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1. Introduction

This paper is concerned with nonlinear functional differential equations
with deviating arguments of the form

(A)  x(O)+f(t, x<go(D)>, [X'12<gi(t)>,..., [xX" ]2 <g,_,()>) =0,
where 122, gi(0)=(gii(Ds..., Gim (1)), i=0, 1,..., n—1,
x<go()> = (x(go1(1)),---> X(Jomo(1))) 5
and
[x0]2 <g)> = ([x g (NIZ,..., [XHUGim (NI?),  i=L...,n—L

The conditions we always assume for f, g;; are as follows:
(@) f(t,yo, ¥1»--»¥u—1) is continuous on the set [fy, 00)x E, where

E=Rm x R71 % ---x Rtn-1 (R=(—o00, ), R, =[0, o)),
.f(ta yOa _)’1,---, yn—l)>0 lf y0>0; and

f(" Yo yl""’yn—l): —f(ta Yo yl""’yn—l)'

(b) git),j=1,...,m;, i=0,1,...,n—1, are continuous on [t o) and
lim g; () = co.
t—00
In what follows we restrict our discussion to those solutions x(f) of equation
(A) which exist on some half-line [T,, c0) and satisfy

sup{|x()|:t =T} >0

for every t=T,. Such a solution is called oscillatory if the set of its zeros is not
bounded above. Otherwise the solution is called nonoscillatory. A nonoscil-
latory solution is said to be strongly nomotone if it tends monotonically to zero
as t— oo together with its first n—1 derivatives.

The objective of this paper is to study the oscillatory behavior of solutions of
cquation (A) with specific nonlinearity defined below. We  provide. conditions
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under which every (bounded) solution of (A) is oscillatory if n is even, and is either
oscillatory or strongly monotone if n is odd. The results obtained prove to
apply not only to the case where (A) is a retarded equation but also to the case
where (A) is an advanced equation, and include recent results of Onose [4] and
Grammatikopoulos [1] for retarded differential equations of the form less general
than (A).

DerFINITION. (i) Equation (A) is called superlinear if there are non-
negative numbers p,,..., p,, With p,+---+p, =1 such that for each t=t, the
function

(Jl;llya‘}')f(ta yO, yl,---’ yn-l)

is nondecreasing in (yo, ¥y,..., ¥,—1) o0 E;. =(0, co)"o x R X -+ X Rfn-1,
(ii) Equation (A) is called strongly superlinear if there are nonnegative
numbers oy,..., 0,,, with ¢, +---+a,,>1 such that for each t=¢, the function

(jEI1 YOSty Yoo Yisevos Yu—1)

is nondecreasing in (o, ¥;,..., ¥n-1) O E .

(iii) Equation (A) is called sublinear if there are nonnegative numbers
Piss Pmg With py4---4p, =1 such that for each t=1¢, the function defined in
(i) is nonincreasing in (yg, ¥y,..., ¥»=1) On E .

(iv) Equation (A) is called strongly sublinear if there are nonnegative
numbers 1,,..., T,,, With 7,441, <1 such that for each t=t, the function

(JI;IIJ’S,"")f(t, yO’ ylv"’ yn-l)

is nonincreasing in (o, ¥;,..., yp—1) o0 E .

REMARK. Inequality between vectors y=(yi,..., V), 5=(2y,..., Z,,) in R™
is defined as

y<=z equivalent to yi<z; for j=1,...,m,

(and similarly for the symbols <, >, =). A function h(y) defined on a set of
R™ is said to be nondecreasing in y [or nonincreasing in y] if h(y) < h(z) [or h(y)
=h(z)] for y<z. We shall use the symbols 0 and 1 to denote the vectors (0,..., 0)
and (1,...,1) in R™, respectively. We define: sgny=+41 for y>0, and sgny
= —1 for y<0.

RemARK. The super- and sublinearity defined above extend the cor-
responding notions introduced by Onose [5] and Grammatikopoulos [1].
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For closely related results we refer to Kusano [3], Sficas and Staikos [6]
and Staikos and Sficas [7].

2. Oscillation of bounded solutions

In this section we study the oscillatory behavior of bounded solutions of
equation (A) which is either superlinear or sublinear.

THEOREM 1. Let equation (A) be superlinear. Suppose that
(1) gﬂhqfﬁﬂhmnuwmt=

for any u#0. Then, for n even, every bounded solution of (A) is oscillatory,
while, for n odd, every bounded solution of (A) is either oscillatory or strongly
monotone.

THEOREM 2. Let equation (A) be sublinear. Suppose that
e) SOV W RS

for any uy, p, with |u)>\u,l.  Then, for n even, every bounded solution of (A)
is oscillatory, while, for n odd, every bounded solution of (A) is either oscil-
latory or strongly monotone.

Proor oF THEOREMS 1 AND 2. Let x(f) be a bounded nonoscillatory solu-
tion of (A). Without loss of generality we may suppose that x(t) is eventually
positive. From (A) there is t; =1, such that x"(f)<0 for t=t,. Since x(t)
is bounded and positive, it follows that '

(3) (=Df1x=()>0,t>1, and limx" @) =0,k=1,..,n—1.

t—0

In view of (3) x'(¢) is of fixed sign for t=t,, so that the limit 11m x(t) x(0)=0

exists and is finite. Observe that x(c0)>0 if n is even, and that x(c0)=0 may
occur only if n is odd. We assume x(00)>0 and derive a contradiction. If

x(0c0)>0, then there are positive numbers ¢, d (c<d) and t,=t, such that for
t2t,

(4) c< x(gOJ(t)) < d’ J = 19--'9 Mo,
(35) lxD(g; ()] < c, j=L.,m, i=1,.,n-1,
Let (A) be superlinear. Then, using (4), (5) and the superlinearity, we have

flt, x<go()>, [x']> <gi(D)>,..., [x"" V]2 <g,_,(1)>)
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T xtgos01 T [x@0 00171, x<gott)>,
[x12<g(O)>,..., [x"V]2<g,_(1)>)
> cpitetomo. e momo (2, 1, 0, ..., 0)
=f(t, c1,0,...,0), t=t,
From this and (A) we obtain
(6) xM()+£(t, c1,0,...,0) £ 0, t=t,.

We multiply (6) by t"~! and integrate it from ¢, to t:

7 St s"“x‘"’(s)ds-{—gt s"1f (s, 1, 0,...,0)ds £ 0,
t2 t2

It is easy to verify that

() S‘ s"IxM(s)ds = P(1)— P(t;)+ (= D" 'nl[x(5) — x(t,)],

where P()= 3 (— 1)¥*1(n—1)(n=2)--(n—k+ 1)"*x(n=k)(f). Noting that P(t)
k=1
>0 by (3), we see from (7) and (8) that

Sws"“f(s, c1,0,..., 0)ds < o,

12

which contradicts (1).
Let (A) be sublinear. Then, by (4), (5) and the sublinearity, we have

S, x<go(®)>, [x']><g(O)>,..., [x"" D]2<g,_()>)
= [T Lx(ao 0017 T [x(ao (0] 11, x<gol)>
[x]2<gi(t)>,..., [x"D]2<g,_,(H)>)
= ¢P1tHomo - TP memo f (1, d1, ¢21,..., ¢21)
= (c/d)f(t, d1, c21,..., c?1), t=t,.
Therefore we obtain
xM(O+(c/d)f(t, d1, ¢21,...,¢?1) £ 0, t=t,,

from which, proceeding as in the superlinear case, we arrive at
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Sws"“‘f(s, dl, c?1,..., ¢21)ds < o0,
2

t

a contradiction to (2). This completes the proof.

We now present conditions which guarantee the existence of a bounded
nonoscillatory solution of equation (A).

THEOREM 3. Let equation (A) be superlinear. Suppose there exist
1y #0, uy #0 such that

) gmt"“lf(t, uil, g31,..., idhldt < co.

Then, for n even, (A) has a bounded nonoscillatory solution, while, for n odd,
(A) has a bounded nonoscillatory solution x(t) with lim x(¢) #0.
t—

THEOREM 4. Let equation (A) be sublinear. Suppose there exists pu#0
such that

(10) gwt”'llf(t, ul, 0,..., 0)|dt < w.

Then, for n even, (A) has a bounded nonoscillatory solution, while, for n odd,
(A) has a bounded nonoscillatory solution x(t) with lim x(t)#0.
t—0

Proor oF THEOREM 3 AND 4. Without loss of generality we may suppose
that u,, yt, in (9) and p in (10) are positive. When (A) is superlinear we take
co such that max {u,/2, u, —u,} Sco<p, and put d=p,—c,. When (A) is
sublinear we take ¢, such that 0<u<cy and put d=co—p.

For simplicity of exposition we restrict our consideration to the case where
all the g,;(t) are advanced arguments, that is, g;(t)=t for t=t,. Choose T
so large that

(1 S:(S—T)"‘l“"f(s, i, 3L, pdlds €5, i=1,..,n—1,
if (A) is superlinear, and

(12) [Te-mr 1t ut, 0, s 26, =1 nmt,
if (A) is sublinear, and consider the integral equation

(13) x()=(®x)(1), 12T,

where
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(14) (Px)(t)=cy +%%2;%Sf(s_t)n_ (s, x<go(s)>, [xX']12<g(s)>,

o [ D] < g, (5)>)ds.

In view of (14) it is clear that a solution of (13) is a bounded nonoscillatory solu-
tion of (A) and tends monotonically to ¢, as t—00. To solve (13) with the aid
of Tychonoff’s fixed point theorem we introduce the Fréchet space Y of all n—1
times continuously differentiable functions x(t) on [T, co) endowed with the
topology induced by the sequence of seminorms {p,}:

n—2
p(x) = max [|x""D(n)|+ 3 [x(T), v=12,...
] i=0

te[T, T+v
Let X denote the set of all x € Y such that
(15) IX()—col <6, IxOD £, 12T, i=1l,,n—1

Obviously, X is a nonempty, closed and convex subset of Y. We shall show that

& is continuous and maps X into a compact subset of X. We shall do this only

for the superlinear equation (A), since a similar argument holds if (A) is sublinear.
i) @ maps X into X. If xe X, then, by (15),

0 < x(go(1) = co+6 = iy,
IXO(gi (D) = 6 = py—co < py
Using the above inequalities and the superlinearity, we havé
f(;, x<go(h)>, [x’]2<gl(t)>,..., [x= D)2 <g,_(()>)
= I Extao 17" TT L@ )71t x<go()>
(16) [x1?<gi(D)>,..., [x("" V] <g,_4(1)>)
S pfrtteme - pyermmemo (8, g1, p3l,..., p3l)

=f(t’ ”11’ ,Ll%l,, #%1)

Therefore, by (11) and (16), we see that y=®x satisfies the following inequalities
fort=T:

PO =col S s s = T 7G5, mil, w31 w3Dds <5,

©
T

[y )] = (n=D(n—=2)--(n=i) Sw(s*t)"‘l‘if(s, w1, p3l,..., pil)ds
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1 2} .
< — T)n—1-i 2 2 <
= (—1=0)! Sq-(s Y (ss g, p3h,., pil)ds 0.

ii) ®X is compact. Let y,=®x, x,€ X, v=1, 2,..., be any sequence of

elements of #X. In view of (16) we have ’
ly$Sm= (1) = yim ()] £ ‘S:f(s, uiL, p3l,., p3lds |,

so that {y{"~1} is equicontinuous at each point of [T, o). Since, moreover,
{y{»=1} is uniformly bounded, there exists a subsequence {z,} of {y,} for which
{z{"= 1D} converges uniformly on every compact subinterval of [T, o0). Since
the sequences {z{{(T)}, i=0, 1,..., n—2, are bounded, there exists a subsequence
{w,} of {z,} such that each {w{)(T)}, i=0, 1,...,n—2, is convergent. It fol-
lows that the sequence {w,} converges to an element of X in the topology of Y.
This shows that ®X is a compact subset of X.

ili) @ is continuous. Let {x,} be a sequence of elements of X such that
x,—x € X in the topology of Y. Put y,=®x, and y=®x. It is clear that x ()
—x(t) at every point t € [T, o) and that by (16) the function

(s=D" 1 f(s, x,<go(8)>, [x,12<g(5)>,..., [x{" V]2 <g,_,(s)>)

is bounded above by (s—T)" !f(s, u;1, u31,..., u31) which is integrable on
[T, ). Hence, by the Lebesgue dominated convergence theorem, we see that
y(H)— y(¢) at every point t€ [T, o).

Let {u,} be an arbitrary subsequence of {y,}. Since ®X is compact, there
is a subsequence {v,} of {u,} such that v,—»ve ®X in the topology of Y. The
convergence in Y implies the pointwise convergence on [T, o), and so we have
v=y. It follows that y,—y in the topology of Y.

Thus we are able to apply Tychonoff’s fixed point theorem to the operator
®. Let xe X be a fixed point of @: x=dx. As we observed earlier, this fixed

point x=x(t) provides the required solution of equation (A). This completes
the proof.

COROLLARY. Consider the equation
(B) xM(O)+f(t, x<go(H)>) =0

which is either superlinear or sublinear. Then, a necessary and sufficient
condition in order that every bounded solution of (B) be oscillatory for n even,
and be either oscillatory or strongly monotone for n odd is that

gwt"‘llf(t, ubjdt = 0 forall p#0.
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3. Oscillation of all solutions

In this section we confine our attention to equation (A) which is either
strongly superlinear or strongly sublinear and present conditions under which

all of its solutions are oscillatory.
We start with the strongly sublinear case. Let 7,,..., 1, be the strong sub-

linearity constants and put
hoj(t) = min {go 1), t}, j=1,...,my,
8511 = ([90:(0]" s, [gome(DI™™ 1),
g 1700 = (L9170, [Gim (D12 17D),  i=1..,n—1.

THEOREM 5. Let equation (A) be strongly sublinear. Suppose that

an TH GG w0, wgte 0o,

12g3n=3(1),..., p21)|dt = o

for all u#0. Then, every solution of (A) is oscillatory when n is even, and every
solution is either oscillatory or strongly monotone when n is odd.
ProOOF. Let x(f) be a nonoscillatory solution of (A) such that lim x(7) #0.

We may suppose x(t) is eventually positive. Thus from (A) x("(7) <t6 0t(‘)or t>t,,
provided ¢, is sufficiently large. According to a lemma of Kiguradze [2, Lemma
2] there is an integer /, 0<l<n, such that

(18) xD@®>0@{=0,1,...,D), (=D 1xO@) >0 =1+1,...,n—1),
and

(t_tl)n—lx(n—l)(zn—l—lt)
(n=1)(n=2)---(n—=1)

(19) x(1) 2

for all t=¢,.
By Taylor’s formula for x()(f) we obtain

xD(@) < "_zl:_ix_(itk)_(ﬁ)_(t—tl)“k i=0,1,...,1
~ k=0 k! ’ ’

for t=t,, which implies that x®)(¢)/t»~ 1~ (i=0, 1,..., ) are eventually bounded.
Consequently, there are positive numbers ¢ and ¢, =1, such that

(20) 0< x(i)(gij(t)) é c[gij(t)]n_l_i’ j = la-"’ my, i= 0’ 19--'9 l,
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for t1>t,. Since |xD(t)| (i=1+1,..., n—1) are bounded, we have

21) IxtD (g ()] £ elgi; (D] 174, j=Lo,m, i=I+1,.,n-1,

for t<t,. On the other hand, using (19) and the decreasing nature of x"~1)(¢),
it is easy to check that there are positive constants d and t;=¢, such that

(22) xX(ho (D) = [dho(D]"'x"=D(1),  j=1,.., m,

for t=t;. Noting that x(¢) is increasing and using (20), (21), (22) and the strong
sublinearity, we obtain

(23) (0, x<go()>, [¥] <gi(0)> .o, [x" D)2 <, 1()>)
2 [ Detho 0017 T Lx(oo (001 ftt, x<go()>,
[x12<gi(®)>,.... [x" V]2 <g,_,(D)>)
2 (dfe)" T DOT T ThofD/go (0]
10, e (@), gHODW) . D),
where 1=1,+ - +1,,<1. From (A) and (23) it follows that
XO(0)+ (/o)™ T DO T hos(0lgo 0105

[, cgg ' (1), g3 (D),..., * D) =0
8 8

for t=t;. Dividing the above inequality by [x("~V(#)]* and integrating, we
conclude that

7 I Cho,(0/g0,00= 111, g™ (), 2320, 1)t < co.
But this contradicts (17) and the proof is complete.
RemARk. If in addition f(t, yo, ¥4,..., ¥»—1) is assumed to be nondecreas-
ing in y,, then the assertion of Theorem 5 is true under the condition
g“’| £, uhi 1), u2g3=D(),..., p2Dldt = 0 forall 0,
where h§~1(t)=([ho1()]""L,..., [hom(D]""1), which is weaker than (17).

We now turn to the strongly superlinear equation (A). Let a,,..., 0,,, be the
strong superlinearity constants with 6 =0, 4 -+ 07,,,> 1.
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THEOREM 6. Let equation (A) be strongly superlinear. Suppose that
there exist differentiable functions k1), j=1,..., my, on [t,, 00) such that

koj(t) = min{gy;(1), t}, ko;(t) 20, Ilfg koj(t) = oo,

and

o 3 Dho, (0]
(24) S = 7@, n1,0,...,0)|dt=co
[T [ko,(2)]"= Dm0

j=1

for all u#0. Then, every solution of (A) is oscillatory when n is even, and
every solution is either oscillatory or strongly monotone when n is odd.
Proor. Let x(f) be a nonoscillatory solution of (A) such that lim x(#) #0.

t =00
We may suppose x(?) is eventually positive. Kiguradze’s lemma [2, Lemma 2]
implies in particular that x(¢) is eventually increasing, so that there are positive
numbers ¢ and t, such that

(25) (4 é x(hOj(t)) é x(QOj(t)) for t g tl9 j = ls"-s myg.
In view of (25) and the strong superlinearity we find

f(t, x<go(®)>, [x]*<g(0)>,..., [x"" V] <g,_1(1)>)

mo mo

2 [ [0 T Dxtgo, (00150, x<g00)>,
[x12<gi(®)>,..., [x""D]*<g,_()>)
> cof(1, c1, 0,..., 0)11":1': Lx(ho (1))]°.

Combining this with (A), we conclude that x(t) satisfies the retarded differential
inequality

(26) xM(t)+c7ef(¢, cl, 0,..., 0)j[nj1 [x(hoi())]7 £ 0

for t=t,. We now apply the theory developed by Sficas and Staikos [6] to the
differential inequality (26). Then, because of (24), it can be shown that x(z)
is either oscillatory or strongly monotone. This, however, contradicts the
hypothesis that x(f) is a nonoscillatory solution not tending to zero as t— co.
For the details the reader is referred to the paper [6].

REMARK. In the particular case when g, ()=t for t=t,, j=1,..., m,,
we can replace (24) by
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Swt"‘llf(t, L, 0,..,0)d =0 forall u#0.

From this remark and Theorem 3 we have the following result which charac-
terizes the oscillation situation for strongly superlinear advanced equations
of the form

(B) xM()+f(t, x<go(t)>) = 0.
COROLLARY. Let (B) be strongly superlinear and suppose that
goj(t) 2 t for t=t,, j=1,...,mg.

Then, a necessary and sufficient condition in order that every solution of (B)
be oscillatory when n is even, and be either oscillatory or strongly monotone when
n is odd is that

S°°zn~1| f(t, uh)ldt = 0 forall u 0.
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