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1. Introduction

In this paper we are concerned with the oscillatory and asymptotic behavior
of the n-th order (n>l) nonlinear differential equation with deviating arguments
of the form

{ \F(t; M 2 < τ 0 ( ί ) > , [x'] 2<τ 1(ί)>,...

..., [x ( "- 1 ) ] 2 <τ n _ 1 ( ί )>) 2 Π 1 sgnx[τo/0] = 0, t ^ tθ9
J=1

where λ is a positive integer so that 2λ— 1 ̂ m 0 and:

Σ Pj = l .
l

h<σ(t)> = (ΛCσ^ί)], Λ[σ2(0] .., Λ[σm(ί)])> σ = (^i, σ2,..., σ j .

In the particular case, where

(Vi, j>i/0 = ί

the above differential equation (*) becomes an ordinary differential equation.
For the real valued functions τ ι7 0 = 1, 2,..., mh i = 0, 1,..., n — 1) and F

we suppose that:
(i) The functions τu are continuous on the half-line [ί0, oo) and

limτijίt) = oo.
ί-> oo

(ii) F is non-negative on [ί0, c o ) x £ 0 a n d ( π ye

0

JJ2)F(t;γ0, j 1 ? . . . , yn-t) is

continuous on the same set, where Eo= [0, oo)Wo x [0, oo) w i x ••• x [0, oo)"1"-1.

(*) This paper is a part of the author's Doctoral Thesis submitted to the Department of
Mathematics of the University of Ioannina.
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Our results generalize and extend recent ones due to C. V. Coffman and

J. S. W. Wong [1], T. Kusano and H. Onose [3], Z. Nehari [5], H. Onose

[6], V. M. Sevelo and N. V. Vareh [13] and Y. G. Sficas and V. A. Staikos

[7].

In order to obtain sufficient conditions for the oscillation of solutions of

the differential equation (*) we make use of the comparison principle introduced

by V. A. Staikos and Y. G. Sficas in [8], [10] and [11]. We exploit this principle

by considering the simple differential equation

(**) yin\t)+g(t)\ Π b C W 0 ] l β 4 2 Π s g n ^ [ τ o / 0 ] = o, t^tθ9
lj=i ) j=i

the oscillatory and asymptotic behavior of which is studied here. We suppose

that g is a continuous and non-negative function on the half-line [t0, oo) and α,-

are such that:

mo

£ ocj = α > 0.

The differential equation (**) is obviously a generalization of the well-known

Emden-Fowler differential equation.

In the particular case m0 = 1, the study of the oscillatory and asymptotic

behavior of equation (*) is faced by introducing the concepts of sublinear and

superlinear differential equations (cf. [1], [5] and [6]). Here we extend these

concepts, at first, for the differential equation (**) and then for differential equation

(*)•

DEFINITION 1. The differential equation (**) is called:

(a) τ0-distorted sublinear, if

WO

Σ «j = « £ i >

(b) τ0-distorted strongly sublinear, if

mo

Σ ocj = α < 1,
i=i

(c) τ0-distorted superlinear, if

mo

JΓ otj = oc ^ 1 .

( d ) τ0-distorted strongly superlinear, if
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mo

Σ Λ = « > 1

DEFINITION 2. The differential equation (*) is called:

(a) τ0-distorted sublinear, if for anyt^.t0 the function F(t; y0, yl9..., yn-ι)

is non-increasing with respect to (y0, yί9...9 j w _ 1 ) e £ = ( 0 , oo) m o x (0, o o ) m i x •••

x (0, oo) w "-S i.e. for any t^t0 we have

(V/ = 0, 1,..., n - l ) j f g * ; =>F(t; y0, yl9...9yn-t) ^ F(t;zθ9 zl9...9zn-t)9

(b) τ0-distorted strongly sublinear, if there exist non-negative numbers
mo

εί9ε29...9εmoso that Σ Sj>0andfor any ίΞ>ί0 the function Φ ( ί ; y 0 J i yB-i)

= ( f ϊ yεoJj)F(tl y0, yi,~>,yn-i) is non-increasing with respect to ( j 0 , yί9...9

\j= l /
yn-ι) eE, i.e. for any t^t0 we have

(Vί = 0, 1,..., n-l)yi ^zt =*Φ{t\yo,yu...9yn-1) ^ Φ(t; zθ9 zί9..., zn-±),

(c) τ0-distorted superlinear, if for any t^t0 the function F(t; y0, yl9...,

H.t) is non-decreasing with respect to (yθ9yί9...9yn-1)eEo i.e. for any t^t0

e have
y
we have

(Vi = 0, 1,..., n - l ) j f ^ zt =ϊF(t;yo,yu...,yn_1) g F(t; zθ9 zl9...9zH-t)9

(d) τ0-distorted strongly superlinear, if there exist non-negative numbers
mo

εί,ε29...,εmoso that £ εj>0 and for any t^t0 the function Φ(t; y0, yl9...9 J n - i )

( mo \

Πyo'/Wi*'* Jo» yi>.~,yn-i) i s non-decreasing with respect to (yθ9yί9...9

yn_x)eEQ, i.e. for any t^t0 we have

(Vi=o, i,...,w-i)yi^*i =»φ(ί; jo, j i . , j»-i) ^ Φ(ί;»o»*iv..,»Λ-i).

REMARK. The order in the euclidean space Rm is considered in the usual

isense, i.e.

Also the vectors (1, 1,..., 1) and (0, 0,..., 0) of the space Rm are denoted briefly

by 1 and 0 respectively, i.e.

1 = (1, 1,..., 1) and 0 = (0, 0,..., 0).

In what follows we consider only such solutions of the equation (*) which

are defined for all large t. The oscillatory character is considered in the usual

sense, i.e. a solution x of the differential equation (*) is called oscillatory if it
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has no last zero, otherwise it is called nonoscillatory.

To obtain our results we make use of the following three lemmas, which are

adaptations of the lemmas in [8], [2] and [11] respectively.

LEMMA 1 (Comparison principle). Consider the differential equations

with deviating arguments

(E) χ(»\t) + F(t; x<τo(t)>, x '<τ 1 ( ί )>, . . , x(

and

(Eg) y(»\t) + g(t)G(t; y<σo(t)>, yf<σi(t)>9...9 / l | - 1 ) < σ ϊ l _ 1 ( 0 > ) = 0,

where g belongs to a certain function class &, and let gz denoted the function

defined by

y Λ } G(t; z<σo(t)>, z ' < σ 1 ( / ) > , . . . , z^

If P is a propositional function with domain a function class S and

&> = {xeS: x is a solution of"(£)}

Sfg = {xe£\ x is a solution of (Eg)}

then

and

(Vx e &) - P(x) = > gx e &

imply

(Vx 6 ^ ) P ( x ) .

LEMMA 2. Let u be an n-times differentiate function on the interval

[α, oo) with uik) (fc = 0, 1,..., n — 1) absolutely continuous on [α, oo). // u(/ ί )(ί)

is not identically zero for all large t and

u(f) Φ 0, M(ί)ii(π)(0 ^ 0 for every te [α, oo),

then there exists an integer I with 0 ^ / < n , n + l odd, such that

u(t)u^k\t) ^ 0 for every te[_a, oo) (fe = 0, 1,..., /),

[α, oo) (fe=/ + l, Z + 2,..., n),
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(f — nΛn-i I ΊΛn-\)jn-l-\t\ I

\n- l)(l-2)-\n-1) /

LEMMA 3. J/w /s as in Lemma 2 and for some /c = 0, 1,..., n —2,

ί/zen

2. Oscillatory and asymptotic behavior of bounded solutions

In this section we study the oscillatory and asymptotic behavior of the
bounded solutions of the differential equation (*) in the case where it is τ0-distorted
sublinear (Theorems 1 and 3) or τ0-distorted superlinear (Theorems 2 and 4).

THEOREM 1. Consider the differential equation (*) subject to the condi-

tions (i) and (ii). // the equation (*) is τ0-distorted sublinear and for any

μί9 μ2 with \μt\>\μ2\

.(Ct) J V 1 ^ ; μ\Λ9 μl l,..., μ\Λ)dt = oo ,

then for n even all bounded solutions of the equation (*) are oscillatory, while
for n odd all bounded solutions of the equation (*) are either oscillatory or
tending monotonically to zero as ί-»oo together with their first n — \ derivatives.

PROOF. Let x be a bounded non-oscillatory solution of the equation (*)
with limx(i)7^0. Since both x and — x are solutions of the differential equation

ί-+oo

(*), we can assume, without loss of generality, that x(ί)>0 for every t^t0. More-

over, since limτo</ ( ί ) = °° O' = lί 2,..., m0), there exists a tί^t0 so that
ί-+oo

(1) τ o / ί ) ^ ί o for every t ̂  tγ (j = 1, 2,..., m0).

Thus, from equation (*), by (1) and condition (ii), it follows that

(2) x(n\t) ^ 0 for every t ̂  t0.

We prove now that x(n)(ί) is not identically zero for all large /. To do this
we suppose the opposite and remark that in this case the solution x(t) coincides
with a polynomial for all large t. Thus, since x is bounded, it must be constant,
i.e. x(0=μ o >0 for all large t (by hypothesis limx(i)^O). Hence

f

(3) -x<»>(0 = { fl (ΦojimY^FiC, W 2 <τ o (ί)>, [x']2<τ(ί)>,
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= μ0F(t; μl 1, 0,..., 0) for all large ί,

and therefore

^ μΌF(t; μ2

0Λ, -&• 1, , •& l ) for all large/.

Since, by (CJ, f/f μg.l,-^-. 1,..., J^-. l ) i s not identically zero for all large t,

the same holds for the function x(n)(t), which contradicts our assumption.

Now, by Lemma 2, we conclude that there exists an integer I with 0^/<n,

n + l odd, so that for every t = tί

x«\t) = 0 (/c = 0, 1,...,/)

and

^ 0 (fc = Z + l , / + 2,..., n ) .

We shall show that / = 0 or 1=1. Indeed, if Z>1, then by Taylor's formula we

have

for every t=T, where Tis chosen so that x ( / - 1 ) (T)>0. (A such choice of Tis

possible, since as we have proved x(w)(ί) is not identically zero for all large t.)

This inequality is obviously a contradiction to our assumption that x is bounded.

Since n + l is odd, for n even we have I = 1 and

x'(t) ^ 0 for all t = tu

while for n odd we have f = 0 and

x'(t) ^ 0 for all t ^ tx.

If we put c = limx(ί) in the case where x is non-decreasing (i.e. n is even)
ί-*oo

and c = 21imx(i) in case where x is non-increasing (i.e. n is odd), then we can
ί->oo

easily derive that for a t2^tί and for every t^t2

(4) ^=xlτj

Since lim x(t) exists in R, by Lemma 3, we conclude that
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limx<*>(0 = 0 (k = 1, 2,..., n - 1 )
ί->oo

and consequently there exists a ί 3 ^ ί 2

 s ° that for every ί ^ ί 3

(5) IJcWCTί/Oll^-j ( A : = 1 ' 2 ' — " - 1 ^ * = l ,2, . . . ,m i ;/ = 0 , l , . . . , / i - l ) .

Now, consider the differential equation (*) and

(6) yM(t)+g(t)y(t) = o,

where α = -̂ - > 1 andμ, v are odd integers, in the place of the equations (E) and

(Eg) of Lemma 1 respectively.

Let & be the class of all continuous and bounded functions w, which are

defined on an interval of the form [ίw, oo) and P the propositional function:

P(w): w is oscillatory or lim w(t) = 0
f-»oo

Furthermore, let ^ be the class of all non-negative functions g defined on an

interval of the form [tgy oo), which satisfy the condition

(7) ^°tn-ιg(i)dt = oo

It is well-known (cf. [4]) that, under condition (7), all solutions of the differential

equation (6) are oscillatory or tending to zero as ί-»oo. That is

We remark that for any bounded solution x of the equation (*) for which

~P(x) is satisfied, i.e. x is non-oscillatory and limx(ί)#0, the function gx as-
ί->oo

sociated to x belongs to the function class ^ . In fact, using the sublinearity of

the differential equation (*) and taking into account (4) and (5), we obtain

f(8) gx(t) = x"(θ{ fl (xfroWiyW; W2<τ0(0>, [x'
Wi j

^ f(t; c 2 Λ ^ . 1,..., *L. l ) for every

and consequently, by (C^),

^ t » i ( ) d = oo,

i.e.
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(Vx eST)~ P(x) = > gx e &.

Next, applying Lemma 1, we have

i.e. every bounded solution x of the differential equation (*) is oscillatory or limx(0
f-» oo

= 0. By Lemma 2, if x is a bounded non-oscillatory solution of the equation (*)
with \imx(t) = 0, then xf^0 and, therefore, n is an odd integer. Moreover, by

f-*oo

Lemma 3, in this case we also have

limx<*>(ί) = 0 (k = 1, 2,..., n - 1 ) .
ί->αo

THEOREM 2. Consider the differential equation (*) subject to the con-
ditions (i) and (ii). // the equation (*) is τ0-distorted superlίnear and for any

(C2) J V 1 ^ ; μ2 1, 0,..., 0)dί = oo

ί/iβn /or n ei ̂ n α// bounded solutions of the equation (*) are oscillatory, while
for n odd all bounded solutions of the equation (*) are either oscillatory or tend-
ing monotonically to zero as ί->αo together with their first n — \ derivatives.

PROOF. Let x be a bounded non-oscillatory solution of the differential
equation (*) with limx(t)Φ0. As in the proof of Theorem 1, we can assume,

ί-»-00

without loss of generality, that x(t)>0 for every t^t0 and by choosing t^t0

as in (1) we derive (2). Then, we prove (3), which implies that x(n)(t) is not
identically zero for all large t, since, by (C2), this holds for F(t; μo l, 0,...,0).

Finally we remark that the proof of the theorem follows exactly the same
way as that of the theorem 1, by using in place of (8) the inequality

{ mo

π

THEOREM 3. Consider the differential equation (*) subject to the con-
ditions (i), (ii) and

(I) τy(ί) ^ t for every t ^ t0 (j = 1, 2,..., mx\ i = 0, 1,..., n-1). If the
equation (*) is τ0-distorted sublinear and there exists μφO so that
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(C3) j V 1 F ( ί ; / ί

2 l,0,...,0)Λ<oo,

then for n even the differential equation (*) has a bounded non-oscillatory solu-

tion, while for n odd the differential equation (*) has a bounded non-oscillatory

solution x with

limjc(ί) φ 0.
f-*OO

PROOF. It is enough to show that there exists a solution x of the equation

(*) with limx(t) = c0, where coΦ0 is chosen properly.
ί->oo

The proof of this is based on the arguments developed by V. A. Staikos

and Y. G. Sflcas [9] and needs the application of following fixed point theorem,

which is a special case of TychonofΓs fixed point theorem (See [12]):

FIXED POINT THEOREM. Let Y be a Frechet space and X a convex and

closed subset of Y. If S is a continuous mapping of X into itself and the

closure SX is a compact subset of X, then there exists at least one fixed point

xeX of S (i.e. a point xeX so that x = Sx).

Without loss of generality we suppose that μ in the condition (C3) is positive

and choose a c0 with 0 < μ < c 0 . Put δ = co — μ and, by (C3), consider a T^max {ί0,

0} so that for every /c = 0, 1,..., n — 1

(9) (2co-μ)£(s-T)"-i-'<F(s; μ2 1, 0,...,0)ds £ δ

For To = min (min τ f/0) l e t Y be the vector space of all continuous real
i,j t^T

valued functions which are constant on the interval [Γo, Γ] and n — 1 times con-

tinuously diίferentiable on the interval [Γ, oo).

Consider now in the space Y the sequence of seminorms (pv):

PvϋO = sup |/»- 1 >(θl+ Σ 2 \y{k\Ό\ (v = l, 2,...)
ίe[Γ,Γ+v] k=0

and introduce by it a total paranorm, defined by the formula (See [14])

p(x)= Σ i v i P

Λ

 V^X) x (Frechet's combination).

v=i Z 1 -f-pv\X)

The space Y endowed with the topology introduced by p becomes a Frechet space.

Let X be the set of all x e 7 with:

(A) \x(t)-co\£δ9 if t^T0
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and

(B) if

Obviously, X is nonempty and it is easy to see that X is also a convex set.

Moreover, X is closed. To prove this, we consider a sequence (yv) in X with

p-lim j ; v = x. Then for any non-negative integer μ we have

(10)

and

(Π)

if t^

\y(*\t)\ £ δ, if ί £ T ( f c = l , 2 , . . . , n - l ) .

We remark now that, by the definition of p, the sequence O^11""1*) converges

uniformly to the function x ( M - 1 ) on any interval [T, Γ+v]. Since, moreover,

each sequence (yμk)(T)) converges to x(k\T) (/c = 0, 1,..., n — 2), it is easy to

see that the sequence (y{

μ

k)) converges uniformly to the function x(k) on the interval

[T, T-fv] for every /c = 0, 1,..., n — 1. But, since v is an arbitrary natural number,

this implies the pointwise convergence

limy(

μ

k\t) = x^k\t)

for every t^T. By (10) and (11), we obviously have that for the limit function

x the conditions (A) and (B) are both satisfied, i.e. xeX.

Now, since, by (A) and the choice of <5, the elements of X are positive func-

tions, we can define the mapping S: X-+Yby the following formula:

(12)

•F(s;

if t ^ T,

•F(s; [x]

if To S t <

where

and

— \τiU τί2» > τim)

" = l, 2,..., m,;i = 0,1,.. ., n -
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Since for every t^T

fi j

^(co+δ)F(t;(co-δ)2-l,0,...,0)

= (2co-/ι)F(ί;μ2 l,0,...,0)

by (9), it follows that the mapping S is defined on the whole set X, i.e. S: X>~*Y.
Moreover, the mapping S has the properties as it is required in the fixed point
theorem:

(a) SX <Ξ X.

In fact, for y = Sx with xeX and for every ίSgΓ, by (9) and (13), we have

J^jfr\τ

s~τ)n~1F(s; μ2Λ- °' - 0)ds = δ

and

(b) SX is α compact subset of X.

Let yeSX and ίl5 ί2 in [Γ, oo). Consider an x e A" with y=Sx. Then we have

g |f'2jf|
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and consequently the (n — l)-th derivatives of the function yeSX are equicon-

tinuous at each point of the interval [T, oo). Since, moreover, by (B), the (n — 1)-

th derivatives of the functions of X are uniformly bounded, by Ascoli's theorem,

for any sequence (yv) in SX there exists a subsequence (zv) of (yv) so that the

sequence (z[n~^) converges uniformly on every compact subinterval of [T, oo).

Also, by (A) and (B), the sequences (z(

v

fc)(T)) (fc = 0, 1,..., n-2) are bounded

and hence there exists a subsequence (wv) of (zv) so that each sequence (w(

v

fc)(T))

(/c = 0, l,...,n —2) is convergent. Thus, we easily conclude that the sequence

(wv) is p-fundamental and then, since the space Y(as Frechet space) is com-

plete, there exists a u e Y s o that

p — limwv = u.

Hence, we have proved that each sequence in SX has a subsequence which is

convergent in SX and then from this fact we easily conclude that the set SX has

the property of Bolzano-Weierstrass.

(c) The mapping S is continuous.

Let x E X and (wv) be an arbitrary sequence in X with

p — limwv = x.

If we put y = Sx and υv = Suv, then for every t^T

and

= -^in^^^

For the function uv (v= 1, 2,...), by (13), we have

Hence, by (9), we remark that
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s-0' I- lns; μ2 h 0,..., 0)ds

^ (2co-μ)^(s-T)"-1F(s; μ2 1, 0,,.., 0)ds

^ (2co-μ)(°°(s- Ty-tFis; μ2 1, 0,..., 0)ds ^δ < OD.
JT

We can now apply the Lebesgue dominated convergence theorem to obtain

lim „,(,) = ̂ =I)^i-

fl

; lxy<τo(s)>,...

Thus, for every ί^Twe have the pointwise convergence

limvv(t) = y(t).
V

To complete this proof, consider an arbitrary subsequence (zμ)μeM of (vv). Since

the set SX is compact, there exist a subsequence (wA)Λe/1 and \\ι e SX so that

p — \imwλ = i/f.

But, as we have shown in (b), the p-convergence implies the pointwise conver-

gence and, hence, it is easy to see that

Ψ = y

Therefore

^ - l i m w λ = y
λeΛ

and consequently

p-limvv = y.

Now, we can apply the fixed point theorem to conclude that there exists

a n x e l with x = Sx, which is the desired solution of the differential equation
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(*), since, by (13) and (9),

\ μ2 l, 0,..., 0)ds-+0 as

THEOREM 4. Consider the differential equation (*) subject to the con-

ditions (i), (ii) α/td (I). // ίfoe equation (*) is τo-distorted superlinear and

there exist μ i^O, μ2Φ^ so ί/zαί

(C4) J V 1 ^ ; Aif.l, μi-l,..., μ\Λ)dt < oo

/or n euen ί/ie differential equation (*) /zαs α bounded non-oscillatory

solution, while for n odd the differential equation (*) has a bounded non-oscil-

latory solution x with

limjc(ί) φ 0.
ί-*oo

PROOF. The proof of this theorem is similar to the proof of Theorem 3.

Without loss of generality, we suppose that μί9 μ2 in the condition (C4) are positive

and we choose a c0 with max<-^-, μ1—μ2\^c0<μί. We put <5 = μx — c0 and,

by (C4), choose a T^max {tθ9 0} so that

(14)

Furthermore, as in the proof of Theorem 3, we consider the corresponding

space Yand its nonempty and convex subset X. It is easy to see that the elements

of X are positive functions and therefore we can define the mapping S by formula

(12).

By τ0-distorted superlinearity of the differential equation (*) and by (C4),

we obtain that for every t ̂  Γand x e X

because δ=μί — c0 ζμί — (μί—μ2) = μ2- Using this inequality instead of (13),
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and applying step by step the proof of Theorem 3, we conclude the existence of

a solution x of the differential equation (*) with

\imx(t) = cQ Φ 0.
f-*oo

Consider the particular case of function F when

where, in addition to (i) and (I), we suppose that following conditions are satis-

fied:

(Hi) / is non-negative on [/0, oo)x [0, oo)w° and (TiyyjA jXt;y0) is

continuous on the same set.

(II2) The function φ is positive and continuous on the set Eo.

In this case the differential equation (*) has the following form

(15) *<»>(*)+{ ff l*[W')]l4/('; M2<τ0(0>MM2<τ0(0>,...

..., [ x ( Λ - 1 ) ] 2 < τ M _ 1 ( 0 > ) 2 Π 1 s g n x [ τ o / 0 ] = 0, t ^ t0

Under the above assumptions from Theorems 1-4 we obtain the following.

COROLLARY. // equation (15) is either τ0-distorted sublinear or τ0-

distorted superlinear, then the condition

(C5)
 {\*>tn~1f(t\ μ2 ί)dt = oo for every μφO

is a necessary and sufficient condition in order that:

(α) for n even all bounded solutions of (\5) are oscillatory,

(β) for n odd all bounded solutions of (15) are oscillatory or tending mono-

tonically to zero as ί-»oo together with their first n — \ derivatives.

3. Oscillatory and asymptotic behavor of all solutions

In this section we study the oscillatory and asymptotic behavior of all solu-

tions of the differential equation (*), when it is τ0-distorted strongly sublinear

(Theorem 5) or τ0-distorted strongly superlinear (Theorem 6). The proof of

these theorems are based on the comparison principle, which is applied for the

differential equations (*) and (**). For this we apply the fundamental con-

clusions for the more simple differential equation (**) and namely the following

Propositions 1 and 2.
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PROPOSITION 1. Consider the differential equation (**) subject to the

conditions (i) and

(III) τOJ(ή^tfor every t^t0 (j=l, 2,..., m0).

If the equation (**) is τ0-distorted strongly sublinear and

S oo f mo
\nLτoj

then for n even all solutions of the equation (**) are oscillatory, while for n odd

all solutions of the equation (**) are either oscillatory or tending monotonically

to zero as t-*co together with their first n — 1 derivatives.

PROOF. Let y be a non-oscillatory solution of the differential equation

(**) with limy(t)^0. Since both y and —y are solutions of the equation (**),
ί->00

we can assume, without loss of generality, that y{t) > 0 for every t ̂  ί0. Moreover,

since limτOj(t) = oo 0 = 1, 2,..., m0), there exists a ί ± ^ ί 0 so that for every
t-*ao

(16) τ o / 0 ^ max{ί0, 0} (j = 1, 2,..., m 0 ) .

From the equation (**), by (16), it follows that

y<">(0 ^ 0 for every t ^ ί t

and consequently, by Lemma 2,

;yθi-i)(ί) ^ 0 for every t^t±.

Now, we shall show that there exist c > 0 and t2}^tί so that

(17) y{t) ^ ctτOi(t)r-i/»-*Xt) for every t ^ t2 (j = 1, 2,..., m0).

For this we consider the integer /, as it is defined by Lemma 2, for solution y

and remark that for every t^t2 = 2n~1~ιtι the inequality

holds.

If y is non-decreasing, then for every t^t2

y(t) ^ y(2ι'n+1t) Z cCτo/ ί ) ] " " 1 / 1 1 " 1 ^) U = h 2>- > m o ) ?

where
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If y is non-increasing, we remark that

and it is easy to see that

inf

Consequently, by (18), for every t^t2 we obtain

U = 1, 2,..., m0)

where

2"-"+'><"-'> . f y(t)

( « - l ) ( » - 2 ) - ( « - / ) 4A j(2'-"+ 1ί) '

The equation (**), in view of (17), for every ί^ί 2 yields

(19) yi'Kt) + c"g(t) ^ " - ^ ( ί ) ] ' fl [ T O / O ] * " " " ^ ^ 0.

Dividing (19) by [y<-n~1\t)']" and integrating from ί2 to ί, we obtain

( 2 0 )

Hence, since α < l , we obtain

c" J,c-»)(0 z"

which contradicts (C6).

The conclusion of the proposition follows now immediately from Lemmas

2 and 3.

PROPOSITION 2. Consider the differential equation (**) subject to the
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conditions (i) and (III). // the equation (**) is τ0-distorted strongly super-
linear and

f β 0 Σ [ τ o / 0 ] - 1

(C7) ^Ξl g { t ) d t =
j π [τω] ( "- l ) ( β -^

then for n even all solutions of the equation (**) are oscillatory, while for n odd
all solutions of the equation (**) are oscillatory or tending monotonically to
zero as t^oo together with their first n — \ derivatives.

PROOF. The proof follows immediately as an application of the theorem
in [7] in the case, where

Φ O I , y2> ~, ymo) = f i \yj\aj ΓΊ s g n ^

and

p(y) = M'-^gny.

THEOREM 5. Consider the differential equation (*) subject to the con-
ditions (i), (ii) and (I). If the equation (*) is τ0-distorted strongly sublinear and
for any μφO

(C 8 ) j°°{ Π L*ojmn-1)pJF(t; μ 2 . r 2 ( » - i ) ( i ) j μi . r 2 ( » - 2 ) ( ί ) j . . . , μ 2

then for n even all solutions of the equation (*) are oscillatory, while for n odd
all solutions of the equation (*) are either oscillatory or tending monotonically
to zero as ί-»oo together with their first n — \ derivatives.

PROOF. Let x be a non-oscillatory solution of the differential equation
(*) with limx(0#0. As in the proof of Theorem 1, without loss of generality,

ί->oo

we assume that x(t)>0 for every t*tt0 and by choosing ί x ^ί 0 as in (1) we derive
(2). By Lemma 2, for every t^tt we obtain

for any L Hence, by Taylor's formula, for every t^t1 we have
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( t t χ ) + + ^ ι

where Ogfc^Z. Thus, for any fc, O^fc^Z, the function ^ ^ is eventually

bounded and consequently there exist constants μk (/c = 0, 1,..., /) so that

(21) x<*>[τo (0] ^ μ ^ / ί ) ] " - 1 " * ϋ = 1, 2,..., mf; i = 0, 1,..., n -
for every t^t2, where t2 is chosen so that

Moreover, since the functions \x(k)\ for fe = ί + l , ί + 2,..., n —1 are all bounded,
obviously there exist μk>0 (fc = / + l, Z + 2,..., n —1) such that

(22) |x(fc)[τo (0]l ^ ^[TίXO]""1"* (fc = / + 1, 1 + 2,..., n-1)

for every ί^ί3, where ί 3 ^ί 2 is chosen properly. For μ = maxμk and for every

ί^ί 4 = max{ί2, 3̂} from inequalities (21) and (22) we obtain

(23) |x( fe)[τo (0]| ύ μ h / ί ) ] - " 1 - * (fe = 0, 1,..., n-1).

Consider now the exponents Sj (j = l, 2,..., m0), which correspond to func-
tion F, by the definition of τ0-distorted strongly sublinearity, and moreover
arbitrary numbers ηj O'=l, 2,..., m0) with

Then for any (t\yo,yu...,yn-x\(t\ z0, zu...,zn_x) with ί^ί0 and Og
we obtain

(24)

In fact, we first remark that

J = l J = l

and then, by sublinearity of the equation (*), we have

(fl JίiW;yo,yi.....y,,-i) ^ (fί ^

and consequently multiplying these inequalities we get (24).
Therefore we choose the r\i (j = 1, 2,..., m0) so that
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Hence, if we put

U = ^ 2

then we have α,- > 0 and

mo wo wo wo
α = Σ «/ = Σ Pj- Σ nj< Σ Pj = ι

y=i 7=1 j=i j=i

i.e. the differential equation (**) is τ0-distorted strongly sublinear.

Consider now the equations (*) and (**) in the place of the equations (E)

and (Eg) of Lemma 1 respectively.

Let £ be the class of all continuous functions x, which are defined on an

interval of the form [tx, oo) and P the propositional function:

P(x): x is oscillatory or limx(ί) = 0

Furthermore, let 0 be the class of all continuous and non-negative functions g

defined on an interval of the form [tg, oo), which satisfy the condition (C6). By

Proposition 1, under the condition (C6), all solutions of the equation (*) are oscil-

latory or tending to zero as ί->oo, i.e.

We remark that for any solution x of equation (*) for which ~P(x) is satisfied,

i.e. x is non-oscillatory and limx(ί)^0, the function gx associated to x belongs
f->00

to the function class &. In fact, using the strongly sublinearity of the equation

(*) and taking into account (23) and (24), we conclude that

I ft [τ0χo]("- i)β'W) = { π

{ wo
Π (xίτOj(m)

fί
j-1

^ {fί [τo/0]("-1)β4{π (*[to/0]»4ί (<; W2<τo(0>, [χ']2<τ1(ί)>, .

^ { fί [τo/0]("-°"4 W fΐ [τo/O]'""1^}^; μ2-rg(»-i>(0, μ2 T2(»-2)(/),
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= μι-°{ Π froj(t)l("-i)pJF(t; μ2 r§<"-»(ί),

o

where 77 = Σ *//> and consequently, by (C6),
j= i

= 00

i.e.

Now, applying Lemma 1, we obtain

This proves the theorem.

THEOREM 6. Consider the differential equation (*) subject to the con-

ditions (i), (ii), (I) and

(IV) The functions τ0J (7 = 1, 2,..., m0) αre differentiate on [ί0, oo)

τΌ/ί) ^ 0 /or werj; ί ^ ίo

If equation (*) is τ0-distorted strongly superlinear and for each

(C 9 )

Π

mo

(Xj = Pj + Sj ( j = l , 2,..., m0), a = Σ «y ^^^ εy ( j = 1, 2,..., m0) «r^ ί/?e

exponents which correspond to the function F, by the definition of τ0-d'ιstorted

strongly superlinearity, then for n even all solutions of the equation (*) are

oscillatory, while for n odd all solutions of the equation (*) are either oscillatory

or tending monotonically to zero as ί->oo together with their first w —1 deriva-

tives.

PROOF. Let x be a non-oscillatory solution of the equation (*) with

limx(07^0. As in the proof of Theorem 1, without loss of generality, we suppose
ί->00

that x(t) > 0 for every t ̂  ί0 and by choosing a t± ^ t0 as in (1) we derive (2). Hence,

by Lemma 2, all derivatives of arbitrary order are of constant sign on the interval

[tl9 oo). Therefore, the function x is monotonous and consequently there
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exists μ0 > 0 so that

|x(OI ^ μ0 for every t ^ tt.

Moreover, since Iimτ 0/ί) = oo ( j = l , 2,..., m0), there exists a t2^tί so that

for every t ̂  t2

τ o / 0 ^ h ( j = l ,2,. . . ,m 0 )

and consequently

(25) | x [ τ o / 0 ] | ^ μ0 for every ί ^ ί2 ( j = 1, 2,..., m 0 ) .

Consider now in the place of the equations (E) and (Eg) of Lemma 1 respec-
mo

tively the equations (*) and (**), where 0Lj = pj + εj ( j = l, 2,..., m0) and Σ α j
Wo

= α > l , since Σ β/>0.

We therefore define the class £ and the propositional function P exactly as

in the proof of Theorem 5, while as ^ we define the class of all continuous and

non-negative functions g defined on an interval of the form [tg, oo), which satisfy

the condition (C7). By Proposition 2, under the condition (C7), all solutions

of the equation (**) are oscillatory or tending to zero as f->oo, i.e.

If x is a solution of the equation (*) for which ~P(x) is satisfied, i.e. x is non-

oscillatory and limx(ί)#0, then the function gx associated to x belongs to the
(-•oo

function class ^ . In fact, since equation (*) is τ0-distorted strongly superlinear,

by (25) and Lemma 3, it follows that for every ί ^ ί 2

{fft
π

and consequently, by (C7),

mo

Σ [To/ί)]""1

. gx(t)dt = oo
m

fί
J= i
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i.e.

Q/xey) ~ P(x) = Φ gx e &.

Applying Lemma 1, we obtain

(Vxe^)P( c)

which proves the theorem.
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