On the Supports of the Transition Densities for Certain Stable Processes

Masayuki **HORIE** (Received January 19, 1976)

§1. Introduction

Let $\{X(t), t \ge 0\}$ be a non-degenerate, drift free, *d*-dimensional stable process having exponent α , $0 < \alpha < 1$, and characteristic function $\psi(t, \zeta)$ given by

(1)
$$\psi(t,\xi) = \exp\left\{-t|\xi|^{\alpha}\int_{S^{d-1}} [1-i\mathrm{sgn}(\langle\xi,\theta\rangle)\tan(\pi\alpha/2)]|\langle\xi||\xi|,\theta\rangle|^{\alpha}\mu(d\theta)\right\}.$$

Here t>0, $\xi \in \mathbb{R}^d$, S^{d-1} is the unit sphere with center origin in \mathbb{R}^d , $\mu(d\theta)$ is a probability measure on S^{d-1} and \langle , \rangle is the usual inner product in \mathbb{R}^d . Then, X(t) has the continuous transition density:

(2)
$$p(t, x) = (2\pi)^{-d} \int_{\mathbb{R}^d} e^{-i < x \xi >} \psi(t, \xi) d\xi, \quad t > 0, x \in \mathbb{R}^d.$$

The support of the transition density p(t, x) was investigated by Taylor [4]. His result combined with Port's work [3] is that p(t, x) > 0 for all t > 0 and $x \in \mathbb{R}^d$ if p(1, 0) > 0. In the case p(1, 0) = 0 and $d \ge 2$, the properties of the support of p(t, x) seems to be unknown except Taylor's remarks (see [4, p. 1233]) about what can be expected to hold. The purpose of this paper is to investigate the support of p(t, x) in connection with that of μ for this case.

We denote by supp (μ) the smallest closed set with full μ -measure and put

$$M = \{\lambda\theta; \theta e \operatorname{supp}(\mu), \lambda \ge 0\},\$$

$$K_1 = \{x; p(t, x) > 0 \text{ for some } t > 0\},\$$

$$K_2 = \{x; p(t, x) > 0 \text{ for any } t > 0\},\$$

$$S(t) = \{x; p(t, x) > 0\},\$$

$$t > 0.$$

Also we denote by A^- , A^- and A° the closure, the convex hull and the interior of a set A, respectively. Our theorem is stated as follows:

THEOREM. If p(1, 0) = 0, then $K_1 = ((M^{-})^{-})^{\circ}$. //, in addition, the dimension $1(M^{-})$ of the largest subspace contained in M^{-} is zero, then $K_1 = K_2 - (M^{-})^{\circ}$.

The author would like to thank Professor M. Kanda and Professor H. Tanaka for their kind advices and many helpful suggestions.

§ 2. The Properties of S(t)

Making use of Kolmogorov-Chapman equation for p(t, x) and the well known scaling relationship $p(t, x) = p(rt, r^{1/\alpha}x)r^{d/\alpha}$, we have

(3)
$$S(t_1) + S(t_2) = S(t_1 + t_2)$$

$$S(rt) = r^{1/\alpha}S(t), \quad r > 0.$$

If we set S = S(1), (3) and (4) imply that

(5)
$$r^{1/\alpha}S + (1-r)^{1/\alpha}S = S, \quad 0 \leq r \leq 1.$$

It is not obvious whether in general (5) implies

(6)
$$r^{1/\alpha}S^- + (1-r)^{1/\alpha}S^- = S^-, \quad 0 \leq r \leq 1,$$

or not. However, under some condition we can prove (6), as will be seen below.

LEMMA 1. If S is contained in a closed convex cone C with 1(C) = 0, then $S \sim$ has the property (6).

PROOF. For each x e 5~, we choose a sequence $\{x_n\}$ in S converging to x as $n \to \infty$. Then, by (5) for each r, $0 \le r \le 1$, there exist two sequences $\{y_n\}$ and $\{z_n\}$ in S such that

(7)
$$r^{1/\alpha}y_n + (1-r)^{1/\alpha}z_n = x_n.$$

We now prove that both $\{y_n\}$ and $\{z_n\}$ are bounded. For this purpose denote by L_n the straight line passing through y_n and z_n , and let w_n be the point on L_n which is nearest to the origin. Then, with a suitable unit vector e_n perpendicular to w_n , y_n and z_n can be expressed as $y_n = a_n e_n + w_n$ and $z_n = b_n e_n + w_n$, a_n , $b_n \in \mathbb{R}^1$. From (7) we have $[r^{1/\alpha} + (1-r)^{1/\alpha}]^{-1}x_n = c_n e_n + w_n$ where $c_n = [r^{1/\alpha}a_n + (l-r)^{1/\beta}b_n][r^{1/\alpha} + (1-r)^{1/\alpha}]^{-1}$, and hence $[r^{1/4} + (1-r)^{1/4}]^{-1}x_n \in L_n$. This implies that $\{w_n\}$ and $\{c_n\}$ are bounded. The definition of c_n then implies that both $\{a_n\}$ and $\{b_n\}$ are bounded or both $\{a_n\}$ and $\{b_n\}$ are unbounded. Suppose the latter case happens. Then we have $a_n \to \infty$ (or $-\infty$) and fo_n $- \to -\infty$ (or ∞) as $n \to \infty$ via some subsequence. Since $\{w_n\}$ is bounded, the sequence of the line segments $\overline{y_n z_n}$ joining y_n to z_n converges to some full straight line L as $n \to \infty$ via some further subsequence. Since $y_n z_n$ is in the closed set C, L is also in C, and this contradicts 7(C) = 0. Thus we have proved that $\{y_n\}$ and $\{z_n\}$ are bounded. Therefore $\{y_n\}$ and $\{z_n\}$ converge to some $y \in S^-$ and $z \in S^-$, respectively, as tt-»oo via some (common) subsequence, and $r^{1/\alpha}y+(1-r)^{1/\alpha}z=x$, which shows $r^{1/\alpha}S^-+(1-r)^{1/\alpha}S^-\subset S^-$. Finally the inverse relation $r^{1/\alpha}S^-+(1-r)^{1/\alpha}S^-\subset S^-$ is easily shown by (5). This completes the proof.

LEMMA 2 ([1]). If C is a closed convex cone, then 7(C) = 0 if and only if there exists a unit vector e such that $\langle \beta, \xi \rangle > 0$ for any non-zero vector ξ in C.

The proof of this lemma is found in Fenchel [1, pp. 10–11].

LEMMA 3. Under the hypothesis of Lemma 1 and $\alpha < 1$, $S \sim is$ a convex cone.

PROOF. We first note that (6) and $\alpha < 1$ imply that $\lambda S^{-} \subset S^{-}$ for $0 \le \lambda \le 1$. Next we put $S_0 = \{x \in S^-; \lambda x \in S^- \text{ for any } \lambda \ge 0\}$. Then, from this definition and (6), it follows that S_0 is a closed convex cone. We show by contradiction $S^- = S_0$. Suppose that there exists a point $x_0 \in S^- \setminus S_0$ and denote by y_0 the point on S_0 which is nearest to x_0 . Noting that S_0 is a closed convex cone, we can choose a supporting hyperplane P_0 of S_0 at y_0 . Obviously P_0 passes the Since l(C) = 0, there exists a unit vector e such that $\langle e, \xi \rangle > 0$ for any origin. non-zero vector ξ in C by Lemma 2. Let us set $H = \{x; \langle x, e \rangle = 0\}$, denote by *P* the hyperplane determined by *H* n P_0 and $\frac{1}{2}x_0 + \frac{1}{2}y_0$ and $y_0 + \frac{1}$ space bounded by P and not containing the interior of S_0 . We now claim that there exists a supporting hyperplane β of S⁻ which is parallel to P. For the proof it is enough to see that P^+ n S^- is bounded. If it is unbounded, then there exists a sequence $\{x_n\}$ in P^+ n S^- such that $|x_n| \to \infty$ as $n \to \infty$. The sequence of rays $L_n^+ = \{\lambda x_n; \lambda > 0\}$ has a convergent subsequence; let L^+ be the limiting ray. Since $\lambda S^- \subset S^-$ for $0 \leq \lambda \leq 1$, L^+ is contained in S^- and lies outside S_0 . This contradicts the definition of S_0 , and so P^+ n S^{\sim} is bounded.

Choose a point x in $S \sim n \beta$. By (6) there exist y, $z \in S^-$ such that $y+z = 2^{1/\alpha}x$. Since $x \neq 0$ and $2^{\frac{1}{\alpha}-1} > 1$, the point $2^{\frac{1}{\alpha}-1}x$ lies in Q^+ (the region bounded by Q and not containing the origin) and hence so does (y+z)/2. But then, one of y and z must lie in Q^+ , which is a contradiction since y, $z \in S^-$. We thus finally proved that $S^- = S_0$. Since S_0 is a convex cone, the lemma is proved.

§ 3. Proof of the theorem

First we note that $\alpha < 1$ and $\supp(\mu)$ is contained in some hemisphere by the assumption p(1, 0) = 0 (see [4]). Thus M^{\wedge} is a convex cone which is not the whole space \mathbb{R}^d , and hence $(M^{\wedge})^{-}$ is equal to the intersection of all closed half spaces which contain M^{\wedge} , and for each closed half space which contains M^{\wedge} there is a unit vector e such that $\{x; < e, x \ge \ge 0\}$ is equal to this half space.

Masayuki Horie

Now we set $X^{e}(t) = \langle X(t), e \rangle$. Then $X^{e}(t)$ is a one-dimensional stable process with the exponent α and characteristic function

(8)
$$\exp\left\{-\lambda t|\eta|^{\alpha}\left[1-i\mathrm{sgn}(\eta)\tan\left(\pi\alpha/2\right)\right],\right.$$

where $\lambda = \int |\langle e, \theta \rangle |^{\alpha} \mu(d\theta)$. Thus, by the result in the case n=1 (see for a summary [4]), the transition density $p^{e}(t, y)$ of $X^{e}(t)$ is zero on the interval $(-\infty, 0]$ for all t > 0. Since $p^{e}(t, y)$ can be obtained by

(9)
$$p^{\bullet}(t, y) = \int_{\{\langle z, e \rangle = 0\}} p(t, ye + z) dv(z),$$

where v is the volume element on the hyperplane $\{z; \langle z, e \rangle = 0\}$, we have p(t, x) = 0 in $\{x; \langle x, e \rangle \leq 0\}$ for all t > 0. Noting once more that $(M^{^-})^-$ is equal to the intersection of all closed half spaces which contain M[^], it follows that p(t, x) = 0 in the complement of $(M^{^-})^-$ for all t > 0, and hence $K_1 \subset (M^{^-})^-$. Next we prove that $K_1 = ((M^{^-})^-)^\circ$. For this we will use the following facts (i), (ii) and(iii):

(i)
$$\lim_{t \downarrow 0} \int_{\mathbb{R}^d} f(x)p(t,x)/t dx = \int_{\mathbb{R}^d} f(x)r^{-\alpha-d}dr\mu(d\theta), \quad f \in C_0(\mathbb{R}^d \setminus \{0\}),$$

where r = |x|, $\theta = x/r$ and $C_0(\mathbb{R}^d \setminus \{0\})$ is the space of cotinuous functions with compact supports in $\mathbb{R}^d \setminus \{0\}$.

(ii)
$$p(t+s, x) = \int_{\mathcal{R}^d} p(t, x-y)p(s, y)dy.$$

(iii) K_1 is an open convex set (see Taylor [4]).

In fact, (i) implies $K_1 \supset M$, (ii) implies $K_1 + K_1 \subset K_1$ and hence

$$K_1^- \supset K_1^- + \dots + K_1^- \supset M + \dots + M \equiv M_n.$$

Because M is a cone, $M^{\uparrow} = \bigcup_n M_n$ and so $K_1^{\neg} \supset (M^{\uparrow})^{\neg}$. Since $K_1^{\neg} \subset (M^{\uparrow})^{\neg}$ is already known, we have $K_1^{\neg} = (M^{\uparrow})^{\neg}$. On the other hand (iii) implies that $K_1 = (K_1^{\neg})^{\circ}$ (see P]) and so $K_1 = ((M^{\uparrow})^{\neg})^{\circ}$ as was to be proved.

We now proceed to the proof of the latter half of the theorem. For $x \in S$ and $0 \leq r < 1$, $(1-r)^{1/\alpha}(S-x)$ is an open neighborhood of 0. Therefore, by (5) $r^{1/\alpha}S^- = (r^{1/\alpha}S)^- \subset r^{1/\alpha}S + (1-r)^{1/\alpha}(S-x) = r^{1/\alpha}S + (1-r)^{1/\alpha}S - (1-r)^{1/\alpha}x = S - (1-r)^{1/\alpha}x$, and hence $r^{1/\alpha}S^- + (1-r)^{1/\alpha}S \subset S$. From this result we can prove that $(S^-)^{\circ} \subset S$. Hence $S = (S^-)^{\circ}$. As a consequence of Lemma 3, we see that 5 is an open convex cone. From this fact and (4) it follows that S = S(t) for all t > 0, that is, $K_1 = K_2$. Finally $K_1 = (M^{\circ})^{\circ}$ follows from the fact: If C is a closed cone and $1(C^{\circ})=0$, then $(C^{\circ})^- = C^{\circ}$ (see [1]). The proof of our theorem is completed.

References

- [1] W. Fenchel, Convex cones, sets, and functions, Lecture notes, Princeton Univ. 1953.
- [2] J. L. Kelley, I. Namioka and others, Linear topological spaces, Van Nostrand, Princeton, N. J., 1963.
- [3] S. C. Port, A remark on hitting places for transient stable process, Ann. Math. Stat. **39** (1968), 365-371.
- [4] S. J. Taylor, Sample path properties of a transient stable process, J. Math. Mech. 16 (1967), 1229-1246.

Department of Mathematics, Faculty of Science, Hiroshima University