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§1. Introduction

In this note, we say that M is an S3 ( = St/(2))-manifold, if M is a connected

compact smooth manifold admitting a non-trivial smooth S3-action S3 x M-*M.
The purpose of this note is to classify such closed manifolds of dimension less
than 5 by S3-equivariant diίfeomorphisms.

We notice the following results (cf. [1, Cor. 3.2] and [6, Th. 2.6.7]).

(1.1) Any closed proper subgroup of

S3 = {qeH\\q\ = \} (H is the quaternion field)

is conjugate to one of the following subgroups :

S1 ={zeC; |z| = l}, the unit circle in the complex field C;
NS1 = {z, zj; z e S1}, the normalizer of S1 in S3

ZM = {z e S1 z" = l}, the cyclic group of order n (^1);

D*(4w) = {z, z/; zeZ 2 m} = f721φ(2w)), the binary dihedral group of order

4m (£8);
T* = η~i(T\ 0* = η-2\0) and I^ = η^(I\ the binary tetrahedral, octahedral

and icosahedral groups of order 24, 48 and 120, respectively.

Here, η2: S
3->SO(3) is the double covering defined by

== QPf 1 (ί]f e S3, p is a pure quaternion) ,

and D(2m) is the dihedral group of order 2m and Γ, 0 and / are the tetrahedral,
octahedral and icosahedral groups.

For an S3 -manifold M, we denote by (//) its type of principal isotropy sub-
groups, and consider the following two cases:

(a) Every isotropy subgroup is principal.

(b) There exists a non-principal isotropy subgroup K^H.

Unless otherwise stated, we consider S3/H as the S3-manifold with the

action ηl9 ^ι(g)[Jp] = [^p] Also, for any S3-manifold Ml and any manifold
N9 we consider Mj x N as the S3-manifold acting S3 trivially on N.

Then, closed S3-manifolds are classified up to equivariant diffeomorphisms
by the following theorems.
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THEOREM 1.2. 7/dimM = 2, then only the case (a) holds, and M is deter-

mined uniquely by H = Sl or TVS1 and M = S3/H = S2 or P2(R), respectively.

THEOREM 1.3. Assume that dimM = 3.
The case (a). When H is any subgroup of (1.1) except S1, M is determined

by H, and

M = S3/H if H is finite, = P2(R)xS1 if H = NS1.

When H = S1, M is determined by H and the orientability, and

ί (S^S1) x S1 = S2 x S1 if M is orientable,
M =

( (S2 x S*)/((p, z) = (-p, -z)) otherwise.

The case (b). M is determined by the principal isotropy subgroup H = Sl

and two non-principal ones K^ and K2, and

S3 (S3 acts on it via η2) if Kγ = K2 = S3,

P3(R) = S3/(q ΞΞ -q) (S3 acts on S3 via η2)
M =

// K{ = S3,K2 =

For the case that dimM = 4 and H = S{, we take a small closed invariant
tubular neighborhood U of the fixed point set F(53, M) (cf. [3, VI, Th. 2.2]),
and consider the 53-submanifold M' = M-IntC7. (C/ = 0 and M' = M if F(53,
M) = 0.) Further we consider the fixed point set F(S1

9 M') of the restricted
5 ̂ action. Then, we have

PROPOSITION 1.4. (i) F(Sl, M') admits the non-trivial Z2( = NSί/Sί)-
action induced from the given S3 -action, which is free on the boundary dF(Sl,
M'), and F(S1, M')/Z2 is connected. Also F(S1

9 M') is a compact surface.
(ii) Let D3 be the unit disk of dimension 3, admitting the S3 -action via

η2. Then we have an equίvariant dίffeomorphism

M

where Z2 acts on D3 by the antipodal map and on F(S1

9 M') by (i).

THEOREM 1.5. Assume that dim M = 4.
The case (a), (i) // //=!, Z2, O* or /*, then M is determined uniquely

by H9 and M = (S3/H)xSί.

(ii) //H = Zn(n^3), D*(4ro)(w^2) or T*, then M is an S3/H-bundle
over S1 with structure group NH/H, and M is determined by H and the first
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integral homology group H^M), which is given by the following table:

H

Zπ(n^3)

£>*(4m)(m^3)

D*(8)

H,(M)

zn

Z4

Z2

H-Z*, Z(rc: odd), Z2H-Z

+ Z(ra:odd)*, Z2 + Z2

+ Z24-Z ,Z2 + Z, Z

(n : even)

+ Z(w: even)*, Z2 + Z

Z3-f-Z*, Z

(M = (S3IH) x S1 /or ί/?e case /nc/exeί/ fcj; *).

(iii) If H = NS*, then M = P2(R)xN, where P2(R) is the S3-manifold in
Theorem 1.2 and N is any connected closed surface.

If H = Sί, then F(S3, M) = 0 and M is determined by the above proposition,
where the Z2-surface F(S1, M) is a closed surface and the Z2-action is free.

The case (b). (iv) When H is finite, H is Zn, D*(4m) (m^2) or T*9 and
M has two non-principal isotropy subgroups K{ and K2.

////^D*(8), M is determined uniquely by H, K^ and K2 of the following
table:

H

Z H («:odd)

Z,, (H : even)

D*(4m)(m^3)

Z 2 B ,S ' ,SM«=i)

Z2B, D*(2n), S ' , A f S ' ( « = 4)

D*(8m), NS1

T* 0*

If H = D*(%), M is determined by H, Klt K2 and H^M), which are given
by the following table:

(Klt K2)

(D*(16), D*(16))

(D*(16), N51)

(NSSNS1)

Z _L 7 J_ y 7 Λ.7
2 ' 2 ' 2 ι 2 ~*~ 2

Z2 + Z2, Z2

Z2, 0

(v) //dim //§: 1, then H = S{ and M is determined by the above proposition,
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where the Z2-actίon on the surface F ( S [ , M') = F(51, M) is not free if F(S3, M)

= 0.

The results on the classification of Z2-surfaces, which are used in (iii) and (v)
of the above theorem, are given in § 7.

§ 2. Closed subgroups of S3

In this section, we prepare some known results on closed subgroups of S3

and their real representations.

LEMMA 2.1. The binary octahedral group 0* in (1.1) is generated by

* = exp(πί/4), e' = (l+j)lj2 and e" = (l

PROOF. We notice the following equalities for any α, ί?, z e C, which are
seen easily :

(2.2)
fl2 + b2)j.

By considering the set A = {±i9 ±7, ±k} of vertices of the regular octahedron,
we see that

Therefore, we see easily by using (2.2) that 0* contains the subgroup 0' of S3

generated by e, e' and e". Therefore 0* = 0' since these groups are of order
48. q.e.d.

LEMMA 2.3. Let H be a finite subgroup of S3. Then the normalizer
NH of H in S3, the factor group NH/H and #AΌ(NH/H) are given as follows:

H

Zn(n=l,2)

Zπ(n^3)

D*(4m)(m^3)

D*(8)

Γ*

O*,/*

NH

S3

TVS1

D*(8m)

O*

0*

0*, /*

NH/H

S3 (n = l), S0(3)(n = 2)

NS^nrodd), 0(2) (n: even)

Z2

D(6)

Z2

1

%πQ(NHjH)

\

2

2

3

2

1
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In the above lemma, for a given topological group G,

(2.4) π0(G) = π0(G)/ ~

is the set of equivalence classes of elements of π0(G) under the inner automor-

phisms, and #π0(G) is its cardinal number.

PROOF. When H is 1 or Z2, the results are clear.
Assume // = Zn (n^3). By (2.2), it is easy to see that α + 6/eJVZ n is

equivalent to αfo = 0, and so NZn = NSl. Further, there are isomorphisms
NS1/Zn«JVS1 for odd n given by z->z", ./->/ and NSl/Zn*0(2)foΐ even n given

KV ^v« <τ)Λ_* f cos "0 sin /iθ \ . / 0 1 \
by exp(0ι)-^_sin|I0 cos/ιθ> > " Λ l 0>

Assume that H= D*(8) = {±1} U A, where A = {±i, ±j, ±k}. Then,
ND*(8) = 0* by the proof of Lemma 2.1. Furthermore, e2 = i, b3 = — 1 and

= - 1 (b = eer) are in D*(8), and

D(6) = {1, x, xy, xy 2 , y, y2}, λ'2 = y3 = xyxy = 1,

is the dihedral group of order 6. Hence 0*/D*(8) = D(6).
For the case // = D*(4m) (m^3), we see easily by using (2.2) that ND*(4m)

= {fl + /? ι/e53; αfc = 0, α2-f /?2eZ2 w}, which is equal to £>*(8w). It is clear
thatD*(8m)/D*(4m) = Z2.

Finally we consider the case /f=Γ*, 0* or /*. It is well known that T
— A4, 0 = S4 and l = A5, where St and /lf are the symmetric and alternating
groups of i letters. Therefore, Γ* is the normal subgroup of 0* and Γ*c/*,
and also 0*φ/* since 120 is not a multiple of 48. Since T* has two non-commu-
tative elements of order 6, T*, 0* and /* are not contained in any conjugate of
Z)*(4w) or NS 1 . Also, we see that {qzq q e S3 } = S3 if z - z ̂  0 by using (2.2),
and so the proper normal subgroup of S3 is 1 or Z2. Therefore we see that
AΓO* = 0*, JV/* = /* and JVT* = 0*.

The results of #π0(NH/H) are obtained easily. g.e.d.

Now, we prepare some results on real representations of closed subgroups of

S3.

LEMMA 2.5. Let K be a closed subgroup of S3, p: K->0(k)9 k<*4-dimS3/K,
be a non-trivial representation, and H be a principal isotropy subgroup of
the K-action on the unit disk Dk via p. Then, these are given by the following
table up to equivalence:
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K

3,4

Ίi

NS1

sl

1,2 s1

0*

D*(4m)

T*

Xl

X2

X3(«4m)=-l» £3(7) =-1

PROOF. When K — S3, the results follow immediately from [1, Prop. 3.7]

and its proof. The results for K = NSl or S[ are [I, Prop. 3.8]. The others

are seen easily. q.e.d.

§ 3. Actions with orbits of codimension 1

In this section, let G be a compact connected Lie group and M be a closed

(compact and without boundary) connected smooth n manifold. Assume that

there is given a non-trivial smooth action GxM-+M of G on M, and let (//) be

the type of its principal isotropy subgroups, and a be its maximal orbit dimen-

sion, i.e., the dimension of the principal orbit G/H, (cf. [3, IV, 3]).

(3.1) [3, IV, Th. 3.3 and VI, Cor. 2.5] When every orbit is principal, M

is a G///-bundle over the closed manifold M/G with structure group NH/H,

where NH is the normalizer of H in G.

(3.2) [3, IV, Lemma 4.1] The orbit space M/G is an n — d manifold if

(3.3) If d = n, then M is equivariantly diffeomorphic to GjH.

For the case d = n — l 9 we consider the following situation:

(3.4) For /= 1, 2, let K^H be a closed subgroup of G and

0(/cz), k, = n - dim G/Kh
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be a representation. Assume that the KΓaction on a unit disk Dkl via ρ{ is transi-
tive on the boundary dDkl and its isotropy subgroup (K1)PI is equal to H for
some Pi e dDkl, and also the G-manifold G x KlD

kl has (H) as the type of principal
isotropy subgroups.

Then, we can identify G x KldDkl = G/H by the equivariant diffeomorphism

G x KldDk< 3 [0, /?,] < — > gH e G///,

and for any α e NH, we obtain the G-manifold

(3.5) M α = G x K l D
f e > V Λ G x X 2 D * > ,

where the attaching map α: Gx KίdDkί = G/H-+GIH = Gx K2dDk2 is given by

PROPOSITION 3.6. [3, IV, Th. 8.2] Assume that d = n — l and there exist
non-principal orbits.

(i) Then there exist Kt and ρt of (3.4) and

M = MΛ for some α e NH.

(ii) Assume that there exist Kt and pt of (3.4) satisfying the following:
(3.7) // ρ\\ Kl-^0(kl) satisfies the assumption of (3.4) except the con-

dition H = (Kt)pl, then there exists yteNKt such that p\cΊl is equivalent to pb

where cyι(k) = ylkyjί (keX,).
Then, we can choose any such fixed Kl and ptfor those in (i).

PROOF, (i) It is sufficient to notice in the proof of [3, IV, Th. 8.2] that
we can take Mfl_^ = Gx KlD

kl (/=!, 2), which follows immediately from the
differentiable slice theorem (cf. [3, VI, Cor. 2.4]).

(ii) In the same way, we can write M^Gx (K^p'^D*1 U Gχ(κ2,P'2)£λ'2>

where Kt acts on Dkl via p\. Then by (3.7) it is easy to see that Gx ( K j t p ί ) D
f c |

is equivariantly difTeomorphic to GxKlD
kl, and we have the desired result.

q.e. d.

Now, we consider the following condition for the situation (3.4):

(3.8) For any y^NHnNK^ the right translation ψyι of GxKlD
k< is

smooth, where ψyι is given by

Ψyι[0, tPil = C^y?1, ίpj (9 e G, 0 ̂  t ^ 1) .

PROPOSITION 3.9. Under the assumption (3.8), MΛ and Mβ of (3.5) for
α, βeNH are equivariantly diffeomorphic if and only if there exist y^NH

ΠNKt (/ = !, 2) such that yί and β~ίy2κ we contained in the same component
ofNH/H.
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PROOF. (Sufficiency) We can choose a smooth path θ: [0, 1]->N/////
from >Ί to β~1y2<x, which is locally constant at 0 and 1. Then, by considering

(*) Mt = GxKlD*> U (G/Hx[0, 1]) U Gxτ-^Dk* (τ = α, /O,

the desired diffeomorphism ψ : Mα « M^ is given by

(**)

and ιK0#, s) = (gθ(s)'1H9 s) for 0 e G, f, s e [0, 1].
(Necessity) Assume that Mα and M^ are equivariantly diίfeomorphic.

In the same way as the proof of [3, V, Th. 5.1], we can choose an equivariant
homeomorphism ψ: Ma&Mβ such that Mα and Mβ have the forms of (*), and
ψ maps GxKίD

kiand Gxa-ιK2ΛD to GxKlD
kl and Gxβ-ιK2βD

k2, respectively,
satisfying (**) for some yteNH n NKt (/ = !, 2). Then yλ and β~lγ2u are con-
nected by the path

0: [0, 1] c: G/tf x[0, l]-5UG/Hx[0, 1] - > G/H. ήf.β.d.

For the condition (3.8), we have the following

LEMMA 3.10. Assume that the representation pt: Kl-^0(kl) satisfies
pl(Kl)^SO(kl). Then (3.8) holds, if pl is equivalent to ptcyι for any γ

PROOF. We use the notations omitting the index /. ψγ in (3.8) is the
bundle map of the disk bundle Dk^Gx KDk-+G/K onto itself, inducing $: G/K
->G/£, ψ(gK) = gy~lK. Therefore, it is sufficient to show that /=^y|D* is
linear. From the definition of \l/7, we see that / is given by

f(tp(β)p) = tρ(ygy~ 1 )p for g e K.

There exists A' eGL(/c) such that pcy = cA>p by the assumption, where cA(X)
= AXA~l (XeO(k)). Then it is easy to see that A' = tA for some AeO(k) and
ί^O, since p(K)^>SO(k). Thus we have pcγ = cAp and so

(*) f(Xp) = AX A- l p for any X 6 p(K) .

Consider the isotropy subgroup p(K)p = {X e p(K) Xp = p} . Then we see
easily that Ap^)^'1 ap(K)p by (*) and so A belongs to the normalizer N(p(K)p)
in 0(k). On the other hand, we see easily that N(ρ(K)p) = {BeO(k)\ Bp=±p}
since p(K) = 0(k) or S0(k). Therefore we see Ap=±p, and hence

f(Xp) = AX A' 1 p = ± AXp for any X e

This shows that / is linear as desired. q. e. d.
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The following lemma for the special case that G = S3 is used in §5.

LEMMA 3.11. When n = 4, H = l, G = X/ = S3 and pl is ηι:S*->0(4) in
Lemma 2.5, r/7£ condition (3.8) /70/ds.

PROOF. For this case, GxKlD
kl = D4 and ψγι:D

4-+D4 is given by ιAy/O)
= p77 J, and hence we have the lemma. q.e.d.

§4. Proofs of Theorems 1.2 and 1.3

In this section, we apply the results of the previous sections for the case that
G = S3 anddimM^3.

PROOF OF THEOREM 1.2. Since dim # g 1 by (1.1), we have d = dimS3/H^2.
Also dimM/S 3=2-d^O by (3.2). Thus d = 2 and dim// = l, and the result
is clear from (1.1) and (3.3). q. e. d.

PROOF OF THEOREM 1.3. In the same way as the above proof, the maximal
orbit dimension d satisfies 2rgd<ί3.

When d = 3 = dim M, M is equivariantly diίfeomorphic to S3/H by (3.3), where
H is finite.

When d = 2 = dimM-l, we have H = Sl or NS1 since dim//=l. For the
case (a), M is an S3///-bundle over Sl with structure group NH/H by (3.1). If
H is NS1, then NH/H=\ and so M is equivariantly diffeomorphic to (S3/NSJ)
xS 1=P 2(£)xS 1. If H is S1, then S2 = S3/S* and M is an S2-bundle over
S1 with structure group NS}/S1=Z2. Thus M is equivariantly diίfeomorphic

For the case (b), we apply Proposition 3.6. Lemma 2.5 shows that there do
not exist Kt and pt satisfying (3.4) for H = NSl. lfH = Sl

9 then Lemma 2.5 shows
that Kl and ρl of (3.4) are given by

Kl = S\pl = η2 or Kt = NS1, p, = v,

and the condition (3.7) holds. Therefore, it is sufficient to classify Mα by Pro-
position 3.6. Since the condition (3.8) holds by Proposition 3.10, we see easily
that M^My, and hence MΛ&Mβ for any α, βeNS1 by Proposition 3.9. Thus,
M is determined uniquely by H = Sl and (Kί9 K2) = (NSl, NS1), (NS1, S3) or

(S3, S3). q.e.d.

§ 5. The case that dim M= 4 and H is finite

In this section, we assume that M is a closed S3-manifold of dimension 4,
and its principal isotropy subgroup H is finite.
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For the case that every orbit is principal, (3.1) shows that Aί is an S3/H-
bundle over M/53 =SJ with structure group NH/H, and we have its characteristic
class χ in π0(NH/H) of (2.4) by the classification theorem [4, Th. 18.5]. These
show the following

PROPOSITION 5.1. When every orbit is principal, M is determined by H
and χeft0(NH/H).

LEMMA 5.2. Theorem \ .5 (i) holds.

PROOF. When H is a finite subgroup of (i) in Theorem 1.5, we have $π0(NH/
H) — \ by Lemma 2.3, and hence the desired result by the above proposition.

q.e.d.

To study the case (ii) of Theorem 1.5, we consider the relation between the

characteristic class χ and

LEMMA 5.3. Let A{ (/=!, 2) be a connected space such that Al Γ\A2 = A0.
Then the first integral homology group Hl(Al\JφA2), of an attaching space

Aι\JφA2 by a homeomorphism φ: A0^>A0, is given by

(5.4) H,(A, \jφA2) =

where /,: A0-+Al is the inclusion and (/1#, — (/2<p)*)' Hί(A0)->Hl(A1

PROOF. (5.4) follows immediately from the Mayer- Vietoris exact sequence

of(Al\JφA2; Aί9 A2). q.e.d.

The following lemma is clear.

LEMMA 5.5. Let H be a finite subgroup of S3, D(H) be the commutator
subgroup of H, and aeNH. Then, we have the commutative diagram

H/D(H) g* >H/D(H)9

where α: S3/H-»S3/H is the right transformation given by α(^fH) = gfα~1// and

CΛ: H-+H is the automorphism given by cΛ(h) = aιhoΓl.

In the above lemma, we see easily the following

LEMMA 5.6. If H is a subgroup in (ii) of Theorem 1.5, then it holds the

following table:
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H

D*(4m) (m : even ^3)

D*(4m)(m:odd^3)

Π*^Q\
L/ ^OJ

Zn(n^3)

T*

HID(H)

Z2<a2m>+Z2<j>

z*<j>

Z <? i **> 4- 7 <r ϊ -̂

Zπ<απ>

Z3<ee'>

α

04m

04m

08

ee'

J

α8

<?αS

<*2m-+a2m9j-+a2m+j

J-+-J

i-*i,j-+i+j

ι-+j,j^ι+j

<*n-*-<*n

eer -* —ee'

where Zn<a> is a cyclic group Zn generated by α, and ee' = (l

Now, we are ready to prove (ii) of Theorem 1.5.

LEMMA 5.7. Theorem 1.5 (ii) holds.

PROOF. Let M be given by H and χ = [α], αeJVT/, in Proposition 5.1.

Denote E^texpίίπi); /-I ^ίg/JciS 1 (/ = !, 2), and set Λ^TT1^), where
π: M-»M/S3 =SX is the projection of the bundle. Then

AQ = A! Π A2 = S*/H U S3/H (disjoint union),

and the definition of χ shows that M = Aί\jφA2 and the diagram

S3/ff_JLUSL

is commutative, where the inclusion ι is a homotopy equivalence and / is the

folding map. These facts and Lemma 5.5 show that (ilJ |c, — (Ϊ2<p)*) in (5.4) is
equal to the homomorphism

H' + H' - >H' + H'9 (a,b) - > (a + ft, - α - cβf(6)) ,

(H' = H/D(H)). Thus we have easily

H^Af) = H^A, \JφA2) * H'/Im(l-c.») + Z

by Lemma 5.3, and hence we obtain (ii) of Theorem 1.5 by the above lemma.

q.e.d.

Now, we study the case (iv) in Theorem 1.5, by applying the results in § 3.
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LEMMA 5.8. IfH is finite, then we can take H and Kt (I — \ , 2) In the tables
o/(iv) of Theorem 1.5 as the ones in Proposition 3.6 (ii).

PROOF. By Lemma 2.5, it is sufficient to show that (3.7) holds for H =

D*(4m), X, = D*(8m), p/ = χ2 and p',=χ3 This is clear, since χ2 = χ3ca8m by
definitions of χ2 and χ3. q. e. d.

LEMMA 5.9. Theorem 1.5 (iv) holds when #^D*(8).

PROOF. Let (H,Kl9 K2) be given in the table of (iv) of Theorem 1.5. By
the above lemma and Proposition 3.6, it is sufficient to classify MΛ for α e NH.
We see that (3.8) holds by Lemmas 2.5, 3.10 and 3.11, and so we can classify
Mα by Proposition 3.9.

If H= 1 or Z2, then NH/H = S3/H is path-connected, and so M{ «Mα for any
α G NH by Proposition 3.9.

Let # = Zπ(n^3), D*(4m)(m^3) or Γ*. Then we see that NH = NS1,
D*(8m) or O* and NK^D*^ D*(16m) or 0*, respectively, by Lemma 2.3.
Consider the element α0 e NH n NKl9 given by α0 =j, α4m or e, respectively.
Then we see that M1 ^Mαo and hence MΛκMβ for any α, βeNH by Proposition

3.9. Thus M is determined uniquely by (//, Kί9 K2). q. e. d.

Next we consider the case that # = D*(8).

LEMMA 5.10. Theorem 1.5 (iv) is also valid when H = D*(8).

PROOF. In the same way as the above proof, it is sufficient to classify
Mα (αeWD*(8)) by Proposition 3.9, where Kt = D*(l6) or NS*.

By the proof of Lemma 2.3, we have

JVD*(8)/D*(8) = D(6) = {1, x, xy, xy\ y, y2} ,

where x = ̂ D*(8), y = ̂ rD*(8). Since NH (] NK^D^lβ), Proposition 3.9 and
the easy calculation show that

Now, we calculate Hλ(M^ for α = l or ee' by Lemma 5.3. By (3.5),

MΛ = Al\JΛΛ2, A0 = A1C]A2 = S3/H (H = D*(8)),

where v4j = S3 x x,/)fcl, and we have the commutative diagram

Al

•1
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where p and pl are the projections and p is a homotopy equivalence. By identify-
ing

I^AQ) = H/D(H) = Z2<i>

Z2<e>+Z2<j> if K> = D*(16),

Z2<j> if Kl = NSί

y

(cf. Lemma 5.6), the above facts and Lemma 5.5 show that (OΊ)*, — 0'2
α)*) in

(5.4) is equal to the homomorphism given by

i > (0, 0), j > (j, -j) if α = 1,

i — (0, -/), — (Λ -7) if α = ee'.

Then (5.4) and the easy calculation show that /^(MJ is given by the second table
in (iv) of Theorem 1.5. q. e. d.

§ 6. The case that dim M= 4 and dim H= I

In this section, we assume that M is a closed S3-manifold of dimension 4
and dim H = 1.

LEMMA 6.1. If H is NS1

9 then every orbit is principal, and the first half
of Theorem 1.5 (iii) holds.

PROOF. The first half of lemma follows immediately from Lemma 2.5.
Then, M is a trivial S3/NSί-bundle over N = M/S3 by (3.1), and N is a con-
nected closed surface by (3.2). q. e. d.

In the rest of this section, we assume that H = Sl.
When the fixed point set F(S3, M) is non-empty, any point x eF(53, Aί) has

an invariant neighborhood which is equivariantly diίfeomorphic to D4 with the
S3-action given by η2 (cf. Lemma 2.5). Thus we have

F(S3, M) = F L u U Fk9 Ft = Sl (1 ^ / ̂  fc).

Further, F(S3, M) has a closed invariant tubular neighborhood (7, which is
a D3-bundle over F(S3

9 M), and so

(6.2) 17= l/ t U U I/*, Ul = D3xSl or D3 x Sl/((q, z) = (-q, -z)),

where S3 acts on D3 via η2. On the other hand, the S3-manifold M' = M —
Int 17 is

(6.3) M' = M — Int I
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by [5, Lemma 4.2], where F(S1

9 M') is the one of Proposition 1.4.

LEMMA 6.4. Proposition 1.4 (i) holds.

PROOF. M'/S3=F(Sί

ί M')/Z2 is connected since M' is so. Because the
isotropy subgroup at xedM' = dU is conjugate to S1, the Z2-action is free on
dF(S1

9 M1). We see that F(S1

9 M') is a surface by (6.3). q. e. d.

We prepare the following lemma to show (ii) of Proposition 1.4.

LEMMA 6.5. Let G be a compact Lie group, H be its closed subgroup,
and assume that gHg~l c:NH (g e G) implies g e NH. Let X be a smooth mani-
fold with a smooth NH/H-action. For any G-equivariant diffeomorphism

f: Y-+Y9 Y=(G/H)xNH/HX9 there is an NH/H-equivariant diffeomorphism
f':X-+X such that

f[jgH9 x] = lgH9 /'(*)] (gH E G/H9 x e X).

PROOF. For any x e X9 we set

/[H,x] = [Λ(x)H,/2(x)] in 7.

Since / is //-equivariant, we have

f[0H, x] = to/ι(*)H, /2(x)] for any g e G.

If geH, the above two equalities show that f1(x)NH = gfί(x)NH. Hence
f^l(x)Hfi(x)cNH, and so/χ(x) e NH by the assumption. Thus we have

/toff,^] = to^/ιW^ /2W] for any ^eG,

which shows that/is a bundle map of the bundle X-» Y-+G/H onto itself. There-
fore f'=f\X is the ΛΓ////f-equivariant diffeomorphism of ^ onto itself, and
we see easily the desired equality. q. e. d.

Since the assumption of the above lemma holds for G = S3 and H = Sί, we
have the following

COROLLARY 6.6. Any S3-equivariant diffeomorphism of S2xSί/((q9z)
==(-#, -z)) = 52xZ2S'1 or S 2 x5 1 =S 2 x Z 2 (Z 2 x5 1 ) onto itself can be extended
to an S3-equivariant diffeomorphism of D3 x S l / ( ( q 9 z) = ( — q9 —z)) or D3 xSl

onto itself.

PROOF OF PROPOSITION 1.4. (i) is proved in Lemma 6.4. (ii) follows im-
mediately from the above corollary, (6.2) and (6.3). q. e. d.

Now, we have Theorem 1.5 completely.
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PROOF OF THEOREM 1.5. (i), (ii) and (iv) are proved in Lemmas 5.2, 5.7,
5.9 and 5.10. (iii) and (v) follow immediately from Proposition 1.4. q. e. d.

In the last of this section, we give some examples of manifolds in Theorem 1.5.

EXAMPLE 6.7. The following are manifolds in (ii) of Theorem 1.5, which
are not product bundles:

(S3/H) x Z2S
l for H = Zn (n ̂  3), D*(4m) (m ̂  2) and Γ*,

where Z2 acts on S1 by the antipodal map and on S3/// by α: gH->gu~iH for
α=7, α4m and e, respectively;

(S3///)xZ 35
l for // = Z)*(8),

where Z3 acts on S1 by the rotation and on S3/H by gH-+g(ee')~{H.

EXAMPLE 6.8. The following are manifolds in (iv) of Theorem 1.5, where
the equation in the parentheses indicates the S3-action:

S4, P2(Q9 P4(R) (q - [p, x] = [qp, x])

S2 x S2/((p, r) = (-r, p)) (g - [p, r] =

S3x.sιS
2, 53x51P2(Λ),

where S1 acts on S2 or P2(K) by b [α, x] = [fonα, x]

S3 x NS1S
2, S3 x NSιU

2 (U2 : the Klein bottle),

where NS1 acts on S2 or U2 by f? (α, x) = (ί?2mα, x), j (α, x) = (α, -x);

S 3 x ι S 2 , S3 x

where NS1 acts on S2 or P2(R) by ί? [α, x] = [b2wα, x],j [α, x] = [α, x], and
0* acts on S1 by 0*-^O*/D*(8)-

§7. Z2-actions on surfaces

In this section, we classify Z2-surfaces which appear in (iii) and (v) of Theorem
1.5.

We consider the following Z2-surfaces :
The cylinder C=[-l, 1] x S1 with the 22-action (ί, x)->(~ί, x).
The unit disk D = D2 with the Z2-action x-^ -x.
The Mδbius band £ = [-1, 1] x Sl/((t, x) = (-t, -x)) with the Z2-action

[ί, x]->[ — t, x], whose boundary is dB=ixSί=Sί with the Z2 action x-»-x.
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By using these surfaces, we can construct the following Z2-surfaces:
(7.1) Let N' be a connected compact surface such that dN' = Sl x {!,...,

fc}, /c^O. Then we have

Z2xN' U Cx {!,...,£'}, 0^ k' £ k.

(7.2) Let N' be a connected compact surface admitting a free Z2-action such
that dN' = Z2 x S1 x {!,..., fc} U S 1 x {!,..., m}, /cΞ>0, mΞ>0, (where Z2 acts on
Z 2 X S 1 by (±1, *)-»(+1, x), and on S1 by x-»-x). Then for Og fc'gfc,

0 g m j ^ m j -f m2 =
 m-> we have

N' U Cx{ l , . . . , fc'} U Dx{l , . . . , mj U Bx {W A +1,..., m1 + m2}.

Then, we have the following

THEOREM 7.3. Lei N be a compact surface admitting a non-trivial Z2-
actίon such that Z2 acts freely on its boundary dN and N/Z2 is connected. Then
N is equivariantly diffeomorphic to a Z2-surface of (7.1) or (7.2). Any Z2-
surface N' in (7.2) is characterized by the classification theorem [2, Th. 1.3].

PROOF. If N is not connected, then we see easily that N «Z2 x N', which is
the one of (7.1) for fc' = 0.

Assume that N is connected, and consider the fixed point set F(Z2, N) whose
component is a point or a circle. Each component has an invariant tubular
neighborhood D if it is a point, and C or B if it is a circle. Therefore, we have
easily the theorem by considering N' = N — IntU, where U is a closed invariant
tubular neighborhood of F(Z2, N). q. e. d.
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