $t=0$, we obtain (5.1).

Corollary 1. Let \hat{w} be the optimal solution of problem (4.2) and P be a path from node $\alpha \in A$ to node $\beta \in B$. Then

$$
\begin{equation*}
d_{q}^{*}(A, B)=\sum_{j=1}^{\infty} r_{j} p_{j}(P) g_{q}\left(\hat{w}_{j}\right) . \tag{5.2}
\end{equation*}
$$

Proof. Note that $p(P)$ is a flow from $\{\alpha\}$ to $\{\beta\}$ such that $I(p(P))=1$. Taking $w^{\prime}=\hat{w}-p(P)$, we see that $w^{\prime} \in F_{q}(A, B)$ and $I\left(w^{\prime}\right)=0$. Thus we have by (5.1)

$$
\sum_{j=1}^{\infty} r_{j}\left(\hat{w}_{j}-p_{j}(P)\right) g_{q}\left(\hat{w}_{j}\right)=0 .
$$

Therefore

$$
d_{q}^{*}(A, B)=H_{q}(\hat{w})=\sum_{j=1}^{\infty} r_{j} \hat{w}_{j} g_{q}\left(\hat{w}_{j}\right)=\sum_{j=1}^{\infty} r_{j} p_{j}(P) g_{q}\left(\hat{w}_{j}\right) .
$$

Corollary 2. Let \hat{w} be the optimal solution of problem (4.2) and let $\alpha, v \in X(\alpha \neq v)$. If P and P^{\prime} are paths from node α to node ν, then

$$
\begin{equation*}
\sum_{j=1}^{\infty} r_{j} p_{j}(P) g_{q}\left(\hat{w}_{j}\right)=\sum_{j=1}^{\infty} r_{j} p_{j}\left(P^{\prime}\right) g_{q}\left(\hat{w}_{j}\right) . \tag{5.3}
\end{equation*}
$$

Proof. Taking $w^{\prime}=p(P)-p\left(P^{\prime}\right)$, we see that $w^{\prime} \in F_{q}(A, B)$ and $I\left(w^{\prime}\right)=0$. Then (5.3) follows from (5.1).

Let \hat{w} be the optimal solution of problem (4.2). For any $\alpha \in A$, we define $v^{(\alpha)} \in L(X)$ by

$$
\begin{equation*}
v_{\alpha}^{(\alpha)}=0, \quad v_{v}^{(\alpha)}=\sum_{j=1}^{\infty} r_{j} p_{j}(P) g_{q}\left(\hat{w}_{j}\right) \quad(v \neq \alpha) \tag{5.4}
\end{equation*}
$$

for some path P from node α to node ν. It follows from Corollary 2 of Lemma 5.1 that $v^{(\alpha)}$ is uniquely determined by \hat{w}. Define $\hat{v} \in L(X)$ by

$$
\begin{equation*}
\hat{v}_{v}=\inf \left\{\left|v_{v}^{(\alpha)}\right| ; \alpha \in A\right\} . \tag{5.5}
\end{equation*}
$$

We have
Lemma 5.2. Let \hat{v} be the function defined by (5.4) and (5.5). Then \hat{v}
$=0$ on $A, \hat{v}=d_{q}^{*}(A, B)$ on B and

$$
\begin{equation*}
\left|\sum_{v=0}^{\infty} K_{v j} \hat{v}_{v}\right| \leqq r_{j}\left|\hat{w}_{j}\right|^{q-1} \quad \text { on } \quad Y \tag{5.6}
\end{equation*}
$$

Proof. Since $v_{\alpha}^{(\alpha)}=0$ for any $\alpha \in A$, we have $\hat{v}=0$ on A. We have \hat{v} $=d_{q}^{*}(A, B)$ on B by Corollary 1 of Lemma 5.1. The proof of (5.6) is carried out by the same reasoning as in the proof of Lemma 12 in [7].

We shall prove
Theorem 5.1. $\quad\left[d_{p}(A, B)\right]^{1 / p}\left[d_{q}^{*}(A, B)\right]^{1 / q}=1$.
Proof. We set $d_{p}=d_{p}(A, B)$ and $d_{q}^{*}=d_{q}^{*}(A, B)$. First we show that $1 \leqq\left(d_{p}\right)^{1 / p}\left(d_{q}^{*}\right)^{1 / q}$. For any $v \in L(X)$ such that $v=0$ on $A, v=1$ on B and $D_{p}(v)<\infty$ and any $w \in F_{q}(A, B)$ such that $I(w)=1$, we have by Lemma 3.1

$$
\begin{aligned}
1=I(w) & =\sum_{v=0}^{\infty} v_{v}\left(\sum_{j=1}^{\infty} K_{v j} w_{j}\right)=\sum_{j=1}^{\infty} w_{j}\left(\sum_{v=0}^{\infty} K_{v j} v_{v}\right) \\
& \leqq\left[D_{p}(v)\right]^{1 / p}\left[H_{q}(w)\right]^{1 / q},
\end{aligned}
$$

which leads to the desired inequality. Next we show that $\left(d_{p}\right)^{1 / p}\left(d_{q}^{*}\right)^{1 / q} \leqq 1$. Let \hat{w} be the optimal solution of problem (4.2) and define $\hat{v} \in L(X)$ by (5.4) and (5.5). Then we have by (5.6)

$$
D_{p}(\hat{v})=\sum_{j=1}^{\infty} r_{j}^{1-p}\left|\sum_{v=0}^{\infty} K_{v j} \hat{v}_{v}\right|^{p} \leqq \sum_{j=1}^{\infty} r_{j}\left|\hat{w}_{j}\right|^{p(q-1)}=H_{q}(\hat{w})=d_{q}^{*}
$$

Writing $\hat{u}=\hat{v} / d_{q}^{*}$, we see by Lemma 5.2 that $\hat{u}=0$ on A and $\hat{u}=1$ on B, so that

$$
d_{p} \leqq D_{p}(\hat{u})=D_{p}(\hat{v})\left(d_{q}^{*}\right)^{-p} \leqq\left(d_{q}^{*}\right)^{1-p}=\left(d_{q}^{*}\right)^{-p / q}
$$

or $\left(d_{p}\right)^{1 / p}\left(d_{q}^{*}\right)^{1 / q} \leqq 1$.
By Proposition 4.1 and Theorem 5.1, we have
Corollary. $\quad\left[d_{p}(A, B)\right]^{1 / p}\left[\hat{d}_{p}^{*}(A, B)\right]^{1 / q}=1$.
By Theorems 2.1, 4.1 and 5.1, we have
Theorem 5.2. $\left[E L_{p}(A, B)\right]^{1 / p}\left[E W_{p}(A, B)\right]^{1 / q}=1$.
Next we shall be concerned with the reciprocal relation between $E L_{p}(A, \infty)$ and $E W_{p}(A, \infty)$. Henceforth let A be a nonempty finite subset of X and $\left\{<X_{n}\right.$, $\left.Y_{n}>\right\}$ be an exhaustion of $<X, Y>$ such that $A \subset X_{1}$.

We prepare

Lemma 5.3. For every $Q \in \boldsymbol{Q}_{A, X_{n+1}-X_{n}}$, there exists $Q^{\prime} \in \boldsymbol{Q}_{A, X-X_{n}}$ such that $Q^{\prime} \subset Q$.

Proof. Let $Q \in \boldsymbol{Q}_{A, X_{n+1}-X_{n}}$ and $Q=Q(A) \ominus Q\left(X_{n+1}-X_{n}\right)$. Let us define $Q^{\prime}(A)$ and $Q^{\prime}\left(X-X_{n}\right)$ by

$$
Q^{\prime}(A)=Q(A)-\left(X-X_{n}\right) \quad \text { and } \quad Q^{\prime}\left(X-X_{n}\right)=X-Q^{\prime}(A) .
$$

Since $A \cap\left(X-X_{n}\right)=\phi$ and $Q^{\prime}(A) \cap\left(X-X_{n}\right)=\phi$, we see that $A \subset Q^{\prime}(A)$ and $X-X_{n} \subset Q^{\prime}\left(X-X_{n}\right)$, so that $Q^{\prime}=Q^{\prime}(A) \ominus Q^{\prime}\left(X-X_{n}\right) \in \boldsymbol{Q}_{A, X-X_{n}}$. It can be easily shown that $Q^{\prime} \subset Q$.

We have
Theorem 5.3. $E W_{p}(A, \infty)=E L_{p}(A, \infty)^{1-q}$.
Proof. Since $\boldsymbol{P}_{A, X-X_{n}}=\boldsymbol{P}_{A, X_{n+1}-X_{n}}$, we have

$$
E L_{p}\left(A, X-X_{n}\right)=E L_{p}\left(A, X_{n+1}-X_{n}\right)
$$

It follows from Lemma 5.3 that

$$
E W_{p}\left(A, X-X_{n}\right)=E W_{p}\left(A, X_{n+1}-X_{n}\right)
$$

We have by Theorem 5.2

$$
E W_{p}\left(A, X-X_{n}\right)=E L_{p}\left(A, X-X_{n}\right)^{1-q}
$$

Our assertion follows from Theorems 2.2 and 4.2.

References

[1] G. Birkhoff: A variational principle for nonlinear networks, Quart. Appl. Math., 21 (1963), 160-162.
[2] N. Bourbaki: Espaces vectoriels topologiques, Chap. III-V, Paris, 1955.
[3] R. J. Duffin: Nonlinear networks, IIa, Bull. Amer. Math. Soc., 53 (1947), 963-971.
[4] R. J. Duffin: The extremal length of a network, J. Math. Anal. Appl., 5 (1962), 200215.
[5] M. Ohtsuka: On Duffin's problem concerning extremal length, An abstract of a talk given at the Fall Meeting of the Math. Soc. Japan, 1970.
[6] M. Ohtsuka: Dirichlet problem, extremal length and prime ends, Van Nostrand, 1970.
[7] M. Yamasaki: Extremum problems on an infinite network, Hiroshima Math. J., 5 (1975), 223-250.

> Kawasaki Medical College and
> School of Engineering, Okayama University

