On the Limits of p-Precise Functions along Lines Parallel to the Coordinate Axes of \mathbb{R}^n

Yoshihiro MIZUTA (Received January 16, 1976)

1. Introduction and statement of the main result

Recently, C. Fefferman [2] proved the following result: Let 1and let <math>u be a C^1 -function on $R^n = R \times R^{n-1}$ $(n \ge 2)$ such that $\int_{R^n} |\operatorname{grad} u|^p dx < \infty$. Then there is a constant c such that $\lim_{x_1 \to \infty} u(x_1, x') = c$ for almost all $x' \in R^{n-1}$.

In the present note, we shall give an improvement of this result by using the capacity $C_{1,p}$:

$$C_{1,p}(E) = \inf \|f\|_p^p \quad \text{for} \quad E \subset \mathbb{R}^n,$$

where the infimum is taken over all non-negative functions / in $L^{p}(\mathbb{R}^{n})$ such that $\int |x-y|^{1-n} f(y) dy \ge \text{for all } x \in E$. This capacity is a special case of the capacity $C_{k;u;p}$ introduced by N. G. Meyers [4]. We shall show

THEOREM 1. Let $1 and let u be a p-precise function on <math>\mathbb{R}^n = \mathbb{R} \times \mathbb{R}^{n-1}$. Then there are a constant c and a Borel set E' in \mathbb{R}^{n-1} with $C_{1,p}(\{0\} \times E')=0$ such that

$$\lim_{x_1\to\infty}u(x_1, x')=c \quad for \ all \quad x'\in R^{n-1}-E'.$$

For p-precise functions, see [6; Chap. IV] (also cf. [3; Chap. III, §2], in which they are called Beppo Levi functions of order p). Note that for a p-precise function u on \mathbb{R}^n , grad u is defined almost everywhere and $\int_{\mathbb{R}^n} |\operatorname{grad} u|^p dx < \infty$. Also note that if $C_{1,p}(\{0\} \times E')=0$, then the (n-1)-dimensional Lebesgue measure of E' is zero (see [3; Theorem A], [1; Theorem 1 in §IV] and our Lemma 2).

The proof of this theorem is **based** on the following proposition, which is a special case of Theorem 1 on account of [6; Theorem 9.6] (also cf. [5; Theorem 5.1]).

PROPOSITION 1. Let $1 and let <math>f \in L^p(\mathbb{R}^n)$. Then there is a Borel set $E' \subset \mathbb{R}^{n-1}$ with $C_{1,p}(\{0\} \times E') = 0$ such that

Yoshihiro MIZUTA

$$\lim_{x_1\to\infty}\int_{\mathbb{R}^n}|x-y|^{1-n}f(y)d\neq 0 \quad for \ all \quad x'\in\mathbb{R}^{n-1}-E',$$

where $x = (x_1, x')$.

We shall see that Proposition 1 is the best possible as to the size of the exceptional set (Remark 2).

2. Proof of Proposition 1

We may assume that $f \ge 0$. Let r be a positive number and j a positive integer. If |x| > 2r, then we have by Holder's inequality

(1)
$$\int_{|y| \le r} |x - y|^{1 - n} f(y) dy = \|f\|_{p} \left\{ \int_{|y| \le r} |x - y|^{p'(1 - n)} dy \right\}^{1/p} \\ \le \|f\|_{p} \left\{ \int_{|x - y| \ge r} |x - y|^{p'(1 - n)} dy \right\}^{1/p'} = M \|f\|_{p} r^{1 - n/p},$$

where 1/p + 1/p' = 1 and *M* is a constant independent of *r*. On the other hand, from the definition of $C_{1,p}$ it follows that

(2)
$$C_{1,p}\left(\left\{x: \bigvee_{|y|>r} \quad \langle x-y \lor^{1-n}f(y)dy \ge \frac{1}{2j^2j}\right\}\right) \le (2j)_{j|y|>r}^p f(y)^p dy.$$

If r is sufficiently large, say $r \ge r_j$, then the right-hand sides of (1) and (2) are smaller than $(2j)^{-1}$ and 2^{-j} respectively. Set

$$\omega_{j} = \left\{ x : |\mathbf{x}| > 2r_{j}, \int |x-y|^{1} f(y) dy > 1/j \right\}.$$

Then

$$C_{1,p}(\omega_j) \leq C_{1,p}\left(\left\{x; \int_{|y|>r_j} |x-y|^{1-n} f(y) dy > \frac{1}{2j}\right\}\right) < 2^{-j}.$$

Set $E_k = \bigcup_{j=k}^{\infty} \omega_j$ and $E = \bigcap_{k=1}^{\infty} E_k^*$, where E_k^* is the projection of E_k to the hyperplane $R_0^n = \{(0, x'); x' \in \mathbb{R}^{n-1}\}$. It is easy to see that $\lim_{x_1 \to \infty} \int_{0}^{\infty} \{x_1 - y_1)^2 + |x' - y'|^2\}^{(1-n)/2} f(y) d = 0$ if (0, x') does not belong to E. If we show that $C_{1,p}(E_k^*) \leq C_{1,p}(E_k)$ for each fc, then we have $C_{1,p}(E) = 0$, and hence the proposition. Thus it remains to show

LEMMA 1 (cf. [6; Theorem 8.1]). Let $1 . For any set <math>E \subset \mathbb{R}^n$ denote by E^* the projection of E to \mathbb{R}_0^n . Then we have

$$C_{1,p}(E^*) \leq C_{1,p}(E).$$

354

3. Proof of Lemma 1

To prove Lemma 1, we consider the symmetrization of functions with respect to R_0^n . First, let $\varphi: R^1 \rightarrow R^1$ be a non-negative measurable function. The symmetrization φ^* of φ is defined by

$$\varphi^*(t) = \inf_{l} \left\{ r \ge 0; \int_{\mathcal{I}\varphi(s)\ge r} ds \le 2|t| \right\}.$$

For a non-negative measurable function / on \mathbb{R}^n , we define its symmetrization /* (with respect to \mathbb{R}^n_0) by $f^*(x_1, x') = \varphi^*_{x'}(x_1)$, where $\varphi_{x'}(x_1) = f(x_1, x')$, for $x' \in \mathbb{R}^{n-1}$ such that $\varphi_{x'}$ is measurable. We see that f^* is a non-negative measurable function defined a.e. on \mathbb{R}^n and has the following properties:

(a)
$$\int_{JR^n} f^*(x)^p dx = \int_{JR^n} f(x)^p dx;$$

(b)
$$\int_{JR^n} f^*(x)g^*(x)dx \ge \int_{TR^n} f(x)g(x)dx$$

for any non-negative measurable function g on \mathbb{R}^n .

Now, let f be a non-negative function in $L^{p}(\mathbb{R}^{n})$ such that $\bigvee_{\mathbb{R}^{n}} |x-y|^{1-n}f(y)dy \ge 1$ for all xeE. Let $x = (x_{1}, x') \in E$ and put $x^{*} = (0, x')$. Since the symmetrization of the function $|x-y|^{1-n}$ as a function in y is $|x^{*}-y|^{1-n}$, we have by property (b)

$$\int_{\mathbb{R}^n} |x^* - y|^{1-n} f^*(y) dy \ge \int_{\mathbb{R}^n} |x - y|^{1-n} f(y) dy \ge 1.$$

Hence, in view of (a), we obtain Lemma 1.

4. Proof of Theorem 1

First, we remark the following lemma (cf. [4; Theorem 3]):

LEMMA 2. Let $1 and <math>E \subset R^n$. Then $C_{1,p}(E) = 0$ if and only if there is a non-negative function f in $L^p(R^n)$ such that $\int_{R^n} |x-y|^{1-n} f(y) dy = 00$ for every $x \in E$.

In view of this lemma, [6; Theorem 9.11 and its remark, Theorem 9.3] or [5; Theorems 4.1 and 3.2] implies that a p-precise function u on \mathbb{R}^n has the following integral representation:

Yoshihiro MIZUTA

$$u(x) = c_1 \sum_{i=1}^n \int \frac{x_i - y_i}{|x - y|^n} \frac{\partial u}{\partial y_i}(y) dy + c_2$$

except for x in a Borel set E_1 with $C_{1,p}(E_1)=0$, where c_1 and c_2 are constants. Let E_1^* be the projection of E_1 to R_0^n . By Proposition 1, there is a Borel set $E_2 \subset R_0^n$ such that $C_{1,p}(E_2)=0$ and

$$\lim_{x_1\to\infty}\int |x-y|^{1-n}|\operatorname{grad} u|dy=0$$

for all $(0, x') \in \mathbb{R}_0^n - \mathbb{E}_2$, where $x = (x_1, x')$. Obviously, $C_{1,p}(\mathbb{E}_1^* \cup \mathbb{E}_2) = 0$ (cf. [4; Theorem 1]) and $\lim_{x_1 \to \infty} u(x_1, x') = c_2$ if $(0, x') \notin \mathbb{E}_1^* \cup \mathbb{E}_2$. Thus Theorem 1 is proved.

5. Remarks

REMARK 1. If we combine our theorem with a result of B. Fuglede [3; Theorem A] and the above Lemma 2, we have

THEOREM 2. Let u be a p-precise function on \mathbb{R}^n $(1 \le p \le n)$. Then there is a constant c such that $\lim_{x_1 \to \infty} u(x_1x') = c$ if $(0, x') \notin E$, where E is a Borel set in \mathbb{R}^n_0 such that $C_p(E)=0$ if $p \le 2$ and $C_{p-\varepsilon}(E)=0$ for any ε with $0 \le c \le p$ if $p \ge 2$.

REMARK 2. Proposition 1 is the best possible as to the size of the exceptional set: Given a set $E \subset \mathbb{R}^n_0$ with $C_{1,p}(E) = 0$, we set $\tilde{E} = \{x + (j, 0); x \in E \text{ and } j \text{ is an integer}\}$. Then $C_{1,p}(\tilde{E}) = 0$. By Lemma 2 there is a non-negative function / in $L^p(\mathbb{R}^n)$ such that $\int |x - y|^{1-n} f(y) d \neq \infty$ for every $x \in E$. We see that $\limsup_{x_1 \to \infty} \int |x - y|^{1-n} f(y) dy = \infty$ if $(0, x') \in E$, where $x = (x_1, x')$.

REMARK 3. In connection with Proposition 1, we may be concerned with functions of the following **form**:

$$u(x) = \int_{\mathbb{R}^n} |x-y|^{1-n} f(y) \omega(y) dy,$$

where ω is a positive continuous function on \mathbb{R}^n and $f \in L^p(\mathbb{R}^n)$. The next two propositions show that it is of little value to consider a weight function ω .

PROPOSITION 2. Let $1 . If <math>\omega(y) = \omega(y_1, y') \to +\infty$ as $|y_1| \to \infty$, then there exists a non-negative function $f \in L^p(\mathbb{R}^n)$ such that

$$\limsup_{x_1\to\infty} \int_{\mathbb{R}^n} |x-y|^{1-n} f(y)\omega(y)d\neq +\infty$$

for every $x' \in \mathbb{R}^{n-1}$, where $x = (x_1, x')$.

PROOF. Let ε be a positive number and set g(y)=1 if |y|<1 and $=|y|^{-n/p-\varepsilon}$ if $|y| \ge 1$. Then $g \in L^p(\mathbb{R}^n)$. Set $a_r = \inf \left\{ \omega(y_1, y'); |y_1| > \frac{r}{2} \right\}$ for r>0 and set $g_r(y)=a_r^{-1/2}g(y-re_1)$, where $e_1=(1, 0, ..., 0) \in \mathbb{R}^n$. We have a sequence $\{r_j\}, r_j>2$, such that $\sum_{j=1}^{\infty} a_{r_j}^{-1/2} < \infty$ Let $x^*=(0, x') \in \mathbb{R}^n$ and $x^{(j)}=x^*+r_je_1$. Setting $f=\sum_{j=1}^{\infty} g_{r_j}$ and $u(x)=\int |x-y|^{1-n}f(y)\omega(y)dy$, we note

$$u(x^{(j)}) \ge \int |x^{(j)} - y_1|^{-n} g_{r_j}(y) \omega(y) dy$$
$$\ge a_{r_j}^{1/2} \int_{|x^* - z| \le 1} |x^* - z|^{1-n} g(z) dz \longrightarrow$$

as $j \rightarrow \infty$, which implies that f is the required function.

PROPOSITION 3. Let $1 and suppose <math>\omega(y_1, y') \to 0$ as $|y_1| \to \infty$. Then, Proposition 1 and Remark2 remain valid for the function $\sqrt{\sum_{j \in n} |x-y|^{1-n}} f(y)\omega(y)dy$.

PROOF. This is seen from the fact that $\int_{\mathbb{R}^n} |x-y|^{1-n} f(y) \omega(y) d \neq \infty$ if and only if $\int_{\mathbb{R}^n} |x-y|^{1-n} f(y) d \neq \infty$ for a non-negative function $f \in L^p(\mathbb{R}^n)$.

References

- [1] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
- [2] C. Fefferman, Convergence on almost every line for functions with gradient in $L^{p}(\mathbb{R}^{n})$, Ann. Inst. Fourier 24 (1974), 159–164.
- [3] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
- [4] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
- [5] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
- [6] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture notes, Hiroshima Univ., 1973.

Department of Mathematics, Faculty of Science, Hiroshima University

œ