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§ 1. Introduction

Let q be an integer and Zq be the cyclic group of order q. A C°°-dirΓerentiable
immersion / of a Z^-manifold in another Z^-manifold is called a Zq-equivariant
immersion (or simply a Z Dimmer siori) if /is a Z^-equivariant map. The purpose
of this note is to study the conditions for the existence of some Z^-equivariant im-
mersions.

Let m and k be non-negative integers, and Rm+2k be Euclidean (m + 2/c)-
space. Let Rm>2k be the Z^manifold (Rm+2k, Zq) with the action

μ:ZqxRm+2k - > R'n+2k

defined by

1,..., zm+k)) = (tl9...9 tm, Tzm+1,..., Tzm+fc),

where T( = e2π^~1/q) is the generator of Zq, ί l9..., tm are real numbers (e.R),
and zm+1,..., zm+lc are complex numbers (eC = R2).

Let S2n+ί be the unit (2n+l)-sphere in complex O + l)-space CM+1. Let
(S2"+1, Zq) be the Z^-manifold defined by the action

v: ZqxS2»+ί — > S2»+1; v(Γ, (z0,..., zn)) = (Γz0,..., Γzπ),

where z0,..., zn arc complex numbers with Σ"=olz./ l2 : =l The action v is free
and differentiable of class C°°. The orbit manifold S2n+ί/Zq is the standard
lens space Lw(g)modg.

A. Jankowski obtained in [7] some non-existence theorems for Z2-immer-
sions. In this note we consider Z^-immersions (S"+1, Z€)->Rm'2fc, and study
the bounds of m for fixed k and n.

As is easily seen, there is a Z^-immersion of (52n+1, Zβ) in Rm>0 if and only
if there is an immersion of Ln(q) in Rm.

If k>n, (52rt+1, Zq) is Z^-immersible in Rm 2k for any m, clearly. In case
k^n, we have the following results.

THEOREM 1, Let q be an integer >1, Then (S2n+l, Zq) is not Zq-immer-
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sible in R2["t2i>2n.

THEOREM 2. Let p be an odd prime and r be a positive integer. Let n and

k be integers with 0^/c^n. Put

L = max i|l ̂  i ̂

Then there does not exist a Zpr-immersion of (S2|I+1, Zpr) in (R2n+2L, Zpr)

If fc = 0, Theorem 2 is a consequence of Corollary 3.6 of T. Kawaguchi and

M. Sugawara in [9]. A similar result for (S2/I+1, Z4) is obtained from Corollary

6.7 in [12].

THEOREM 3. Let p be an odd prime and r be a positive integer. Let n and

k be integers with Orgfc^n. Assume that there is an integer m satisfying the

following conditions:

( i ) 0 < f c + m£[n/2],

(ii) ("*£*) Φ (sp)2moάpr for any integer s with 0 ^ s < p*"1,

(iii) n + m + 1 φ 0 mod pK»«-m-*- 1 )/(P- i )3.

Γften ίfcere does noί exisi a Zpr-immersion of(S2n+ί, Zpr) in (R2n+2m+2k+^
2 \ = R2n+2m+l,2kt

If /c = 0, we have a corollary which establishes the non-existence of an immer-
sion of L"(pr) in R2n+2m+ι fQT some n ancj m< jhjs corollary gives a generaliza-

tion of Theorem C in [10] and Theorem 7.9 in [12].

There is an example of a Z9-immersion of S2n+1 in β™'2* when both m and

2k are less than 2n + 1. Let (rea^~1

9 seb^/~ί) be a point of S3, where α, b, r and

s are real numbers with r2 + s2 = l. Then the map /: 53->,R4, defined by the

equality

is a Z^-immersion of (S3, Zq) in jR2 '2, where q is any integer > 1.

In § 2, the proofs of Theorems 1 and 2 are carried out by making use of the

y-operation in XO-theory (cf. [3]) and the fact that the generator σl e KO(Ln(pr))
is of order p'+[(«-2θ/(P-υ:ι ([99 Theorem 1.1]). In §3, we prove Proposi-

tions 3.1 and 3.2 which show the existence of some relations between the immer-

sions of lens spaces and the stable homotopy types of the stunted lens spaces.

The proof of Theorem 3 is based on these propositions. In § 4, the method in

§3 is applied to Z2-equivariant immersions, and some results (Theorems 4.1 and

4.2) are obtained.
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§ 2. ^-operations in KO-theory

For a Zg-space (X, Zq)9 let Θ = Θ(X, Zq) be a Z^- vector bundle (XxR2, X,
pl9 R2) defined as follows.

(1) Pί : X x R2-^X is the projection onto the first factor.
(2) The action of Zq on X x R2 is the diagonal action: T(x, z) = (Tx, Tz\

where xeX, zeR2, and T(=e2π^'=τ^) is the generator of Zq.
Then we have immediately the following

LEMMA 2.1. ///: X-+Y is a Zq-map between Zq-spaces X and Y, we have

A G-vector bundle E^X determines naturally a vector bundle E/G-+X/G.
This correspondence induces a homomorphism

p:KOG(X) - >KO(XIG).

It is well-known that p is an isomorphism if the G-action on X is free (cf. [4,

Proposition 1.3.1]).
Let η be the real restriction of the canonical complex line bundle over Ln(q).

Considering the transition functions we see easily

LEMMA 2.2. p(θ(S2n+ί, Zq)) = η.

Define the action of Zq on the total space Emt2k of the Whitney sum of the
m-dimensional trivial bundle m over Rm>2k and kθ(Rm+2k, Zq) as follows:

T((U, ίj,..., (W, ίm)> 0» Zm+l)> — > (W»

= ((71ι, ίj,..., (Tli, O, (Λ, K*+i),.-, (Λ, Tzm+fc)),

where w e Λm 2*, ^eJR (/ = !,..., m), zm+7-e^2 (j = l,..., k), and T is the generator
of Zq. Then the following holds.

LEMMA 2.3. There is a Zq-bundle isomorphism of the tangent Zq-bundle
τ(Rm>2k) onto the Zq-bundle m®kθ(Rm+2k, Zq).

PROOF. Carrying a point (u, (tί9...9 tm9 zm + l9...9 zm+k)) of the total space
of τ(Rm 2k) into a point ((ιι, ί^,..., (M, ίm), (ιι, zM+1),.. , (M, zm+fc))eEm>2k, we
obtain a desired Z^-bundle isomorphism. q. e. d.

Now we are in a position to prove

PROPOSITION 2.4. Let q be an integer >1, and n and k be integers with
0<k<n. Put
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, where σ = η -

TVzen ί/iere does n0f exisf 0 Zq-immersion of(S2n+ί,Zq) into (R2n+2L

9 Zq)

PROOF. Suppose that there exists a Z^-immersion /: (S2lί+1, Zq)->(Rm+2k,
Zg) = ,Rw'2*. Let Vy be the normal Z^-bundle of/. Then we have

τ(S2w+1, Zq)®vf =f*τ(Rm>2k).

Applying p to the equation, noting that p(τ(S2n+1, Z€))= τ(Ln(q)), and using
Lemmas 2.1-2.3, we get

τ(L"(q))®pvf = pf*(m@kθ(Rm+2k, Zq)) = m®kpθ(S2n+ί, Zq) = mφkη.

Since τ(LMte))θl =(n + l)η, we have

pV/ = m + l+(fc-~n-l)?7 = m + 2fc-2tt-l+(/c-n-l)σ in KO(Ln(q)).

Let v0 = (fe — n — l)σ be the stable class of pvf. Then it follows that

where #. dim v0 denotes the geometric dimension of v0. According to [3, Propo-
sition (2.3)], y''(v0) = 0for7'>0.dimv0, where γJ; KO(X)-+KO(X) is the Grothen-
dieck -y-operation. Hence we see

7./(v0) = 0 for j>m + 2k-2n-l.

On the other hand,

(Here we use the fact that fcrgn.) For the given L, we have

Therefore 72L(v0)^0. This implies that 2L^m+2fc-2n, as desired. q.e.d.

PROOF OF THEOREM 1. If fc = n, we have L = [n/2] by [9, Proposition 2.6].
Then Theorem 1 follows from Proposition 2.4. q.e.d.
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PROOF OF THEOREM 2. If q = pr, the order of σJ is equal to p'+C(
([9, Theorem 1.1]). Hence Theorem 2 also follows from Proposition 2.4.

q.e.d.

§3. Mod pr S-relation

For a space X and an integer /c^O, we denote by SkX the fc-fold suspension
of X. Two spaces X and Y are said to be modq S-related, if there are non-
negative integers a and b, and a map/: SαX->Sfcy which induces isomorphisms
of all homology groups with Z^-coefficients. We prepare the following two propo-
sitions for the proof of Theorem 3.

PROPOSITION 3.1. Let p be an odd prime, r be a positive integer, and I and
n be integers with 0< /g [rc/2]. Suppose that there is a positive integer t satisfy-
ing the following conditions:

(i) (l+t)η has linearly independent 2t cross-sections, where η is the real
restriction of the canonical complex line bundle over Ln(pr).

(ii) ( * Jφ(sp)2modpr for any integer s with Q^s<pr~ί.

Then the stunted lens spaces Ln(pr)/Ll~l(pr) and Ln+t(pr)/Ll~ί+t(pr) are
modpr S-related.

PROPOSITION 3.2. Let p be a prime, r be a positive integer with
and I and n be integers with 0</<n. // the stunted lens spaces Ln(pr)/Ll~1(pr)
and Ln+t(pr)/Ll~1+t(pr) are modpr S-related, we have

t = 0 mod p[(«-z- * >/<*>- ̂

PROOF OF PROPOSITION 3.1. Let q = pr and L" = LM(pr) It follows from
the property (i) that there is a 2/-dimensional vector bundle α over Ln satisfying

(1) (/ + ί)ι? = 2ίθα.

Let χ(α) and p/α) be the Euler class and the j-ih Pontrjagin class of α, respectively.
Then it is well-known that

where x is the generator of H2(Ln', Z). Now, our assumptions imply that

(2) χ(α), = «(*')„

where zq denotes the image of z by the mod q reduction, and u is some integer
such that u φ 0 mod p.
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Let D and E denote the total spaces of the disk and the sphere bundles as-
sociated with the bundle α, respectively. Consider the commutative diagram
(cf. [14])

where y* is the homomorphism induced by the inclusion j: D-»(D, E), π* is the
isomorphism induced by the projection π: D-»LΠ, φ is the Thorn isomorphism,
and h is the homomorphism defined by

AGO = y U χ(α),, for jeH*-2'(L»; Zβ).

It follows from (2) that A is isomorphic for each fc with 2/gfe^2n + 1. By (L")α

we mean the Thorn complex D/E of α. Then we see from the above commutative
diagram that the natural inclusion λ: Lw->(L")α induces isomorphisms

λ* :#*((£")" ;Z f) - ^Hk(Ln;Zq) for 2l^k^2n + l.

Since (Lw)α is (27 -Unconnected, there is a map /: L"/Lί-1-^(Lw)α such that
λ is homotopic to fp, where p: Ln-*LnjLl~l is the projection. It is easy to see
that / induces isomorphisms

/* : Hk((L»Y Zβ) - > Hk(Ln/Ll- l;Zq) for 0 ^ k ^ 2n + 1.

According to [2, Lemma (2.4)] and [8, Theorem 1], there are natural homeomor-
phisms

S2t(LnY ~ (LΠ)2ί®α, (Lw)^+ί>" - Ln+l+tlLl~ί+t.

Thus we obtain, by (1), a natural homeomorphism

^: S2t(LnY - > Ln+l+tILl-1+t.

Then there is a map

flf: S2t(LnILl~i) - > Ln+t/Ll-1+t

such that ψS2tfis homotopic to jgf, where S2tf is the 2ί-fold suspension of/ and

ί: Ln+YL/-1+ί-»LΠ+/+ί/L'~1+ί is the natural inclusion. We see that the map g
induces isomorphisms of all cohomology groups with Z€-coefficients. Hence g
induces isomorphisms of all homology groups with Z^-coefficients. q. e. d.

PROOF OF PROPOSITION 3.2. Put q = pr and Ln = Ln(pr). By the assump-
tion there are non-negative integers a and b, and a map
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g:S"(L"ILt-^ —

which induces isomorphisms of all homology groups with Zβ-coefficients. We
may assume that g is cellular. It is not difficult to prove that g induces a map

which induces isomorphisms of all homology groups with Z^-coefficients, where
Lg denotes the 2n-skeleton of L". Obviously g0 is a homotopy equivalence, and
the result follows from [13, Theorem 1.1]. q.e.d.

PROOF OF THEOREM 3. Put q = pr. Suppose that there exists a Z9-immer-

sion

Let vf be the normal Z4-bundle of/. Then we have

as in the proof of Proposition 2.4. Therefore

(n + 1 - k)η ®pvf = 2n + 2m + 2.

Take a sufficiently large positive integer a so that ^4 = αp'+t(»-2)/(p-i)]

satisfies 2 A + 2k - 2n - 2 > 2n + 1 . Then ^σ = 0, because σ ( = η - 2 e KO(Ln(q)))
is of order pr+[o -2)/(p-o] ([9, Theorem 1.1]), and hence we have

Putting t = A — n — m — l and / = /c + m, we see that the conditions (i) and (ii)
of Proposition 3.1 are satisfied. (Notice that a can be taken sufficiently large.)
Hence by Propositions 3.1 and 3.2 we get

t = A-n-m-l = -n-m-1 = 0

But this contradicts the assumption (iii). q. e. d.

§ 4. Z2-equίvariant immersions

Let (Sw, Z2) be the Z2-manifold whose Z2-action on Sn is the antipodal in-
volution, and Rm k be the Z2-manifold (Rm+k

9 Z2) whose Z2-action on Rm+k

is given by the involution

Γ: Rm+k - > Rm+k

T(tί9...9 ίm,
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where T is the generator of Z2 and f l v.., tm+k are real numbers.
For integers m and n with 0^ m < n, denote by φ(n9 m) the number of integers

s such that m<s^n and SΞO, 1, 2 or 4 mod 8. Let ψ(n, m) be the integer given
by

{ φ(n9 m), if m = 0 mod 4,

φ(n, m — 1), if m φ 0 mod 4.

THEOREM 4.1. Let k and n be integers such that 0^/c^n and

(o) n + l-A;=Omod8.

Assume that there is a non-negative integer m satisfying the following condi-
tions :

( i )

(ϋ)

(iii)
Then there does not exist a Z2'immersion of (Sπ, Z2) in Rm>k=(Rm+k,

Z2).

THEOREM 4.2. Suppose that the conditions (o) and (iii) in Theorem 4.1
are replaced by the following condition:

n + l==0mod2*<2"-m-*'0> if and only i/2n + 2-fc^O mod2*<2w-w-*'°>.

Then the same conclusion as Theorem 4.1 holds.

PROOFS OF THEOREMS 4.1 AND 4.2. Assume that there is a Z2 -immersion
/: (Sn, Z2)-»#w *. Let vf be the normal Z2-bundle of/. Then it holds that

(n + IXΘpVy = (m + l)Θ/cξ (cf. the proof of Theorem 3.4 in [7]),

where ξ is the canonical line bundle over the real projective space RP". Since
= l9 we have

(1) (

Applying Lemmas (4.1) and (4.2) in [11] to the equality (1), we obtain Theorem
4.1.

Applying Lemma (4.1) in [11] to the equality (1), and using the fact that
Rpn/Rpm-ι is ^-reducible if and only if n + l==0 mod2*<w-m'°> (cf. [6, (3.1)],
[5, (2.7)] and [1]), we have Theorem 5.2. q. e. d.
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