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Introduction

In the previous note [19], under the same title we studied the enumeration
problem of embeddings of the n-dimensional real projective space RPn in the
real (2n — 2)-space R2n~2 for even n. In this note, we shall study this problem
for odd n and prove the following

THEOREM C. Let n = l(4), n^2r + l and let n>\3. Then there are eight
distinct isotopy classes of embeddings of RPn in R2n~2.

To prove this theorem by applying [19, § 5, Proposition], we shall calculate
the cohomology group of the reduced symmetric product (RPn)* of RP" for odd
w i n §8.

As for the case n = 3(4), we now notice the following result in § 10.

PROPOSITION D. Let n = 3(4) and n> 11. Then

16 < %IRP" c £2"-2] < 32, #IRP" c £2»-2] = 0(4),

where %[RPncR2n-2] denotes the cardinality of the set of isotopy classes of
embeddings of RPn in R2n~2.

We shall freely use the notations in [19].

§8. Remarks on the cohomology of (RPn)* for odd n

According to [7, (2.5-6)], there is a commutative diagram of double cover-
ings

i 1
where Fπ+1>2 is the Stiefel manifold of 2-frames in Rn+ί

9 D4 is the dihedral group
of order 8, both /and/' are homotopy equivalences and both Zn+1>2 and SZΛ+lj2
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are (2n — l)-dimensional manifolds.

(8.1) For oddn, the integral cohomology group Hi(Zn+ίt2ι
RP" — A; Z) (ϊ>l) is finite and has no odd torsion.

) = Hl(RP" x

PROOF. Since n is odd, RP" is orientable and so is RP"xRP". The
Poincare-Lefschetz duality provides the isomorphism H2"~l(RP" x RPn — A
Z)=Hi(RP"xRP", A; Z) for all i. This isomorphism and the split short exact
sequence 0-» H^RP" Z)-> H^RP" x RP" Z)->Ht(RP" x RP", J Z) -> 0 yield
(8.1).

Let Z = {Z} be the local system on SZn+ί >2 associated with the double cover-
ing Zn+ίf2-+SZn+l929 and consider the two Thom-Gysίn exact sequences ([16,
pp. 282-283]) associated with this double covering:

H*(SZ Λ+lt2 9

By using these exact sequences and (8.1), we see the following result by induction.
(8.2) For oddn, H^SZ^,^ Z) and Hl(SZH+l92; Z) = Hi((RP")*; Z) are finite
and have no odd torsion.

Now, let n=2r + s (> 11), 0<s<2r and s be odd. Then (6.3) also holds by
the same proof as in § 6, that is,
(8.3) the mod 2 cohomology group Hl((RPn)*\Z2) for 2n-4<i<2n-l
is given as follows:

Ht((RP")*;Z2) basis

2n-l

2n-2

2n-3 + Z2

2n-4

= 2, v2 = vx, Sqίy = xy and x2 r + 1~1=0.
Furthermore, by the result of S. Feder [5, Corollary 4.1] and (6.1),

(8.4) x2y-ί~1^0 if and only if i = 2* -1 for some t.
Since s is odd, simple calculations show the relations

Sq1(vx2^ί-5ys) =
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vx2r+l~3ys~l = Sq*(Όx2r*l-*y-l)9 *2-+>-2^-ι = Sql(x*r*l-*y*-1).

Consider the Bockstein exact sequence

... - >H2n~4((RPn)*; Z) -^ H2»-4((RP»)*; Z2) -̂ -> H2n~2((RPn)*; Z)

-̂  H2n~3((RPn)*; Z) -^H2"-3((RPn)*ι Z2) - »•••

associated with 0 - >Z-^»Z-^->Z2 - >0. Then (8.2), (8.3) and the above
relations for Sq 1 = p2β2 yield the following results :

(8.5) p2#
2"-4((£P'')*;Z)=Z2 + Z2 generated by {i x2^1-3^-1, x 2 r + 1~ V1}

and H2n~3((RPn)*'9 Z) = Z2 + Z2 generated by {β2(x2r+ί~4ys)9 β2(^2r+ί~5ys)}'

% 9. Proof of Theorem C

Now, we prove the following

THEOREM C. Let nΞl(4), n^2r + l and let n>13. Then

R2«-2] = 8.

PROOF. The existence of an embedding of RPn in R2n~2 is shown in [10,
Theorem 7.2.2].

Consider the proposition in §5 for M = RPn, where the homomorphisms
Ό*; Z) - >Hi+1((RP»)*ι Z2) for ί = 2n-2, 2n-3,

Γ: H2"-3((RPΌ*; Z2) — > H2n-*((RPn)*', Z2)

are given by Θl(a) = Sq2p2a9 Γ(b) = Sq2b because n is odd.
Let n = 2r-f s, 0<s<2r. By the relations in (8.3), simple calculations show

2yt, and so we have Γ(vx2r^-^ys) = Sq2(vx2r+ί-4ys)

2r+1-2ys = vx2r+l-2ys by (8.4) and the assumption that

s = l(4). Therefore, by (8.3),

(9.1) Γ is an epimorphism.

Also, by the relations in (8.3) and (8.4), we see easily that

Θ2n-2β2(vx2r+t-5ys) = vx2r+ί-2ys, Θ2n-2β2(x2"+l-4ys) = 0,

since Θ2n~2β2 = Sq2Sq l . These relations, (8.3) and (8.5) show that

(9.2) Ker<92"-2 = Z2.

Furthermore, we see easily that
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Sβ2(xar+1- V"1) = Sq2(ΌX2r+l-*y -1) = 0

by the relations in (8.3). Therefore, by (8.5), we have

(9.3) Coker <92"~3 = H2n~2((RP")*; Z2) = Z2 + Z2.

By (9.1)-(9.3), Theorem C follows from the proposition in §5 for M = RPn.

% 10. Proof of Proposition D

Finally, we notice the following

PROPOSITION D. Let n = 3(4) and n> 11. Then

16 < $[_RPn c #2"-2] < 32, #[KPW c #2"-2] = 0(4) .

PROOF. The existence of an embedding of RPn in R2n~2 is shown in [10,
Theorem 7.2.2].

By Y. Nomura's theorem [12, Theorem 2.4], we have

(10.1) IRP» c R2n~2~\ = \j (H2n~2((RPn)*; Z2)/Im Θ2n~3) x Coker Φσ,
-

where Φσ: KerΘ2π~ 3-^ Coker Γ is the twisted secondary operation defined in
[12, §2, p. 6] and Θl (i = 2n-2, 2n-3) and Γ are the homomorphisms given
in the proof of §9.

On the other hand, we have the following relations by the similar calculations
to those in §9 noticing that 5=3(4):

Sq2(vx2r+l- V"1) = Sq2(x2r+1-2y>-*) = 0,

Θ2n-2β2(vx2r+1~5ys) = Θ2»-2β2(x2r+1-*ys) = 0,

Γ(vx2r+ί~4ys) = Γ(x2r+1-*ys) = Γ(«2r+1- V1) = °-

Therefore, it follows from (8.3) and (8.5) that

H2»-2((£P«)*; Z2)/Im<92w-3 = Z2+-Z2,

KerΘ2"-2 = Z2-f Z2, Coker Γ = Z2.

Hence Coker Φσ=0 or Z2 for any σeKerΘ2 l l~2, and so we have Proposition D
by (10.1).
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