Smooth $\mathbf{S}^{\mathbf{3}}$-Actions on n Manifolds for $n \leqq 4$

Tohl Asor
(Received May 19, 1976)

§ 1. Introduction

In this note, we say that M is an $S^{3}(=S U(2))$-manifold, if M is a connected compact smooth manifold admitting a non-trivial smooth S^{3}-action $S^{3} \times M \rightarrow M$. The purpose of this note is to classify such closed manifolds of dimension less than 5 by S^{3}-equivariant diffeomorphisms.

We notice the following results (cf. [1, Cor. 3.2] and [6, Th. 2.6.7]).
(1.1) Any closed proper subgroup of

$$
S^{3}=\{q \in H ;|q|=1\} \quad(H \text { is the quaternion field })
$$

is conjugate to one of the following subgroups:
$S^{1}=\{z \in C ;|z|=1\}$, the unit circle in the complex field C;
$N S^{1}=\left\{z, z j ; z \in S^{1}\right\}$, the normalizer of S^{1} in S^{3};
$Z_{n}=\left\{z \in S^{1} ; z^{n}=1\right\}$, the cyclic group of order $n(\geqq 1)$;
$D^{*}(4 m)=\left\{z, z j ; z \in Z_{2 m}\right\}=\eta_{2}^{-1}(D(2 m))$, the binary dihedral group of order $4 m(\geqq 8)$;
$T^{*}=\eta_{2}^{-1}(T), O^{*}=\eta_{2}^{-1}(O)$ and $I^{*}=\eta_{2}^{-1}(I)$, the binary tetrahedral, octahedral and icosahedral groups of order 24,48 and 120 , respectively.

Here, $\eta_{2}: S^{3} \rightarrow S O(3)$ is the double covering defined by

$$
\eta_{2}(q) p=q p q^{-1} \quad\left(q \in S^{3}, p \text { is a pure quaternion }\right)
$$

and $D(2 m)$ is the dihedral group of order $2 m$ and T, O and I are the tetrahedral, octahedral and icosahedral groups.

For an S^{3}-manifold M, we denote by (H) its type of principal isotropy subgroups, and consider the following two cases:
(a) Every isotropy subgroup is principal.
(b) There exists a non-principal isotropy subgroup $K \supseteq H$.

Unless otherwise stated, we consider S^{3} / H as the S^{3}-manifold with the action $\eta_{1}, \eta_{1}(q)[p]=[q p]$. Also, for any S^{3}-manifold M_{1} and any manifold N, we consider $M_{1} \times N$ as the S^{3}-manifold acting S^{3} trivially on N.

Then, closed S^{3}-manifolds are classified up to equivariant diffeomorphisms by the following theorems.

Theorem 1.2. If $\operatorname{dim} M=2$, then only the case (a) holds, and M is determined uniquely by $H=S^{1}$ or $N S^{1}$ and $M=S^{3} / H=S^{2}$ or $P_{2}(R)$, respectively.

Theorem 1.3. Assume that $\operatorname{dim} M=3$.
The case (a). When H is any subgroup of (1.1) except S^{1}, M is determined by H, and

$$
M=S^{3} / H \text { if } H \text { is finite, } \quad=P_{2}(R) \times S^{1} \text { if } H=N S^{1} .
$$

When $H=S^{1}, M$ is determined by H and the orientability, and

$$
M= \begin{cases}\left(S^{3} / S^{1}\right) \times S^{1}=S^{2} \times S^{1} & \text { if } M \text { is orientable } \\ \left(S^{2} \times S^{1}\right) /((p, z) \equiv(-p,-z)) & \text { otherwise }\end{cases}
$$

The case (b). $\quad M$ is determined by the principal isotropy subgroup $H=S^{1}$ and two non-principal ones K_{1} and K_{2}, and

$$
M= \begin{cases}S^{3}\left(S^{3} \text { acts on it via } \eta_{2}\right) & \text { if } K_{1}=K_{2}=S^{3}, \\ P_{3}(R)=S^{3} /(q \equiv-q)\left(S^{3} \text { acts on } S^{3} \text { via } \eta_{2}\right) \\ & \text { if } K_{1}=S^{3}, K_{2}=N S^{1}, \\ \left(S^{2} \times S^{1}\right) /((p, z) \equiv(-p, \bar{z})) & \text { if } K_{1}=K_{2}=N S^{1} .\end{cases}
$$

For the case that $\operatorname{dim} M=4$ and $H=S^{1}$, we take a small closed invariant tubular neighborhood U of the fixed point set $F\left(S^{3}, M\right)$ (cf. [3, VI, Th. 2.2]), and consider the S^{3}-submanifold $M^{\prime}=M-\operatorname{Int} U . \quad\left(U=\varnothing\right.$ and $M^{\prime}=M$ if $F\left(S^{3}\right.$, $M)=\varnothing$.) Further we consider the fixed point set $F\left(S^{1}, M^{\prime}\right)$ of the restricted S^{1}-action. Then, we have

Proposition 1.4. (i) $F\left(S^{1}, M^{\prime}\right)$ admits the non-trivial $Z_{2}\left(=N S^{1} / S^{1}\right)$ action induced from the given S^{3}-action, which is free on the boundary $\partial F\left(S^{1}\right.$, $\left.M^{\prime}\right)$, and $F\left(S^{1}, M^{\prime}\right) / Z_{2}$ is connected. Also $F\left(S^{1}, M^{\prime}\right)$ is a compact surface.
(ii) Let D^{3} be the unit disk of dimension 3, admitting the S^{3}-action via η_{2}. Then we have an equivariant diffeomorphism

$$
M \approx \partial\left(D^{3} \times F\left(S^{1}, M^{\prime}\right)\right) / Z_{2},
$$

where Z_{2} acts on D^{3} by the antipodal map and on $F\left(S^{1}, M^{\prime}\right)$ by (i).
Theorem 1.5. Assume that $\operatorname{dim} M=4$.
The case (a). (i) If $H=1, Z_{2}, O^{*}$ or I^{*}, then M is determined uniquely by H, and $M=\left(S^{3} / H\right) \times S^{1}$.
(ii) If $H=Z_{n}(n \geqq 3), D^{*}(4 m)(m \geqq 2)$ or T^{*}, then M is an S^{3} / H-bundle over S^{1} with structure group $N H / H$, and M is determined by H and the first
integral homology group $H_{1}(M)$, which is given by the following table:

H	$H_{1}(M)$
$Z_{n}(n \geqq 3)$	$Z_{n}+Z^{*}, Z(n:$ odd $), Z_{2}+Z(n:$ even $)$
$D^{*}(4 m)(m \geqq 3)$	$Z_{4}+Z(m: \text { odd })^{*}, Z_{2}+Z_{2}+Z(m: \text { even })^{*}, Z_{2}+Z$
$D^{*}(8)$	$Z_{2}+Z_{2}+Z^{*}, Z_{2}+Z, Z$
T^{*}	$Z_{3}+Z^{*}, Z$

($M=\left(S^{3} / H\right) \times S^{1}$ for the case indexed by $\left.{ }^{*}\right)$.
(iii) If $H=N S^{1}$, then $M=P_{2}(R) \times N$, where $P_{2}(R)$ is the S^{3}-manifold in Theorem 1.2 and N is any connected closed surface.

If $H=S^{1}$, then $F\left(S^{3}, M\right)=\varnothing$ and M is determined by the above proposition, where the Z_{2}-surface $F\left(S^{1}, M\right)$ is a closed surface and the Z_{2}-action is free.

The case (b). (iv) When H is finite, H is $Z_{n}, D^{*}(4 m)(m \geqq 2)$ or T^{*}, and M has two non-principal isotropy subgroups K_{1} and K_{2}.

If $H \neq D^{*}(8), M$ is determined uniquely by H, K_{1} and K_{2} of the following table:

H	$K_{l}(l=1,2)$
$Z_{n}(n:$ odd $)$	$Z_{2 n}, S^{1}, S^{3}(n=1)$
$Z_{n}(n:$ even $)$	$Z_{2 n}, D^{*}(2 n), S^{1}, N S^{1}(n=4)$
$D^{*}(4 m)(m \geqq 3)$	$D^{*}(8 m), N S^{1}$
T^{*}	O^{*}

If $H=D^{*}(8), M$ is determined by H, K_{1}, K_{2} and $H_{1}(M)$, which are given by the following table:

$\left(K_{1}, K_{2}\right)$	$H_{1}(M)$
$\left(D^{*}(16), D^{*}(16)\right)$	$Z_{2}+Z_{2}+Z_{2}, Z_{2}+Z_{2}$
$\left(D^{*}(16), N S^{1}\right)$	$Z_{2}+Z_{2}, Z_{2}$
$\left(N S^{1}, N S^{1}\right)$	$Z_{2}, 0$

(v) If $\operatorname{dim} H \geqq 1$, then $H=S^{1}$ and M is determined by the above proposition,
where the Z_{2}-action on the surface $F\left(S^{1}, M^{\prime}\right)=F\left(S^{1}, M\right)$ is not free if $F\left(S^{3}, M\right)$ $=\varnothing$.

The results on the classification of Z_{2}-surfaces, which are used in (iii) and (v) of the above theorem, are given in § 7 .

§2. Closed subgroups of $\boldsymbol{S}^{\mathbf{3}}$

In this section, we prepare some known results on closed subgroups of S^{3} and their real representations.

Lemma 2.1. The binary octahedral group O^{*} in (1.1) is generated by $e=\exp (\pi i / 4), e^{\prime}=(1+j) / \sqrt{2}$ and $e^{\prime \prime}=(1+k) / \sqrt{2}$.

Proof. We notice the following equalities for any $a, b, z \in C$, which are seen easily:

$$
\begin{align*}
& (a+b j) z(\bar{a}-b j)=\left(|a|^{2} z+|b|^{2} \bar{z}\right)+a b(-z+\bar{z}) j, \\
& (a+b j) j(\bar{a}-b j)=(-\bar{a} b+a \bar{b})+\left(a^{2}+b^{2}\right) j . \tag{2.2}
\end{align*}
$$

By considering the set $A=\{ \pm i, \pm j, \pm k\}$ of vertices of the regular octahedron, we see that

$$
O^{*}=\eta_{2}^{-1}(O)=\left\{q \in S^{3} ; q A q^{-1}=A\right\}
$$

Therefore, we see easily by using (2.2) that O^{*} contains the subgroup O^{\prime} of S^{3} generated by e, e^{\prime} and $e^{\prime \prime}$. Therefore $O^{*}=O^{\prime}$ since these groups are of order 48. q.e.d.

Lemma 2.3. Let H be a finite subgroup of S^{3}. Then the normalizer $N H$ of H in S^{3}, the factor group $N H / H$ and $\# \hat{\pi}_{0}(N H / H)$ are given as follows:

H	$N H$	$N H / H$	$\# \hat{\pi}_{0}(N H / H)$
$Z_{n}(n=1,2)$	S^{3}	$S^{3}(n=1), S O(3)(n=2)$	1
$Z_{n}(n \geqq 3)$	$N S^{1}$	$N S^{1}(n:$ odd $), O(2)(n:$ even $)$	2
$D^{*}(4 m)(m \geqq 3)$	$D^{*}(8 m)$	Z_{2}	2
$D^{*}(8)$	O^{*}	$D(6)$	3
T^{*}	O^{*}	Z_{2}	2
O^{*}, I^{*}	O^{*}, I^{*}	1	1

In the above lemma, for a given topological group G,

$$
\begin{equation*}
\hat{\pi}_{0}(G)=\pi_{0}(G) / \sim \tag{2.4}
\end{equation*}
$$

is the set of equivalence classes of elements of $\pi_{0}(G)$ under the inner automorphisms, and $\# \hat{\pi}_{0}(G)$ is its cardinal number.

Proof. When H is 1 or Z_{2}, the results are clear.
Assume $H=Z_{n}(n \geqq 3)$. By (2.2), it is easy to see that $a+b j \in N Z_{n}$ is equivalent to $a b=0$, and so $N Z_{n}=N S^{1}$. Further, there are isomorphisms $N S^{1} / Z_{n} \approx N S^{1}$ for odd n given by $z \rightarrow z^{n}, j \rightarrow j$ and $N S^{1} / Z_{n} \approx O(2)$ for even n given by $\exp (\theta i) \rightarrow\left(\begin{array}{rr}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right), j \rightarrow\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Assume that $H=D^{*}(8)=\{ \pm 1\} \cup A$, where $A=\{ \pm i, \pm j, \pm k\}$. Then, $N D^{*}(8)=O^{*}$ by the proof of Lemma 2.1. Furthermore, $e^{2}=i, b^{3}=-1$ and ebeb $=-1\left(b=e e^{\prime}\right)$ are in $D^{*}(8)$, and

$$
D(6)=\left\{1, x, x y, x y^{2}, y, y^{2}\right\}, \quad x^{2}=y^{3}=x y x y=1,
$$

is the dihedral group of order 6. Hence $O^{*} / D^{*}(8)=D(6)$.
For the case $H=D^{*}(4 m)(m \geqq 3)$, we see easily by using (2.2) that $N D^{*}(4 m)$ $=\left\{a+b j \in S^{3} ; a b=0, a^{2}+b^{2} \in Z_{2 m}\right\}$, which is equal to $D^{*}(8 m)$. It is clear that $D^{*}(8 m) / D^{*}(4 m)=Z_{2}$.

Finally we consider the case $H=T^{*}, O^{*}$ or I^{*}. It is well known that T $=A_{4}, O=S_{4}$ and $I=A_{5}$, where S_{i} and A_{i} are the symmetric and alternating groups of i letters. Therefore, T^{*} is the normal subgroup of O^{*} and $T^{*} \subset I^{*}$, and also $O^{*} \not \ddagger I^{*}$ since 120 is not a multiple of 48 . Since T^{*} has two non-commutative elements of order $6, T^{*}, O^{*}$ and I^{*} are not contained in any conjugate of $D^{*}(4 m)$ or $N S^{1}$. Also, we see that $\left\{q z \bar{q} ; q \in S^{3}\right\}=S^{3}$ if $z-\bar{z} \neq 0$ by using (2.2), and so the proper normal subgroup of S^{3} is 1 or Z_{2}. Therefore we see that $N O^{*}=O^{*}, N I^{*}=I^{*}$ and $N T^{*}=O^{*}$.

The results of $\# \hat{\pi}_{0}(N H / H)$ are obtained easily.
q.e.d.

Now, we prepare some results on real representations of closed subgroups of S^{3}.

Lemma 2.5. Let K be a closed subgroup of $S^{3}, \rho: K \rightarrow O(k), k \leqq 4-\operatorname{dim} S^{3} / K$, be a non-trivial representation, and H be a principal isotropy subgroup of the K-action on the unit disk D^{k} via ρ. Then, these are given by the following table up to equivalence:

K	k	ρ	H
S^{3}	3,4	$\eta_{2}: \eta_{2}(q) p=q p q^{-1}$	S^{1}
	4	$\eta_{1}: \eta_{1}(q) p=q p$	1
$N S^{1}$	1,2	$v: v(z)=1, v(j)=-1$	S^{1}
	2	$\gamma_{2 n}(n \geqq 1): \gamma_{2 n}(z) p=z^{2 n} p, \gamma_{2 n}(j) p=-\bar{p}$	$D^{*}(4 n)$
S^{1}	2	$\delta_{n}(n \geqq 1): \delta_{n}(z) p=z^{n} p$	Z_{n}
$Z_{2 n}$	1	$\lambda^{(n)}: \lambda^{(n)}\left(a_{2 n}\right)=-1$	Z_{n}
O^{*}	1	$\mu: \mu(e)=\mu\left(e^{\prime}\right)=\mu\left(e^{\prime \prime}\right)=-1$	T^{*}
$D^{*}(4 m)$	1	$\chi_{1}: \chi_{1}\left(a_{2 m}\right)=1, \chi_{1}(j)=-1$	$Z_{2 m}$
$D^{*}(8 m)$	1	$\chi_{2}: \chi_{2}\left(a_{4 m}\right)=-1, \chi_{2}(j)=1$	$D^{*}(4 m)$
	1	$\chi_{3}: \chi_{3}\left(a_{4 m}\right)=-1, \chi_{3}(j)=-1$	$a_{8 m} D^{*}(4 m) a_{8 m}^{-1}$

$\left(a_{n}=\exp (2 \pi i / n), e=a_{8}, e^{\prime}=(1+j) / \sqrt{2}, e^{\prime \prime}=(1+k) / \sqrt{2}\right)$.
Proof. When $K=S^{3}$, the results follow immediately from [1, Prop. 3.7] and its proof. The results for $K=N S^{1}$ or S^{1} are [1, Prop. 3.8]. The others are seen easily.
q.e.d.

§3. Actions with orbits of codimension 1

In this section, let G be a compact connected Lie group and M be a closed (compact and without boundary) connected smooth n manifold. Assume that there is given a non-trivial smooth action $G \times M \rightarrow M$ of G on M, and let (H) be the type of its principal isotropy subgroups, and d be its maximal orbit dimension, i.e., the dimension of the principal orbit G / H, (cf. [3, IV, 3]).
(3.1) [3, IV, Th. 3.3 and VI, Cor. 2.5] When every orbit is principal, M is a G / H-bundle over the closed manifold M / G with structure group $N H / H$, where $N H$ is the normalizer of H in G.
(3.2) [3, IV, Lemma 4.1] The orbit space M / G is an $n-d$ manifold if $n-d \leqq 2$.
(3.3) If $d=n$, then M is equivariantly diffeomorphic to G / H.

For the case $d=n-1$, we consider the following situation:
(3.4) For $l=1$, 2, let $K_{l} \supsetneq H$ be a closed subgroup of G and

$$
\rho_{l}: K_{l} \longrightarrow O\left(k_{l}\right), \quad k_{l}=n-\operatorname{dim} G / K_{l},
$$

be a representation. Assume that the K_{l}-action on a unit disk $D^{k_{l}}$ via ρ_{l} is transitive on the boundary $\partial D^{k_{l}}$ and its isotropy subgroup $\left(K_{l}\right)_{p_{l}}$ is equal to H for some $p_{l} \in \partial D^{k_{1}}$, and also the G-manifold $G \times_{K_{l}} D^{k_{l}}$ has (H) as the type of principal isotropy subgroups.

Then, we can identify $G \times_{\kappa_{t}} \partial D^{k_{t}}=G / H$ by the equivariant diffeomorphism

$$
G \times_{k_{t}} \partial D^{k_{1}} \ni\left[g, p_{l}\right] \longleftrightarrow g H \in G / H,
$$

and for any $\alpha \in N H$, we obtain the G-manifold

$$
\begin{equation*}
M_{\alpha}=G \times_{K_{1}} D^{k_{1}} \cup_{\alpha} G \times_{K_{2}} D^{k_{2}}, \tag{3.5}
\end{equation*}
$$

where the attaching map $\alpha: G \times{ }_{K_{1}} \partial D^{k_{1}}=G / H \rightarrow G / H=G \times{ }_{K_{2}} \partial D^{k_{2}}$ is given by $\alpha(g H)=g \alpha^{-1} H(g \in G)$.

Proposition 3.6. [3, IV, Th. 8.2] Assume that $d=n-1$ and there exist non-principal orbits.
(i) Then there exist K_{l} and ρ_{l} of (3.4) and

$$
M=M_{\alpha} \quad \text { for some } \quad \alpha \in N H .
$$

(ii) Assume that there exist K_{l} and ρ_{l} of (3.4) satisfying the following:
(3.7) If $\rho_{l}^{\prime}: K_{l} \rightarrow O\left(k_{l}\right)$ satisfies the assumption of (3.4) except the condition $H=\left(K_{l}\right)_{p_{l}}$, then there exists $\gamma_{l} \in N K_{l}$ such that $\rho_{l}^{\prime} c_{\gamma_{l}}$ is equivalent to ρ_{l}, where $c_{\gamma_{l}}(k)=\gamma_{l} k \gamma_{l}^{-1}\left(k \in K_{l}\right)$.

Then, we can choose any such fixed K_{l} and ρ_{l} for those in (i).
Proof. (i) It is sufficient to notice in the proof of [3, IV, Th. 8.2] that we can take $M_{f_{l-1}}=G \times_{K_{l}} D^{k_{l}}(l=1,2)$, which follows immediately from the differentiable slice theorem (cf. [3, VI, Cor. 2.4]).
(ii) In the same way, we can write $M \approx G \times_{\left(K_{1}, \rho_{1}^{\prime}\right)} D^{k_{1}} \cup G \times_{\left(K_{2}, \rho_{2}^{\prime}\right)} D^{k_{2}}$, where K_{l} acts on $D^{k_{l}}$ via ρ_{l}^{\prime}. Then by (3.7) it is easy to see that $G \times_{\left(K_{l}, \rho_{l}^{\prime}\right)} D^{k_{l}}$ is equivariantly diffeomorphic to $G \times_{K_{1}} D^{k_{1}}$, and we have the desired result.
q.e.d.

Now, we consider the following condition for the situation (3.4):
(3.8) For any $\gamma_{l} \in N H \cap N K_{l}$, the right translation $\psi_{\gamma_{l}}$ of $G \times_{K_{l}} D^{k_{l}}$ is smooth, where $\psi_{\gamma_{1}}$ is given by

$$
\psi_{\gamma_{l}}\left[g, t p_{l}\right]=\left[g \gamma_{l}^{-1}, t p_{l}\right] \quad(g \in G, 0 \leqq t \leqq 1) .
$$

Proposition 3.9. Under the assumption (3.8), M_{α} and M_{β} of (3.5) for $\alpha, \beta \in N H$ are equivariantly diffeomorphic if and only if there exist $\gamma_{l} \in N H$ $\cap N K_{l}(l=1,2)$ such that γ_{1} and $\beta^{-1} \gamma_{2} \alpha$ are contained in the same component of NH / H.

Proof. (Sufficiency) We can choose a smooth path $\theta:[0,1] \rightarrow N H / H$ from γ_{1} to $\beta^{-1} \gamma_{2} \alpha$, which is locally constant at 0 and 1 . Then, by considering

$$
\begin{equation*}
M_{\tau}=G \times_{K_{1}} D^{k_{1}} \cup(G / H \times[0,1]) \cup G \times_{\tau^{-1} K_{2} D^{2}}{ }^{k_{2}} \quad(\tau=\alpha, \beta), \tag{*}
\end{equation*}
$$ the desired diffeomorphism $\psi: M_{\alpha} \approx M_{\beta}$ is given by

$$
\begin{equation*}
\psi\left[g, t p_{1}\right]=\left[g \gamma_{1}^{-1}, t p_{1}\right], \quad \psi\left[g, t p_{2}\right]=\left[g \alpha^{-1} \gamma_{2}^{-1} \beta, t p_{2}\right] \tag{**}
\end{equation*}
$$

and $\psi(g H, s)=\left(g \theta(s)^{-1} H, s\right)$ for $g \in G, t, s \in[0,1]$.
(Necessity) Assume that M_{α} and M_{β} are equivariantly diffeomorphic. In the same way as the proof of [3, V, Th. 5.1], we can choose an equivariant homeomorphism $\psi: M_{\alpha} \approx M_{\beta}$ such that M_{α} and M_{β} have the forms of (*), and ψ maps $G \times{ }_{K_{1}} D^{k_{1}}$ and $G \times_{\alpha^{-1} K_{2} \alpha} D$ to $G \times{ }_{K_{1}} D^{k_{1}}$ and $G \times_{\beta^{-1} K_{2} \beta} D^{k_{2}}$, respectively, satisfying (**) for some $\gamma_{l} \in N H \cap N K_{l}(l=1,2)$. Then γ_{1} and $\beta^{-1} \gamma_{2} \alpha$ are connected by the path

$$
\theta:[0,1] \subset G / H \times[0,1] \xrightarrow{\psi} G / H \times[0,1] \longrightarrow G / H . \quad \text { q.e.d. }
$$

For the condition (3.8), we have the following
Lemma 3.10. Assume that the representation $\rho_{l}: K_{l} \rightarrow O\left(k_{l}\right)$ satisfies $\rho_{l}\left(K_{l}\right) \supset S O\left(k_{l}\right)$. Then (3.8) holds, if ρ_{l} is equivalent to $\rho_{l} c_{\gamma_{l}}$ for any $\gamma_{l} \in N H$ $\cap N K_{l}$.

Proof. We use the notations omitting the index $l . \psi_{\gamma}$ in (3.8) is the bundle map of the disk bundle $D^{k} \rightarrow G \times{ }_{K} D^{k} \rightarrow G / K$ onto itself, inducing $\tilde{\psi}: G / K$ $\rightarrow G / K, \tilde{\psi}(g K)=g \gamma^{-1} K$. Therefore, it is sufficient to show that $f=\psi_{\gamma} \mid D^{k}$ is linear. From the definition of ψ_{γ}, we see that f is given by

$$
f(t \rho(g) p)=t \rho\left(\gamma g \gamma^{-1}\right) p \quad \text { for } \quad g \in K .
$$

There exists $A^{\prime} \in G L(k)$ such that $\rho c_{\gamma}=c_{A} \cdot \rho$ by the assumption, where $c_{A}(X)$ $=A X A^{-1}(X \in O(k))$. Then it is easy to see that $A^{\prime}=t A$ for some $A \in O(k)$ and $t \neq 0$, since $\rho(K) \supset S O(k)$. Thus we have $\rho c_{\gamma}=c_{A} \rho$ and so

$$
\begin{equation*}
f(X p)=A X A^{-1} p \quad \text { for any } \quad X \in \rho(K) \tag{*}
\end{equation*}
$$

Consider the isotropy subgroup $\rho(K)_{p}=\{X \in \rho(K) ; X p=p\}$. Then we see easily that $A \rho(K)_{p} A^{-1} \subset \rho(K)_{p}$ by (*) and so A belongs to the normalizer $N\left(\rho(K)_{p}\right)$ in $O(k)$. On the other hand, we see easily that $N\left(\rho(K)_{p}\right)=\{B \in O(k) ; B p= \pm p\}$ since $\rho(K)=O(k)$ or $S O(k)$. Therefore we see $A p= \pm p$, and hence

$$
f(X p)=A X A^{-1} p= \pm A X p \quad \text { for any } \quad X \in \rho(K)
$$

This shows that f is linear as desired.
q.e.d.

The following lemma for the special case that $G=S^{3}$ is used in $\S 5$.
Lemma 3.11. When $n=4, H=1, G=K_{l}=S^{3}$ and ρ_{l} is $\eta_{1}: S^{3} \rightarrow O(4)$ in Lemma 2.5, the condition (3.8) holds.

Proof. For this case, $G \times{ }_{K_{1}} D^{k_{1}}=D^{4}$ and $\psi_{\gamma_{1}}: D^{4} \rightarrow D^{4}$ is given by $\psi_{\gamma_{1}}(p)$ $=p \gamma_{1}^{-1}$, and hence we have the lemma. q.e.d.

§4. Proofs of Theorems $\mathbf{1 . 2}$ and 1.3

In this section, we apply the results of the previous sections for the case that $G=S^{3}$ and $\operatorname{dim} M \leqq 3$.

Proof of Theorem 1.2. Since $\operatorname{dim} H \leqq 1$ by (1.1), we have $d=\operatorname{dim} S^{3} / H \geqq 2$. Also $\operatorname{dim} M / S^{3}=2-d \geqq 0$ by (3.2). Thus $d=2$ and $\operatorname{dim} H=1$, and the result is clear from (1.1) and (3.3).
q.e.d.

Proof of Theorem 1.3. In the same way as the above proof, the maximal orbit dimension d satisfies $2 \leqq d \leqq 3$.

When $d=3=\operatorname{dim} M, M$ is equivariantly diffeomorphic to S^{3} / H by (3.3), where H is finite.

When $d=2=\operatorname{dim} M-1$, we have $H=S^{1}$ or $N S^{1}$ since $\operatorname{dim} H=1$. For the case (a), M is an S^{3} / H-bundle over S^{1} with structure group NH / H by (3.1). If H is $N S^{1}$, then $N H / H=1$ and so M is equivariantly diffeomorphic to $\left(S^{3} / N S^{1}\right)$ $\times S^{1}=P_{2}(R) \times S^{1}$. If H is S^{1}, then $S^{2}=S^{3} / S^{1}$ and M is an S^{2}-bundle over S^{1} with structure group $N S^{1} / S^{1}=Z_{2}$. Thus M is equivariantly diffeomorphic to $S^{2} \times S^{1}$ or $\left(S^{2} \times S^{1}\right) /((q, z) \equiv(-q,-z))$.

For the case (b), we apply Proposition 3.6. Lemma 2.5 shows that there do not exist K_{l} and ρ_{l} satisfying (3.4) for $H=N S^{1}$. If $H=S^{1}$, then Lemma 2.5 shows that K_{l} and ρ_{l} of (3.4) are given by

$$
K_{l}=S^{3}, \rho_{l}=\eta_{2} \quad \text { or } \quad K_{l}=N S^{1}, \rho_{l}=v,
$$

and the condition (3.7) holds. Therefore, it is sufficient to classify M_{α} by Proposition 3.6. Since the condition (3.8) holds by Proposition 3.10, we see easily that $M_{1} \approx M_{j}$, and hence $M_{\alpha} \approx M_{\beta}$ for any $\alpha, \beta \in N S^{1}$ by Proposition 3.9. Thus, M is determined uniquely by $H=S^{1}$ and $\left(K_{1}, K_{2}\right)=\left(N S^{1}, N S^{1}\right),\left(N S^{1}, S^{3}\right)$ or (S^{3}, S^{3}).
q.e.d.

§5. The case that $\operatorname{dim} M=4$ and H is finite

In this section, we assume that M is a closed S^{3}-manifold of dimension 4, and its principal isotropy subgroup H is finite.

For the case that every orbit is principal, (3.1) shows that M is an S^{3} / H bundle over $M / S^{3}=S^{1}$ with structure group $N H / H$, and we have its characteristic class χ in $\hat{\pi}_{0}(N H / H)$ of (2.4) by the classification theorem [4, Th. 18.5]. These show the following

Proposition 5.1. When every orbit is principal, M is determined by H and $\chi \in \hat{\pi}_{0}(N H / H)$.

Lemma 5.2. Theorem 1.5 (i) holds.
Proof. When H is a finite subgroup of (i) in Theorem 1.5, we have $\# \hat{\pi}_{0}(\mathrm{NH} /$ $H)=1$ by Lemma 2.3, and hence the desired result by the above proposition.
q.e.d.

To study the case (ii) of Theorem 1.5, we consider the relation between the characteristic class χ and $H_{1}(M)$.

Lemma 5.3. Let $A_{l}(l=1,2)$ be a connected space such that $A_{1} \cap A_{2}=A_{0}$. Then the first integral homology group $H_{1}\left(A_{1} \cup_{\varphi} A_{2}\right)$, of an attaching space $A_{1} \cup_{\varphi} A_{2}$ by a homeomorphism $\varphi: A_{0} \rightarrow A_{0}$, is given by

$$
\begin{equation*}
H_{1}\left(A_{1} \cup_{\varphi} A_{2}\right)=\operatorname{Coker}\left(i_{1 *},-\left(i_{2} \varphi\right)_{*}\right)+\tilde{H}_{0}\left(A_{0}\right) \tag{5.4}
\end{equation*}
$$

where $i_{l}: A_{0} \rightarrow A_{l}$ is the inclusion and $\left(i_{1 *},-\left(i_{2} \varphi\right)_{*}\right): H_{1}\left(A_{0}\right) \rightarrow H_{1}\left(A_{1}\right)+H_{1}\left(A_{2}\right)$.
Proof. (5.4) follows immediately from the Mayer-Vietoris exact sequence of $\left(A_{1} \cup_{\varphi} A_{2} ; A_{1}, A_{2}\right)$.
q.e.d.

The following lemma is clear.
Lemma 5.5. Let H be a finite subgroup of $S^{3}, D(H)$ be the commutator subgroup of H, and $\alpha \in N H$. Then, we have the commutative diagram

where $\alpha: S^{3} / H \rightarrow S^{3} / H$ is the right transformation given by $\alpha(g H)=g \alpha^{-1} H$ and $c_{\alpha}: H \rightarrow H$ is the automorphism given by $c_{\alpha}(h)=\alpha h \alpha^{-1}$.

In the above lemma, we see easily the following
Lemma 5.6. If H is a subgroup in (ii) of Theorem 1.5, then it holds the following table:

H	$H / D(H)$	α	$c_{\alpha \sharp}$
$D^{*}(4 m)(m:$ even $\geqq 3)$	$Z_{2}<a_{2 m}>+Z_{2}<j>$	$a_{4 m}$	$a_{2 m} \rightarrow a_{2 m}, j \rightarrow a_{2 m}+j$
$D^{*}(4 m)(m:$ odd $\geqq 3)$	$Z_{4}<j>$	$a_{4 m}$	$j \rightarrow-j$
(8)	$Z_{2}<i>+Z_{2}<j>$	a_{8}	$i \rightarrow i, j \rightarrow i+j$
	$e e^{\prime}$	$i \rightarrow j, j \rightarrow i+j$	
$Z_{n}(n \geqq 3)$	$Z_{n}<a_{n}>$	j	$a_{n} \rightarrow-a_{n}$
T^{*}	$Z_{3}<e e^{\prime}>$	a_{8}	$e e^{\prime} \rightarrow-e e^{\prime}$

where $Z_{n}\langle a\rangle$ is a cyclic group Z_{n} generated by a, and e $e^{\prime}=(1+i+j+k) / 2$.
Now, we are ready to prove (ii) of Theorem 1.5.
Lemma 5.7. Theorem 1.5 (ii) holds.
Proof. Let M be given by H and $\chi=[\alpha], \alpha \in N H$, in Proposition 5.1. Denote $E_{l}=\{\exp (t \pi i) ; l-1 \leqq t \leqq l\} \subset S^{1}(l=1,2)$, and set $A_{l}=\pi^{-1}\left(E_{l}\right)$, where $\pi: M \rightarrow M / S^{3}=S^{1}$ is the projection of the bundle. Then

$$
A_{0}=A_{1} \cap A_{2}=S^{3} / H \cup S^{3} / H \quad \text { (disjoint union), }
$$

and the definition of χ shows that $M=A_{1} \cup{ }_{\varphi} A_{2}$ and the diagram

is commutative, where the inclusion i is a homotopy equivalence and f is the folding map. These facts and Lemma 5.5 show that $\left(i_{1 *},-\left(i_{2} \varphi\right)_{*}\right)$ in (5.4) is equal to the homomorphism

$$
H^{\prime}+H^{\prime} \longrightarrow H^{\prime}+H^{\prime}, \quad(a, b) \longrightarrow\left(a+b,-a-c_{\alpha \sharp}(b)\right),
$$

$\left(H^{\prime}=H / D(H)\right)$. Thus we have easily

$$
H_{1}(M)=H_{1}\left(A_{1} \cup_{\varphi} A_{2}\right) \cong H^{\prime} / \operatorname{Im}\left(1-c_{\alpha \sharp}\right)+Z
$$

by Lemma 5.3, and hence we obtain (ii) of Theorem 1.5 by the above lemma.
q.e.d.

Now, we study the case (iv) in Theorem 1.5, by applying the results in $\S 3$.

Lemma 5.8. If H is finite, then we can take H and $K_{l}(l=1,2)$ in the tables of (iv) of Theorem 1.5 as the ones in Proposition 3.6 (ii).

Proof. By Lemma 2.5, it is sufficient to show that (3.7) holds for $H=$ $D^{*}(4 m), K_{l}=D^{*}(8 m), \rho_{l}=\chi_{2}$ and $\rho_{l}^{\prime}=\chi_{3}$. This is clear, since $\chi_{2}=\chi_{3} c_{a_{8} m}$ by definitions of χ_{2} and χ_{3}.

Lemma 5.9. Theorem 1.5 (iv) holds when $H \neq D^{*}(8)$.
Proof. Let $\left(H, K_{1}, K_{2}\right)$ be given in the table of (iv) of Theorem 1.5. By the above lemma and Proposition 3.6 , it is sufficient to classify M_{α} for $\alpha \in N H$. We see that (3.8) holds by Lemmas $2.5,3.10$ and 3.11 , and so we can classify M_{α} by Proposition 3.9.

If $H=1$ or Z_{2}, then $N H / H=S^{3} / H$ is path-connected, and so $M_{1} \approx M_{\alpha}$ for any $\alpha \in N H$ by Proposition 3.9.

Let $H=Z_{n}(n \geqq 3), D^{*}(4 m)(m \geqq 3)$ or T^{*}. Then we see that $N H=N S^{1}$, $D^{*}(8 m)$ or O^{*} and $N K_{l} \supset D^{*}(8), D^{*}(16 m)$ or O^{*}, respectively, by Lemma 2.3. Consider the element $\alpha_{0} \in N H \cap N K_{l}$, given by $\alpha_{0}=j, a_{4 m}$ or e, respectively. Then we see that $M_{1} \approx M_{\alpha_{0}}$ and hence $M_{\alpha} \approx M_{\beta}$ for any $\alpha, \beta \in N H$ by Proposition 3.9. Thus M is determined uniquely by $\left(H, K_{1}, K_{2}\right)$. q.e.d.

Next we consider the case that $H=D^{*}(8)$.
Lemma 5.10. Theorem 1.5 (iv) is also valid when $H=D^{*}(8)$.
Proof. In the same way as the above proof, it is sufficient to classify $M_{\alpha}\left(\alpha \in N D^{*}(8)\right)$ by Proposition 3.9 , where $K_{l}=D^{*}(16)$ or $N S^{1}$.

By the proof of Lemma 2.3, we have

$$
N D^{*}(8) / D^{*}(8)=D(6)=\left\{1, x, x y, x y^{2}, y, y^{2}\right\}
$$

where $x=e D^{*}(8), y=e e^{\prime} D^{*}(8)$. Since $N H \cap N K_{l}=D^{*}(16)$, Proposition 3.9 and the easy calculation show that

$$
M_{1} \approx M_{x} \approx M_{y} \approx M_{x y} \approx M_{x y^{2}} \approx M_{y^{2}}
$$

Now, we calculate $H_{1}\left(M_{\alpha}\right)$ for $\alpha=1$ or $e e^{\prime}$ by Lemma 5.3. By (3.5),

$$
M_{\alpha}=A_{1} \cup_{\alpha} A_{2}, \quad A_{0}=A_{1} \cap A_{2}=S^{3} / H \quad\left(H=D^{*}(8)\right)
$$

where $A_{l}=S^{3} \times{ }_{K_{l}} D^{k_{l}}$, and we have the commutative diagram

where p and p_{l} are the projections and p is a homotopy equivalence. By identifying

$$
\begin{aligned}
& \left.H_{1}\left(A_{0}\right)=H / D(H)=Z_{2}\langle i\rangle+Z_{2}<j\right\rangle, \\
& H_{1}\left(A_{l}\right)=K_{l} / D\left(K_{l}\right)= \begin{cases}\left.Z_{2}\langle e\rangle+Z_{2}<j\right\rangle & \text { if } K_{l}=D^{*}(16), \\
Z_{2}<j> & \text { if } \quad K_{l}=N S^{1},\end{cases}
\end{aligned}
$$

(cf. Lemma 5.6), the above facts and Lemma 5.5 show that $\left(\left(i_{1}\right)_{*},-\left(i_{2} \alpha\right)_{*}\right)$ in (5.4) is equal to the homomorphism given by

$$
\begin{array}{lll}
i \longrightarrow(0,0), & j \longrightarrow(j,-j) & \text { if } \alpha=1 \\
i \longrightarrow(0,-j), & j \longrightarrow(j,-j) & \text { if } \alpha=e e^{\prime} .
\end{array}
$$

Then (5.4) and the easy calculation show that $H_{1}\left(M_{\alpha}\right)$ is given by the second table in (iv) of Theorem 1.5.
q.e.d.

§6. The case that $\operatorname{dim} M=4$ and $\operatorname{dim} H=1$

In this section, we assume that M is a closed S^{3}-manifold of dimension 4 and $\operatorname{dim} H=1$.

Lemma 6.1. If H is $N S^{1}$, then every orbit is principal, and the first half of Theorem 1.5 (iii) holds.

Proof. The first half of lemma follows immediately from Lemma 2.5. Then, M is a trivial $S^{3} / N S^{1}$-bundle over $N=M / S^{3}$ by (3.1), and N is a connected closed surface by (3.2).
q.e.d.

In the rest of this section, we assume that $H=S^{1}$.
When the fixed point set $F\left(S^{3}, M\right)$ is non-empty, any point $x \in F\left(S^{3}, M\right)$ has an invariant neighborhood which is equivariantly diffeomorphic to D^{4} with the S^{3}-action given by η_{2} (cf. Lemma 2.5). Thus we have

$$
F\left(S^{3}, M\right)=F_{1} \cup \cdots \cup F_{k}, \quad F_{l}=S^{1} \quad(1 \leqq l \leqq k)
$$

Further, $F\left(S^{3}, M\right)$ has a closed invariant tubular neighborhood U, which is a D^{3}-bundle over $F\left(S^{3}, M\right)$, and so

$$
\begin{equation*}
U=U_{1} \cup \cdots \cup U_{k}, \quad U_{l}=D^{3} \times S^{1} \quad \text { or } \quad D^{3} \times S^{1} /((q, z) \equiv(-q,-z)) \tag{6.2}
\end{equation*}
$$

where S^{3} acts on D^{3} via η_{2}. On the other hand, the S^{3}-manifold $M^{\prime}=M-$ Int U is

$$
\begin{equation*}
M^{\prime}=M-\operatorname{Int} U \approx\left(S^{3} / S^{1}\right) \times_{Z_{2}} F\left(S^{1}, M^{\prime}\right) \tag{6.3}
\end{equation*}
$$

by [5, Lemma 4.2], where $F\left(S^{1}, M^{\prime}\right)$ is the one of Proposition 1.4.
Lemma 6.4. Proposition 1.4 (i) holds.
Proof. $\quad M^{\prime} / S^{3}=F\left(S^{1}, M^{\prime}\right) / Z_{2}$ is connected since M^{\prime} is so. Because the isotropy subgroup at $x \in \partial M^{\prime}=\partial U$ is conjugate to S^{1}, the Z_{2}-action is free on $\partial F\left(S^{1}, M^{\prime}\right)$. We see that $F\left(S^{1}, M^{\prime}\right)$ is a surface by (6.3).
q.e.d.

We prepare the following lemma to show (ii) of Proposition 1.4.
Lemma 6.5. Let G be a compact Lie group, H be its closed subgroup, and assume that $g \mathrm{Hg}^{-1} \subset N H(g \in G)$ implies $g \in N H$. Let X be a smooth manifold with a smooth NH/H-action. For any G-equivariant diffeomorphism $f: Y \rightarrow Y, Y=(G / H) \times{ }_{N H / H} X$, there is an $N H / H$-equivariant diffeomorphism $f^{\prime}: X \rightarrow X$ such that

$$
f[g H, x]=\left[g H, f^{\prime}(x)\right] \quad(g H \in G / H, x \in X) .
$$

Proof. For any $x \in X$, we set

$$
f[H, x]=\left[f_{1}(x) H, f_{2}(x)\right] \quad \text { in } \quad Y .
$$

Since f is H-equivariant, we have

$$
f[g H, x]=\left[g f_{1}(x) H, f_{2}(x)\right] \quad \text { for any } \quad g \in G .
$$

If $g \in H$, the above two equalities show that $f_{1}(x) N H=g f_{1}(x) N H$. Hence $f_{1}^{-1}(x) H f_{1}(x) \subset N H$, and so $f_{1}(x) \in N H$ by the assumption. Thus we have

$$
f[g H, x]=\left[g H, f_{1}(x) H \cdot f_{2}(x)\right] \quad \text { for any } g \in G
$$

which shows that f is a bundle map of the bundle $X \rightarrow Y \rightarrow G / H$ onto itself. Therefore $f^{\prime}=f \mid X$ is the $N H / H$-equivariant diffeomorphism of X onto itself, and we see easily the desired equality.
q.e.d.

Since the assumption of the above lemma holds for $G=S^{3}$ and $H=S^{1}$, we have the following

Corollary 6.6. Any S^{3}-equivariant diffeomorphism of $S^{2} \times S^{1} /((q, z)$ $\equiv(-q,-z))=S^{2} \times{ }_{z_{2}} S^{1}$ or $S^{2} \times S^{1}=S^{2} \times{ }_{Z_{2}}\left(Z_{2} \times S^{1}\right)$ onto itself can be extended to an S^{3}-equivariant diffeomorphism of $D^{3} \times S^{1} /((q, z) \equiv(-q,-z))$ or $D^{3} \times S^{1}$ onto itself.

Proof of Proposition 1.4. (i) is proved in Lemma 6.4. (ii) follows immediately from the above corollary, (6.2) and (6.3).
q.e.d.

Now, we have Theorem 1.5 completely.

Proof of Theorem 1.5. (i), (ii) and (iv) are proved in Lemmas 5.2, 5.7, 5.9 and 5.10. (iii) and (v) follow immediately from Proposition 1.4. q.e.d.

In the last of this section, we give some examples of manifolds in Theorem 1.5.
Example 6.7. The following are manifolds in (ii) of Theorem 1.5, which are not product bundles:

$$
\left(S^{3} / H\right) \times{ }_{Z_{2}} S^{1} \quad \text { for } H=Z_{n}(n \geqq 3), D^{*}(4 m)(m \geqq 2) \text { and } T^{*},
$$

where Z_{2} acts on S^{1} by the antipodal map and on S^{3} / H by $\alpha: g H \rightarrow g \alpha^{-1} H$ for $\alpha=j, a_{4 m}$ and e, respectively;

$$
\left(S^{3} / H\right) \times{ }_{Z_{3}} S^{1} \quad \text { for } \quad H=D^{*}(8),
$$

where Z_{3} acts on S^{1} by the rotation and on S^{3} / H by $g H \rightarrow g\left(e e^{\prime}\right)^{-1} H$.
Example 6.8. The following are manifolds in (iv) of Theorem 1.5, where the equation in the parentheses indicates the S^{3}-action:

$$
\begin{array}{ll}
S^{4}, P_{2}(C), P_{4}(R) & (q \cdot[p, x]=[q p, x]) ; \\
P_{2}(C) & \left(q \cdot\left[p \otimes p^{\prime}\right]=\left[q p \otimes q p^{\prime}\right]\right) ; \\
S^{2} \times S^{2} /((p, r) \equiv(-r, p)) & \left(q \cdot[p, r]=\left[q p q^{-1}, q r q^{-1}\right]\right) ; \\
S^{3} \times{ }_{S^{1}} S^{2}, S^{3} \times{ }_{S^{1}} P_{2}(R), &
\end{array}
$$

where S^{1} acts on S^{2} or $P_{2}(R)$ by $b \cdot[a, x]=\left[b^{n} a, x\right]$;

$$
S^{3} \times_{N S^{1}} S^{2}, \quad S^{3} \times_{N S^{1}} U^{2} \quad\left(U^{2}: \text { the Klein bottle }\right)
$$

where $N S^{1}$ acts on S^{2} or U^{2} by $b \cdot(a, x)=\left(b^{2 m} a, x\right), j \cdot(a, x)=(\bar{a},-x)$;

$$
S^{3} \times{ }_{N S^{1}} S^{2}, \quad S^{3} \times{ }_{N S^{1}} P_{2}(R), \quad S^{3} \times{ }_{0^{*}} S^{1}
$$

where $N S^{1}$ acts on S^{2} or $P_{2}(R)$ by $b \cdot[a, x]=\left[b^{2 m} a, x\right], j \cdot[a, x]=[\bar{a}, x]$, and O^{*} acts on S^{1} by $O^{*} \rightarrow O^{*} / D^{*}(8) \rightarrow D(6) \subset O(2)$.

§7. \boldsymbol{Z}_{2}-actions on surfaces

In this section, we classify Z_{2}-surfaces which appear in (iii) and (v) of Theorem 1.5.

We consider the following Z_{2}-surfaces:
The cylinder $C=[-1,1] \times S^{1}$ with the Z_{2}-action $(t, x) \rightarrow(-t, x)$.
The unit disk $D=D^{2}$ with the Z_{2}-action $x \rightarrow-x$.
The Möbius band $B=[-1,1] \times S^{1} /((t, x) \equiv(-t,-x))$ with the Z_{2}-action $[t, x] \rightarrow[-t, x]$, whose boundary is $\partial B=1 \times S^{1}=S^{1}$ with the Z_{2}-action $x \rightarrow-x$.

By using these surfaces, we can construct the following Z_{2}-surfaces:
(7.1) Let N^{\prime} be a connected compact surface such that $\partial N^{\prime}=S^{1} \times\{1, \ldots$, $k\}, k \geqq 0$. Then we have

$$
Z_{2} \times N^{\prime} \cup C \times\left\{1, \ldots, k^{\prime}\right\}, \quad 0 \leqq k^{\prime} \leqq k .
$$

(7.2) Let N^{\prime} be a connected compact surface admitting a free Z_{2}-action such that $\partial N^{\prime}=Z_{2} \times S^{1} \times\{1, \ldots, k\} \cup S^{1} \times\{1, \ldots, m\}, k \geqq 0, m \geqq 0$, (where Z_{2} acts on $Z_{2} \times S^{1}$ by $(\pm 1, x) \rightarrow(\mp 1, x)$, and on S^{1} by $\left.x \rightarrow-x\right)$. Then for $0 \leqq k^{\prime} \leqq k$, $0 \leqq m_{1} \leqq m_{1}+m_{2} \leqq m$, we have

$$
N^{\prime} \cup C \times\left\{1, \ldots, k^{\prime}\right\} \cup D \times\left\{1, \ldots, m_{1}\right\} \cup B \times\left\{m_{1}+1, \ldots, m_{1}+m_{2}\right\} .
$$

Then, we have the following
Theorem 7.3. Let N be a compact surface admitting a non-trivial $Z_{2^{-}}$ action such that Z_{2} acts freely on its boundary ∂N and N / Z_{2} is connected. Then N is equivariantly diffeomorphic to a Z_{2}-surface of (7.1) or (7.2). Any $Z_{2^{-}}$ surface N^{\prime} in (7.2) is characterized by the classification theorem [2, Th. 1.3].

Proof. If N is not connected, then we see easily that $N \approx Z_{2} \times N^{\prime}$, which is the one of (7.1) for $k^{\prime}=0$.

Assume that N is connected, and consider the fixed point set $F\left(Z_{2}, N\right)$ whose component is a point or a circle. Each component has an invariant tubular neighborhood D if it is a point, and C or B if it is a circle. Therefore, we have easily the theorem by considering $N^{\prime}=N$ - Int U, where U is a closed invariant tubular neighborhood of $F\left(Z_{2}, N\right)$.
q.e.d.

References

[1] T. Asoh: S^{3} actions on 4 dimensional cohomology complex projective spaces, Hiroshima Math. J. 5 (1975), 251-260.
[2] -: Classification of free involutions on surfaces, Hiroshima Math. J. 6 (1976), 171-181.
[3] G. E. Bredon: Introduction to Compact Transformation Groups, Pure and Applied Math. 46, Academic Press, 1972.
[4] N. Steenrod: The Topology of Fibre Bundles, Princeton Math. Series 14, Princeton Univ. Press.
[5] F. Uchida: Smooth actions of special unitary groups on cohomology complex projective spaces, Osaka J. Math. 12 (1975), 375-400.
[6] J. A. Wolf: Spaces of Constant Curvature,.. McGraw-Hill Book Co., 1967.

Department of Mathematics,
Faculty of Science, Hiroshima University

