On the Limits of p-Precise Functions along Lines Parallel to the Coordinate Axes of $\boldsymbol{R}^{\boldsymbol{n}}$

Yoshihiro MIZUTA
(Received January 16, 1976)

1. Introduction and statement of the main result

Recently, C. Fefferman [2] proved the following result: Let $1<p<n$ and let u be a C^{1}-function on $R^{n}=R \times R^{n-1}(n \geqq 2)$ such that $\int_{R^{n}}|\operatorname{grad} u|^{p} d x<\infty$. Then there is a constant c such that $\lim _{x_{1} \rightarrow \infty} u\left(x_{1}, x^{\prime}\right)=c$ for almost all $x^{\prime} \in R^{n-1}$.

In the present note, we shall give an improvement of this result by using the capacity $C_{1, p}$:

$$
C_{1, p}(E)=\inf \|f\|_{p}^{p} \quad \text { for } \quad E \mathrm{c} R^{n},
$$

where the infimum is taken over all non-negative functions / in $L^{p}\left(R^{n}\right)$ such that $\int \mid x-y \backslash^{1-n} f(y) d y \geqq$ fior all $\times 6 E$. This capacity is a special case of the capacity $C_{k ; \mu ; p}$ introduced by N. G. Meyers [4]. We shall show

THEOREM 1. Let $1<p<n$ and let u be a p-precise function on $R^{n}=R \times$ R^{n-1}. Then there are a constant c and a Borel set E^{\prime} in R^{n-1} with $C_{1, p}(\{0\} \times$ $\left.E^{\prime}\right)=0$ such that

$$
\lim _{x_{1} \rightarrow \infty} u\left(x_{1}, x^{\prime}\right)=c \quad \text { for all } \quad x^{\prime} \in R^{n-1}-E^{\prime} .
$$

For p-precise functions, see [6; Chap. IV] (also cf. [3; Chap. III, § 2], in which they are called Beppo Levi functions of order p). Note that for a pprecise function u on $R^{n}, \operatorname{grad} u$ is defined almost everywhere and $\int_{\boldsymbol{R}^{n}}|\operatorname{grad} u|^{p} d x$ $<\infty$. Also note that if $C_{1, p}\left(\{0\} \times E^{\prime}\right)=0$, then the $(n-1)$-dimensional Lebesgue measure of E^{\prime} is zero (see [3; Theorem A], [1; Theorem 1 in \S IV] and our Lemma 2).

The proof of this theorem is based on the following proposition, which is a special case of Theorem 1 on account of [6; Theorem 9.6] (also cf. [5; Theorem 5.1]).

PROPOSITION 1. Let $1<p<n$ and let $f \in L^{p}\left(R^{n}\right)$. Then there is a Borel set $E^{\prime} \subset R^{n-1}$ with $C_{1, p}\left(\{0\} \times E^{\prime}\right)=0$ such that

$$
\lim _{x_{1} \rightarrow \infty} \int_{R^{n}}|x-y|^{1-n} f(y) d=0 \quad \text { for all } \quad x^{\prime} \in R^{n-1}-E^{\prime}
$$

where $x=\left(x_{1}, x^{\prime}\right)$.
We shall see that Proposition 1 is the best possible as to the size of the exceptional set (Remark 2).

2. Proof of Proposition 1

We may assume that $f \geqq 0$. Let r be a positive number and j a positive integer. If $|x|>2 r$, then we have by Holder's inequality

$$
\begin{align*}
& \int_{\text {|y| }}|x-y|^{1-n} f(y) d y \leqq \mid f \|_{p_{l}}\left\{\int_{|y| \leqq r}|x-y|^{p^{\prime}(1-n)} y\right\}^{1 / p^{\prime}} \tag{1}\\
& \leqq\|f\|_{p}\left\{\int_{|x-y| \geqq r}|x-y|^{p^{\prime}(1-n)} d y\right\}^{1 / p^{\prime}}=M\|f\|_{p^{\prime}} r^{1-n / p}
\end{align*}
$$

where $1 / p+1 / p^{\prime}=1$ and M is a constant independent of r. On the other hand, from the definition of $C_{1, p}$ it follows that

$$
\begin{equation*}
\left.\underset{\mathrm{M}}{C_{1, p}}\left(\left\{x_{j|y|>r} \quad|x-y|^{1-n} f(y) d y\right\rangle_{\langle j 2 . \mathrm{j}}\right\}\right) \leqq(2 j)_{p_{|y|>r}^{p}} f(y)^{p} d y \tag{2}
\end{equation*}
$$

If r is sufficiently large, say $r \geqq r_{j}$, then the right-hand sides of (1) and (2) are smaller than $(2 j)^{-1}$ and 2^{-j} respectively. Set

$$
\omega_{j}=\left\{x:|\mathrm{x}|>2 r_{j}, \Gamma^{\Gamma}|x-y|^{1} \quad n^{n}(y) d y>1 / j\right\} .
$$

Then

$$
C_{1, p}\left(\omega_{j}\right) \leqq C_{1, p}\left(\left\{x ; \int_{|y|>r_{j}}|x-y|^{1-n} f(y) d y>\frac{1}{2 j}\right\}\right)<2^{-j}
$$

Set $E_{k}=\cup_{j=k}^{\infty} \omega_{j}$ and $E=\cap_{k=1}^{\infty} E_{k}^{*}$, where E_{k}^{*} is the projection of E_{k} to the hyperplane $R_{0}^{n}=\left\{\left(0, x^{\prime}\right) ; x^{\prime} \in R^{n-1}\right\}$. It is easy to see that $\lim _{x_{1} \rightarrow \infty} \int\left\{\left\{x_{1}-y_{1}\right)^{2}+\mid x^{\prime}\right.$ $\left.-\left.y^{\prime}\right|^{2}\right\}^{(1-n) / 2} f(y) d_{\mathcal{F}} 0$ if $\left(0, x^{\prime}\right)$ does not belong to E. If we show that $C_{1, p}\left(E_{k}^{*}\right)$ $\leqq C_{1, p}\left(E_{k}\right)$ for each fc, then we have $C_{1, p}(E)=0$, and hence the proposition. Thus it remains to show

LEMMA 1 (cf. [6; Theorem 8.1]). Let $1<p<\infty$. For any set $E \subset R^{n}$ denote by E^{*} the projection of E to R_{0}^{n}. Then we have

$$
C_{1, p}\left(E^{*}\right) \leqq C_{1, p}(E) .
$$

3. Proof of Lemma 1

To prove Lemma 1, we consider the symmetrization of functions with respect to R_{0}^{n}. First, let $\varphi: R^{1} \rightarrow R^{1}$ be a non-negative measurable function. The symmetrization φ^{*} of φ is defined by

$$
\varphi^{*}(t)=\inf \left\{r \geqq 0 ; \int_{\varphi(s) \geqq r} d s \leqq 2|t|\right\} .
$$

For a non-negative measurable function / on R^{n}, we define its symmetrization $/^{*}$ (with respect to R_{0}^{n}) by $f^{*}\left(x_{1}, x^{\prime}\right)=\varphi_{x^{\prime}}^{*}\left(x_{1}\right)$, where $\varphi_{x^{\prime}}\left(x_{1}\right)=f\left(x_{1}, x^{\prime}\right)$, for $x^{\prime} \in R^{n-1}$ such that $\varphi_{x^{\prime}}$ is measurable. We see that f^{*} is a non-negative measurable function defined a.e. on R^{n} and has the following properties:
(a)

$$
{ }_{J_{R^{n}}}^{c} f^{*}(x)^{p} d x={ }_{J_{R^{n}}}^{c} f(x)^{p} d x ;
$$

(b)

$$
\int_{\mathcal{R}^{n}} f^{*}(x) g^{*}(x) d x \geqq_{J_{R^{n}}} f(x) g(x) d x
$$

for any non-negative measurable function g on R^{n}.
Now, let f be a non-negative function in $L^{p}\left(R^{n}\right)$ such that $\int_{R_{R^{n}}}|x-y|^{1-n} f(y) d y$ $\geqq 1$ for all $x e E$. Let $x=\left(x_{1}, x^{\prime}\right) \in E$ and put $x^{*}=\left(0, x^{\prime}\right)$. Since the symmetrization of the function $|x-y|^{1-n}$ as a function in y is $\left|x^{*}-y\right|^{1-n}$, we have by property (b)

$$
\int_{R^{n}}\left|x^{*}-y\right|^{1-n} f^{*}(y) d y \geqq \int_{R^{n}}|x-y|^{1-n} f(y) d y \geqq 1 .
$$

Hence, in view of (a), we obtain Lemma 1.

4. Proof of Theorem 1

First, we remark the following lemma (cf. [4; Theorem 3]):
LEMMA 2. Let $1<p<n$ and $E \subset R^{n}$. Then $C_{1, p}(E)=0$ if and only if there is a non-negative function f in $L^{p}\left(R^{n}\right)$ such that $\int_{\boldsymbol{R}^{n}}|x-y|^{1-n} f(y) d y=00$ for every $x \in E$.

In view of this lemma, [6; Theorem 9.11 and its remark, Theorem 9.3] or [5; Theorems 4.1 and 3.2] implies that a p-precise function u on R^{n} has the following integral representation:

$$
u(x)=c_{1} \sum_{i=1}^{n} \frac{x_{i}-y_{i}}{|x-y|^{n}} \frac{\partial u}{\partial y_{i}}(y) d y+c_{2}
$$

except for x in a Borel set E_{1} with $C_{1, p}\left(E_{1}\right)=0$,where c_{1} and c_{2} are constants. Let \boldsymbol{E}_{1}^{*} be the projection of \boldsymbol{E}_{1} to $\boldsymbol{R}_{0}^{\boldsymbol{n}}$. By Proposition 1, there is a Borel set \boldsymbol{E}_{2} $\subset R_{0}^{n}$ such that $C_{1, p}\left(E_{2}\right)=0$ and

$$
\left.\lim _{x_{1} \rightarrow \infty} \int|x-y|\right|^{1-n}|\operatorname{grad} u| d y=0
$$

for all $\left(0, x^{\prime}\right) \in R_{0}^{n}-E_{2}$, where $x=\left(x_{1}, x^{\prime}\right)$. Obviously, $C_{1, p}\left(E_{1}^{*} U E_{2}\right)=0$ (cf. [4; Theorem 1]) and $\lim _{x_{1} \rightarrow \infty} u\left(x_{1}, x^{\prime}\right)=c_{2}$ if $\left(0, x^{\prime}\right) \notin E_{1}^{*} \cup E_{2}$. Thus Theorem 1 is proved.

5. Remarks

REMARK 1. If we combine our theorem with a result of B. Fuglede [3; Theorem A] and the above Lemma 2, we have

THEOREM 2. Let u be a p-precise function on $R^{n}(1<p<n)$. Then there is a constant c such that $\lim _{x_{1} \rightarrow \infty} u\left(x_{1} x^{\prime}\right)=c$ if $\left(0, x^{\prime}\right) \notin E$, where E is a Borel set in R_{0}^{n} such that $C_{p}(E)=0$ if $p \leqq 2$ and $C_{p-\varepsilon}(E)=0$ for any ε with $0<\varepsilon<p$ ifp >2.

REMARK 2. Proposition 1 is the best possible as to the size of the exceptional set: Given a set $E \subset R_{0}^{n}$ with $C_{1, p}(E)=0$, we set $\tilde{E}=\{x+(j, 0) ; x \in E$ and j is an integer\}. Then $C_{1, p}(\tilde{E})=0$. By Lemma 2 there is a non-negative function / in $L^{p}\left(R^{n}\right)$ such that $\int_{\int}|\mathrm{X}-y|^{1-n} f(y) d \mp \infty$ for every $x \in E$. We see that lim $\sup _{x_{1} \rightarrow \infty}$ $\int|x-y|^{1-n} f(y) d y=\infty$ if $\left(0, x^{\prime}\right) \in E$, where $x=\left(x_{1}, x^{\prime}\right)$.

REMARK 3. In connection with Proposition 1, we may be concerned with functions of the following form:

$$
u(x)=\int_{R^{n}}|x-y|^{1-n} f(y) \omega(y) d y
$$

where ω is a positive continuous function on R^{n} and $f \in L^{p}\left(R^{n}\right)$. The next two propositions show that it is of little value to consider a weight function ω.

PROPOSITION 2. Let $1<p<\infty$. If $\omega(y)=\omega\left(y_{1}, y^{\prime}\right) \rightarrow+\infty$ as $\left|y_{1}\right| \rightarrow \infty$, then there exists a non-negative function $f \in L^{p}\left(R^{n}\right)$ such that

$$
\lim _{x_{1} \rightarrow \infty} \sup _{J_{R^{n}}}|x-y|^{1-n} f(y) \omega(y) d y+\infty
$$

for every $x^{\prime} \in R^{n-1}$, where $x=\left(x_{1}, x^{\prime}\right)$.
PROOF. Let ε be a positive number and set $g(y)=1$ if $|y|<1$ and $=|y|^{-n / p-\varepsilon}$ if $|y| \geqq 1$. Then $g e L^{p}\left(R^{n}\right)$. Set $a_{r}=\inf \left\{\omega\left(y_{1}, y^{\prime}\right) ;\left|y_{1}\right|>\frac{r}{2}\right\}$ for $\mathrm{r}>0$ and set $g_{r}(y)=a_{r}^{-1 / 2} g\left(y-r e_{1}\right)$, where $e_{1}=(1,0, \ldots, 0) \in R^{n}$. We have a sequence $\left\{r_{j}\right\}, r_{j}>2$, such that $\sum_{j=1}^{\infty} a_{r_{j}}^{-1 / 2}<\infty$ Let $x^{*}=\left(0, x^{\prime}\right) \in R^{n}$ and $x^{(j)}=x^{*}+$ $r_{i} e_{1}$. Setting $f=\sum_{j=1}^{\infty} g_{r_{j}}$ and $u(x)=\int_{J}^{\{ }|x-y|^{1-n} f(y) \omega(y) d y$, we note

$$
\begin{aligned}
u\left(x^{(j)}\right) & \geqq \int\left|x^{(j)}-y\right|^{-n} g_{r_{j}}(y) \omega(y) d y \\
& \geqq a_{r_{j}}^{1 / 2} \int_{\left|x^{*-z}\right|<1}\left|x^{*}-z\right|^{1-n} g(z) d z \longrightarrow \infty
\end{aligned}
$$

as $j \rightarrow \infty$, which implies that f is the required function.
Proposition 3. Let $1<p<n$ and suppose $\omega\left(y_{1}, y^{\prime}\right) \rightarrow 0$ as $\left|y_{1}\right| \rightarrow \infty$. Then, Proposition 1 and Remark2 remain valid for the function ${ }_{J R^{n}}{ }^{\prime}|x-y|^{1-n}$ $f(y) \omega(y) d y$.

PROOF. This is seen from the fact that ${ }_{{ }^{〔} \mathbb{R}^{n}}|\mathrm{x}-y|^{1-n} f(y) \omega(y) d \geqslant \infty$ if and only if $\int_{R^{n}}|x-y|^{1-n} f(y) d F \infty$ for a non-negative function $f \in L^{p}\left(R^{n}\right)$.

References

[1] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
[2] C. Fefferman, Convergence on almost every line for functions with gradient in $L^{p}\left(\boldsymbol{R}^{n}\right)$, Ann. Inst. Fourier 24 (1974), 159-164.
[3] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
[4] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
[5] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
[6] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture notes, Hiroshima Univ., 1973.

Department of Mathematics,
Faculty of Science,
Hiroshima University

