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§ 1. Introduction

Let ¢ be an integer and Z,be the cyclic group of order g. A C*-differentiable
immersion / of a Z,-manifold in another Z,-manifold is called a Z, -equivariant
immersion (or simply a Z j-immer sion) if fis a Z,-equivariant map. The purpose
of this note is to study the conditions for the existence of some Z,-equivariant im-
mersions.

Let m and k be non-negative integers, and R™*2k be Euclidean (m+ 2k)-
space. Let R™ 2k be the Z,-manifold (R™*2*, Z ) with the action

u: VA me+2k ,Rm+2k
* q

defined by
H(T; (tl’--‘, tm’ Zm+ 1500s zm+k)) = (tb---s tmv sz+1"'-, sz+k)a

where T(=e2™/~1/4) is the generator of Z,, ty,..., t,, are real numbers (€R),
and z,4 {s...s Zm+r are complex numbers (eC = R?).

Let S2#*1be the unit (2n+ 1)-sphere in complex (n +1)-space C**1. Let
(S2m*1, Z,) be the Z,-manifold defined by the action

v:Z,x S2rtl—— s §20+ 1 y(T, (205..05 2,)) = (T2gy...5 T2,),

where Zo,..., Z, arc complex numbers with > "%-o|z;/?=1 The action v is free
and differentiable of class C®. The orbit manifold S2"*1/Z is the standard
lens space L"(q)mod g.

A. Jankowski obtained in [7] some non-existence theorems for Z,-immer-
sions. In this note we consider Z,-immersions (S"*!, Z))—R™2k, and study
the bounds of m for fixed k and n.

Asis easily seen, there is a Z -immersion of (S2#+1, Z)) in R™? ifand only
if there is an immersion of L*(q) in R™.

If k>n, (S2"*1,Z,))is Z,-immersible in R™ 2¥for any m, clearly. In case
k <n, we have the following results.

THEOREM 1. Let g be an integer >1. Then (S***!,Z)) is not Z-immer-
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sible in R2[n/21.2n

THEOREM 2. Let p be an odd prime and r be a positive integer. Let n and
k be integers with 0SkZ<n. Put

L= max{ill <i<n2l, (n_l{(+i>¢Omodp"’[("‘z"/("‘”]} :

Then there does not exist a Z,-immersion of (S2"*', Z,) in (R?"*2L,Z,,)
= R2n+2L-2k, 2k,

Iffc=0, Theorem 2 is a consequence of Corollary 3.6 of T. Kawaguchi and
M. Sugawara in [9]. A similar result for (S2"*1, Z,) is obtained from Corollary
6.7 in [12].

THEOREM 3. Let p be an odd prime and r be a positive integer. Let n and
k be integers with 0Sk=n. Assume that there is an integer m satisfying the

Jfollowing conditions:
(i) O0<k+mZ=[n/2],

(ii) (Zt;?) # (sp)?2 mod pfor any integer s with 0 < s < p"™1,

(ili)y n+m+1 % 0mod p[(n-m—k— 1)/(P- 13,
Then there does not exist a Z,-immersion of (S2"*1Z,,) in (R2m+2m+2k+1,
Z Y =R2n+2m+1,2k
v

Ifk=0, we have a corollary which establishes the non-existence of an immer-
sion of Lr(pr)in R2n+2m+1forsome n and m. Thisorollary gives a generaliza-
tion of Theorem C in [10] and Theorem 7.9 in [12].

There is an example of a Z -immersion of S2#*! in R™-2k when both m and
2k are less than 2n+ 1. Let (resv=1,se®v=T)be a point of S, where a, b, r and
s are real numbers with #2 +s2=1. Then the map f: S?—R*, defined by the
equality

f(reav=1, sebv=T) = ((r+s+2)e1®=1, (r—s—2)etv=T),

is a Z,-immersion of (§3, Z,)in R?:2, where ¢ is any integer > 1.

In § 2, the proofs of Theorems 1 and 2 are carried out by making use of the
y-operation in KO-theory (cf. [3]) and the fact that the generator & e/.}(JO(L"(p'))
is of order pr+ln=20/(p-1I ([9, Theorem 1.17). In §3, we prove Proposi-
tions 3.1 and 3.2 which show the existence of some relations between the immer-
sions of lens spaces and the stable homotopy types of the stunted lens spaces.
The proof of Theorem 3 is based on these propositions. In §4, the method in
§ 3 is applied to Z,-equivariant immersions, and some results (Theorems 4.1 and
4.2) are obtained.
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§2. y-operations in KO-theory
For a Z,space (X,Z),let O©=0(X,Z,) be a Z,-vector bundle (X xR2,X,
p1, R) defined as follows.
(1) p;: XxR?2->Xis the projection onto the first factor.
(2) The action of Z, on X'x R? is the diagonal action: T(x,z)=(Tx, Tz),
where x€ X, ze R2, and T(=e2"/~1/9)is the generator of Z,.
Then we have immediately the following

LEMMA 2.1. ///: X—Yis a Z,-map between Z spaces X and Y, we have
f*(Y, Z)=0(X, Z,).

A G-vector bundle E—X determines naturally a vector bundle E/G—X/G.
This correspondence induces a homomorphism

p: KOg(X) — » KO(X/G).

It is well-known that p is an isomorphism if the G-action on X is free (cf. [4,
Proposition 1.3.1]).

Let # be the real restriction of the canonical complex line bundle over L"(q).
Considering the transition functions we see easily

LEMMA 2.2. p(O(S2m+1, Z )= n.

Define the action of Z, on the total space E,, ,; of the Whitney sum of the
m-dimensional trivial bundle m over R™:2* and kO(R™*2k, Z ) as follows:

T((u’ tl)r--, (u’ tm)> (u! Zm+ 1)’--; (ua Zm+k))
= ((Tu’ tl)r--a(Tu’ tm)’ (Tu’ sz+ 1)""’ (Tua sz+k))7

where ueR™ 2k, t,e R (i= 1,..., m), z,+ ;€ R? (j=1,..., k),and Tisthe generator
of Z,. Then the following holds.

LEMMA 2.3.  There is a Z;bundle isomorphism of the tangent Z,bundle
©(R™2*)onto the Z;bundle m@kO(R™*2k, Z ).

PROOF. Carrying a point (U, (¢15-.-stms Zm+ 15---s Zm+x)) Of the total space
of T(RmZk) into a pOil’lt ((ua tl)s-'-,(Ms tm)’ (u’ Zm+ 1)9" ’ (M9 zm+k))GEm,2k’ we
obtain a desired Z,-bundle isomorphism. g.e.d.

Now we are in a position to prove

PROPOSITION 2.4. Let q be an integer >1, and n and k be integers with
0<k<n. Put
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L= max{j|<”‘J’F+f>af # 0}, where &= 5-2e KO(L"(q)).

Then there does not exist 0 Z,-immersion of (S?"*1, Z)into (R2?"*2L,Z )=
R2n+2L—2k,2k.

PROOF.  Suppose that there exists a Z,immersion /: (S2"*1, Z )—(R™+2k,
Z,)=Rm2k,  Let v, be the normal Z,-bundle of f. Then we have

7(S2n+1, Z)®v, = f*7(Rm2k),

Applying p to the equation, noting that p(z(S2"*!, Z,))= t(L"(q)), and using
Lemmas 2.1-2.3, we get

WL (@)D pv = pf Hm@KOR™ 2, Z,) = m@kpb(S?"+1,Z,) = m@kr.
Since ©(L"(q))@®1 =(n+ 1)n, we have
pvp=m+1+(k—n—1n=m+2k-2n—1+(k—n—-1)¢ in KO(L"(q)).
Let vo = (k— n—1)é be the stable class ofpv,. Then it follows that
g.dimvy < m+2k—2n-1,

where g. dim v, denotes the geometric dimension of vy.  According to [3, Propo-
sition (2.3)], y/(vo) = O for j>g.dimv,, where y/: KO(X)—KO(X}s the Grothen-
dieck y-operation. Hence we sce

pi(vg) = 0 for j>m +2k—-2n—1.
On the other hand,

720V (o)t! = y,(vo) = v((k—n—1)6) = y(&)*~ !
= (1+t—at2)k—n1 = 5‘_;‘;0("—]'." 1 )6f(t—t2)1‘
= Sao(-("TEH )aia—r2y
(Here we use the fact that fcrgn.) For the given L, we have
W00 = Sheo( = DI("TEH ) 51— 12 = S3ropvo)0.

Therefore 92L(vo)#0. This implies that 2Ls# m+2k—2n, as desired. g.e.d.

PROOF OF THEOREM 1. Iffc=n, we have L= [n/2] by [9, Proposition 2.6].
Then Theorem 1 follows from Proposition 2.4. g.e.d.
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PROOF OF THEOREM 2. Ifq =p*, the order of &/ is equal to pr+l(n=2i)/(p=1)]
([9, Theorem 1.1]). Hence Theorem 2 also follows from Proposition 2.4.
q.e.d.

§3. Mod p" S-relation

For a space X and an integer k=0, we denote by S*Xthe fc-fold suspension
of X. Two spaces X and Y are said to be mod q S-related, if there are non-
negative integers ¢ and b, and a map f: S4X—S?Y which induces isomorphisms
of all homology groups with Z -coefficients. We prepare the following two propo-
sitions for the proof of Theorem 3.

PROPOSITION 3.1. Let p be an odd prime, r be a positive integer, and | and
n be integers with 0< 1< [n/2].  Suppose that there is a positive integer t satisfy-
ing thefollowing conditions:

(i) (I+Dnhas linearly independent 2t cross-sections, where n is the real
restriction of the canonical complex line bundle over L*(p").

(i) ( )i(sp)2 mod pfor any integer s with 0<s<p"™ 1,

Then the stunted lens spaces L"(p")[L'*~1(p") and Lr+'(p")[L*1**(p"are
mod p" S-related.

PROPOSITION 3.2. Let p be a prime, r be a positive integer with p"#2,
and 1 and n be integers with 0<l<n. // the stunted lens spaces L*(p")/L'~1(p")
and L*(p")/L'*=1*Y(p"are mod p" S-related, we have

t=0 mod pt=1-1/=-1],

PROOF OF PROPOSITION 3.1. Let g=p" and L"=L"(p") It follows from
the property (i) that there is a 2/-dimensional vector bundle a over L" satisfying

(D (I+)n = 2tDo.

Let y(e) and p(@) be the Euler class and thej-th Pontrjagin class of a, respectively.
Then it is well-known that

I
1@? = p@ = (11 ),
where x is the generator of H2(L";Z). Now, our assumptions imply that

2 20y = u(x"),

where z, denotes the image of z by the mod ¢ reduction, and u is some integer
such that u #0 mod p.
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Let D and F denote the total spaces of the disk and the sphere bundles as-
sociated with the bundle a, respectively. Consider the commutative diagram

(cf.[14]))
HXD, E; Z,) * HY(D; Z,)

y -

H¥2(L"; Z,)) -2 HY(L"; Z,),

where j* is the homomorphism induced by the inclusionj: D—(D, E), o* is the
isomorphism induced by the projection m: D—L", ¢ is the Thom isomorphism,
and A is the homomorphism defined by

AGO =y U X(a)q’ for y er—Zl(Ln; Zq).

It follows from (2) that A is isomorphic for each fc with 2I<k<2n+ 1. By (L*)*
we mean the Thom complex D/E of a. Then we see from the above commutative
diagram that the natural inclusion A: L"—(L")* induces isomorphisms

A*  HY(L")* ; Z,)) — » HXL"; Z,Yor 21k <2n + /.

Since (L™)* is (2] —1)-connected, there is a map /: L"/L}*~1—(L")* such that
A is homotopic to fp, where p: L"—L"/L'~1 is the projection. It is easy to see
that / induces isomorphisms

» HY(L*[LY; Z)for 0 <k <2n + 1.

f* + H{(L")°Z,)
According to [2, Lemma (2.4)] and [8, Theorem 1], there are natural homeomor-
phisms

SZ'(L")“N (Ln)Zr@a’ (Ln)(l+t)rl ~ Ln+l+t/Ll—1+t.
Thus we obtain, by (1), a natural homeomorphism

l/,:SZI(Ln)a ,Ln+l+t/Ll—1+t-

Then there is a map

ﬂf:Szt(Ln/Ll-l) >L”+'/L’_1+‘

such that ¥ S2%*f ihomotopic to ig, where S2'fis the 2¢-fold suspension of f and
{; Lvt[LI-1+t [ntl+t[[ =1+t jq the natural inclusion. We see that the map g
induces isomorphisms of all cohomology groups with Z,-coefficients. Hence g
induces isomorphisms of &l homology groups with Z -coefficients. g.ed.

PROOF OF PROPOSITION 32. Put q=p" and L"=L"(p"). By the assump-
tion there are non-negative integers a and b, and a map
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g: S"(L"/L'_l) - S"(L"“/L"'l“)

which induces isomorphisms of all homology groups with Z -coefficients. We
may assume that g is cellular. It is not difficult to prove that g induces a map

G0 SULY/L) — S*(LYILY")

which induces isomorphisms of all homology groups with Z -coefficients, where
L3 denotes the 2n-skeleton of L. Obviously g, is a homotopy equivalence, and
the result follows from [13, Theorem 1.1]. q.e.d.

PROOF OF THEOREM 3. Put g=p". Suppose that there exists a Z,-immer-

sion
f: (821, Z,) —> R2n+2m+ 1,2k,
Let v be the normal Z,-bundle of f. Then we have
(L"(@)®pv, = (2n+2m+1)Dkn,
as in the proof of Proposition 2.4. Therefore
(n+1-kn@pv;=2n+2m+2.

Take a sufficiently large positive integer a so that 4= gpr+ln=2)/(p-1)]

satisfies 24 +2k-2n-2>2n+ 1. Then Ac=0, because oc(=#-2 e/I\(/O(L"(q)))
is of order pr+t¢ -2)/(>=11 ([9, Theorem 1.1]), and hence we have

(A—n—14k)n = Q2A—-2n—2m—2)+pv, = 2A—2n—2m—2)®pv,.

Putting t=A—n—m —1[ and I=/c+m, we see that the conditions (i) and (ii)
of Proposition 3.1 are satisfied. (Notice that a can be taken sufficiently large.)
Hence by Propositions 3.1 and 3.2 we get

t=A-n—-m—1= —n—m—1= 0 mod pl"-m=k=1)/(p=1)],

But this contradicts the assumption (iii). g.e.d.

§4. Z,-equivariant immersions

Let (S", Z,) be the Z,-manifold whose Z,-action on S* is the antipodal in-
volution, and R™ * be the Z,-manifold (R™**,Z,) whose Z,-action on Rm*k
is given by the involution

I: Rmtk 5 Rm+k

T(tls-”’ tm! tm+ JERRRS] tm+k) = (tl""’ tm) _tm+ | EXERT _tm+k),
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where T is the generator of Z, and ty,..., t,,+; are real numbers.
For integers m and n with 0< m <n, denote by ¢(n, m) the number of integers
s such that m<s=<n and s=0, 1, 2 or 4 mod 8. Let yY(n, m) be the integer given
by
¢(n, m), if m=0mod4,
Y(n, m) = _
¢(n, m— 1), if m # 0 mod4.
THEOREM 4.1. Let k and n be integers such that 0<k=<n and
(0) n+1—k=0mod8.

Assume that there is a non-negative integer m satisfying the following condi-
tions:

(i) n<m+k=2n,

(ii) (n'f;f_lk);éo mod?2,

(ili) n+1—k=#0 mod2¥(mm+k=m—-1

Then there does not exist a Z,-immersion of (S", Z,) in R™*=(Rm*k,
Z,).

THEOREM 4.2. Suppose that the conditions (0) and (iii) in Theorem 4.1
are replaced by the following condition:

n+1=0 mod 2¢2r=m=k.0) ifand only if 2n +2—k#0 mod 2¢#(2n-m~k.0),
Then the same conclusion as Theorem 4.1 holds.

PROOFS OF THEOREMS 4.1 AND 4.2. Assume that there is a Z,-immersion
/i (8", Z,)=»R™ k. Let v, be the normal Z,-bundle of f. Then it holds that

(n+ 1)@pv, = (m+1)@KE (cf. the proof of Theorem 3.4 in [7]),

where & is the canonical line bundle over the real projective space RP". Since
E®E =1, we have

(1) (m+1)§=n+1-k)@pv,®¢.

Applying Lemmas (4.1) and (4.2) in [11] to the equality (1), we obtain Theorem
4.1.

Applying Lemma (4.1) in [11] to the equality (1), and using the fact that
RP"/RP™1is S-reducibleif and only if n+ 1=0 mod2¢(»—m0 (cf. [6, (3.1)],
[5, (2.7)] and [1]), we have Theorem 5.2. g.e.d.
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