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Introduction

Let k be a finite field with algebraic closure K, let H be a finite group and
let r: H->GL,(k) be a (modular) representation of H. For xe H, let u,(x),...,
u,(x) denote the eigenvalues of r(x). Define the complex valued function b,
on H by b, ¢o(x)=22",0(ufx)), where 0 is a character K*—C*. J. A. Green
[5] proved that b,, is then a generalized character of H, i.e. an integral linear
combination of irreducible characters of H. In this paper we call b, , the Brauer
lifting of r associated to 0. It seems interesting to know the irreducible con-
stituents of b, , for a finite Chevalley group H, i.e. a finite group of k-rational
points of a connected reductive linear algebraic group defined over k. For
H=GL,(k), r the natural representation, J. A. Green [5] decomposed b, g4, and
when 0 is in general position he obtained an important irreducible character,
a cuspidal character.

We are interested in other classical groups I =S0,,. (k), GSp,,(k),... etc.
Let » be the natural representation H—GL, (k) and assume that 0 is injective.
If the number of elements in k is greater than 3, then the inner product on H,
<b, g, b, o>y equals m. This is proved in §2 by making use of a certain inner
product formula, which is the simplest one among those obtained by N. Kawa-
naka [7]. Next in §3, using an induction argument, we decompose b, 5 into an
alternating sum of irreducible characters. The same result is announced by
G. Lusztig [10] at Vancouver Congress of 1. C. M. and when H=GL,(k), T. A.
Springer [12] has decomposed b, , using the similar method to ours.

In the case of the group of symplectic similitudes H=GSp,,(k), we have
the following result.

As maximal parabolic subgroups of GSp,,(k), we choose

T4
P, = [{ }5 GSp,u(k)|4, De GL..(k)‘ ,
O D ,
A
P; = X |eGSp,y(k)A, De GL,_(k), X € GSp,i(k) ), (i=1,...,n—1).

O D
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Let y be a character of GL,_ (k) (resp. GSp,(k)). We extend y to a character
7 of P; by the natural homomorphism

A * A =
P; > X |—AeGL,_(k) (resp.P;3| X |+— XeGSp,ik).

i

O D O D

In general, for a subgroup P< H and a representation (resp. a character) p of P,
we denote by Ind¥(p) the induced representation (resp. the induced character)
of p from P to H. With these notations we have

THEOREM 3.4. Let H=GSp,, (k) and write b,, y=b, 4 for brevity.

a) There then exists a unique irreducible cuspidal character w4 of
H such that <b,,q, T, ¢>x#0.

b) For i=0,1,2,...,n—1, let m,_;4 be the irreducible cuspidal character
of GL,_ (k) obtained by decomposing the Brauer lifting of the natural represen-
tation of GL,_ (k) associated to a injective character 0(3.3). Then Ind} (7,-;,)
is irreducible for every i.

c) Fori=l1,2,.,n—1, let nj 4 be the irreducible cuspidal character of
GSp,{k) defined in a). Then <Ind¥ (7;,), Ind¥, (7} ¢)>p=2 and there
exists the irreducible constituent m; of Indj (&} o) such that <b,,e, m;>y#0.

d) bawe=2X1=8(= 1" Ind §, (7, i)+ (= D'y o+ Z12H(=1)im,.

Similarly we can decompose the Brauer liftings for other classical groups
(§3).

In §4, we further investigate the irreducible constituents of b,, obtained
in §3, making use of Deligne-Lusztig’s theory [3]. Let p be an irreducible
character of a finite Chevalley group H. We assume that the algebraic group
whose k-rational points constitute H has a connected center. If the characteristic
p of k is good (e.g. if p#2 for classical groups), J. A. Green, G. I. Lehrer and
G. Lusztig [6] proved that p(u)=0, 1 or —1 for any regular unipotent element
u in H. When p(u)#0, we call such p a ‘“‘semisimple character”? (4.1.17).
We then have b, y(u)=m for any unipotent u in H. Hence, the irreducible con-
stituents of b,, have to be semisimple characters. Recently, P. Deligne and
G. Lusztig [3] have constructed a virtual representation R$ and proved that
such semisimple characters are described explicitly in terms of R$ (4.1.15), where
T is a maximal torus fixed by the Frobenius map ¢ and w is a character of T,.
We also denote by R% the (generalized) character defined by R¢. In the case
of H=G,=GSp,,(k), we have

1) This notion *“semisimple character” is communicated by Professor N. Kawanaka.
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THEOREM. a) (4.2.4, 4.2.5) =, y=(—1)"R§{1), where T(n) is the Coxter
torus of GSp,, and 0(n) is an injective character of T(n), defined by 0.

b) (4.2.11) Let I,_;(i=1,...,n—1) be the set of a-stable maximal tori
of GSp; iy (up to the conjugacy of GSpy(,-(k)). Put

T,y O Ty, T(i) is the Coxter torus of GSp,;,
I=(l0 T@ O cGSpy, { Ty, Ty, }
€ n—i
T,y O Ty, | Ty T,

(a set of o-stable maximal tori of GSp,,), and for Te X put

ty, © L1z typ o Z12
wi|lo t@) o =0@G)(t@), o t@) o € T,, where
ty o t23 typ o t22

0(i) is an injective character of T(i), defined by 0. Then

, . 1
m;=(— I)IZTE:—*——<R? Re> R%.

Finally we compute the degrees of the irreducible constituents of b,,. In
the case of H=GSp,,(k), we have
COROLLARY 4.2.13. Let H=GSp,,(k). Then

a) Indf (7, , (1) = CTV=D @ D=Dig?=1)

qn—l_l

’ _(q2_1...(q2(n—1)_1) (qzn_l)

b) (1) = st ,
o) my) = @D @D =D g2 = 1)
l q'+1 .

For other classical groups, similar results are described in 4.2.14~4.2.18.

In concluding the introduction, the author wishes to express his sincere
gratitude to Professor R. Hotta for stimulating discussion and encouragement
during the preparations of this work.

§1. Notation and Preliminaries

For a set A, |4| denotes the number of its elements. When ¢ is a trans-
formation of A, x* denotes the image by ¢ of xe 4 and A, denotes the set of
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fixed points of 6. For a group H, 1 denotes the identity element of H; when H
is the matrix group with size n, we denote by I, the identity matrix. For a finite
group H, I(H) denotes the space of all complex valued class functions on H with
inner product <f, g>py=|H| '3 . uf(X)g(x) (x € H), where g(x) is the complex
conjugate of g(x). For a ring A, A* denotes the group of units in A4.

We recall some facts about algebraic groups over finite fields ([1], [17]).
Let k be a finite field of characteristic p with g elements. We denotes its algebraic
closure by K. Let G be a connected reductive linear algebraic group defined
over K, and o a surjective endomorphism of G such that G,={xe G|x*=x}
is finite. The finite group G, obtained in this manner is called a finite Chevalley
group. Such Chevalley groups are classified in R. Steinberg [17].

ExampLEs 1.1 ([2], [4], [16]).

a) Let A=GL,, be the general linear group considered as a linear algebraic
group defined over k. It is connected and reductive. The Frobenius map
c¢—c?on k extends to an endomorphism ¢ of 4 onto itself, i.e. sending the matrix
elements to their g-th powers. Then A,=GL,(k), the finite general linear groups.

a’) Let A and o be as in a). For x e A4, put

o —1
.

T(x) = JI"t(xG)_lJI", J"l = - 1 m .

0 J
—mn—

Then 7 is an endomorphism of A onto itself. Let k, be the unique extention of
k of degree 2 in K. Then A=U,(k,)={xeGL,(k,)|xJ, (x°)=J,}, the finite
unitary group.

b) Assume that char. k#2. Let B=S0,,,,={xeGL,,,,|detx=1,

o 17
x‘]2n+1tx=‘]2n+l}’ J2u+1 = I: ." }2n+l
1 o0 1)
—2n+1—
We consider B as a linear algebraic group defined over k, which is connected

and semisimple. If ¢ is as in a), then B,=S0,,, (k)={x€S0,,,(K)|xJ 2,+1
tx=J,,+.}, the finite special orthogonal group.
¢) Let C=GSp,,={xeGL,,|xJ,ix=1J,, Ae K*},

o J, o 17
J.= ) Ju=] o |n
-J, O 1 0]

~—p —

We consider C as a linear algebraic group defined over k. The center Z(C)
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of C is {cl,,/ce K*} and we have C=Z(C)Sp,, where Sp,,={xe€ GL,,|xJ;'x
=J,}. It follows that C is connected and reductive. If ¢ is as in a), then
C,=GSp,(ky={xe GL,(k)|xJ,}x=AJ,, Aek*}, the finite group of symplectic
similitudes.

d) Assume that char.k#2. Let D=GO0,,(J,,)={xeGL,,|xJ,,'x=1J,,,

o 1 7)
ller}, J2n= ,'. 2n.

1 o |

\___2n—/
We consider D as a linear algebraic group defined over k. Let D° be the con-
nected component of 1. Then D¢ is connected and reductive. For xeD,
xJ,,'x=2J,,, we have xe D° if and only if detx=A". Similarly, if ¢ is as in
a), then D°=GO%H(k)={xe GL,(k)|xJ,, ' x=4J,,, detx=A", A€ k*}, the finite
group of split orthogonal and direct similitudes.
d') Assume that cahr.k#2. Let D'=GO,,(F,)={xe€GL,,|xF,'x=AF,, A

(0] Ju—1 o 1 1 0
e K*}, F,= F, , and J,_ = , Fo= , where ¢
(0] I o o —¢

is a non-square element in k.

We note that D and D’ are isomorphic over k, but not over k, where k, is the
unique extention field of k of degree 2 in K. Let D'° be the connected com-
ponent of 1. Similarly, if ¢ is as in a), then D.°=G0%;(k)={x€ GL,, (k)|
xF,x=AF,, detx=A", Ae k*}, the finite group of twisted orthogonal and direct
similitudes.

n—1

The basic tool for carrying out the study of algebraic groups over finite fields
is the following extention of a theorem of Lang.

LemMmA 1.2 ([17], 10.1). Let G be a connected linear algebraic group and
o a surjective endomorphism of G such that G, is finite. Then the map f: x
~x(x 1) of G into G is surjective.

CoroLLARY 1.3 ([17], 10.10). Assume G and o are as in 1.2. Then o
fixes a Borel subgroup B and a maximal torus T, contained in it. Any two
such couples are conjugate by an element of G,.

Until the end of this section, we assume that G is connected and reductive.
Let P be a o-stable parabolic subgroup of G. Its unipotent radical U is then
also o-stable. There exists a Levi subgroup M of P, which is a connected reductive
subgroup of P. Note that M can be chosen to be o-stable. In the Levi decom-
position P=MU, we have

LemmMma 1.4 ([2], 8.5). a) P,=Ng(U,), the normalizer of U, in G,.
b) P,=M,U,and M, nU,={1}.
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In particular, if P is a o-stable Borel subgroup B=MU of G, then M is a
g-stable maximal torus and U, is a p-Sylow subgroup of G,.

Let T, be a o-stable maximal torus of G as in 1.3 and N be the normalizer
of T, in G. Then N is also o-stable. Let W=N/T, the Weyl group of G with
respect to 7,. Then ¢ induces an automorphism of the finite group W. Let
T=x"1T,x (x € G) be a maximal torus of G. It is clear that T is o-stable if and

only if x(x~1)7 e N.

LemwMma 1.5 ([14], 11, 1.2). a) The classes of o-stable maximal tori
under conjugation by G, are in one-one correspondence with the elements of
H(a, W) by

x 1T x — x(x"1)yT, eW,

where H'(o, W) denotes W modulo the equivalence relation; w, ~w, (w,, w, € W)
if wy=ww,(w=1)° for some we W.

b) If o fixes each element of W, i.e., commutes with the action of W on
T, then the classes in a) correspond to the conjugacy classes of W.

LEMMA 1.6 (B. Srinivasan [15], Lemma 4). If c;e H'(g, W) corresponds
to a o-stable maximal torus T, then

Ng(T),/T, ~ {we Wlww'(w?)" 1 =w'}, wecp).

Let G, o and T be as above, and set W(T)=N4T)/T. Each element of
W(T), is then represented in N4(T), and W(T), is always isomorphic to Ng_(T)/
T, where N _(T) is the normalizer of Tin G,.

LeEmMmaA 1.7 ([14], 11, 1.8). Let G, 0, T and W(T) be as above. If no
root relative to T vanishes on T,, then Ng(T), is the normalizer of T, in G,
and Ng(T),|T,~W(T),.

By Lemma 1.6, we have

COROLLARY 1.8. If no root relative to T vanishes on T,, then W(T),
~{we Wiww'(w?)~1=w'}, (W ecq).

We recall the basic facts about the Jordan decomposition x=xx,=Xx,X,
of an element of G into its semisimple and unipotent parts. The components
x, and x, are uniquely determined by x. Further the decomposition is preserved
by o; thus if xe G,, then x, x,€G,. The next lemma due to R. Steinberg is
basic in the next section.

LemMmA 1.9 ([17], 14.14, 15.1). Let G, 0, G, be as above and Q denote
the order of a p-Sylow subgroup of G,. Then
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a) The number of maximal tori of G fixed by o is Q2.
b) The number of unipotent elements of G, is Q2.

DEerFINITION 1.10. An element x of G is said to be a regular element if
Z(x), the centralizer of x in G, has the minimum dimension among the centralizers
of elements of G or, equivalently, if C(x), the conjugacy class of x, has the maxi-
mum dimension.

Clearly, regular elements exist for dimension reasons.

LemMA 1.11 ([14], 111, §1). Let G, o and G, be as above.

a) A unipotent element is regular if and only if it is contained in a unique
Borel subgroup.

b) Assume that the center of G is connected and the characteristic p of
k is good (see [14], 1, §4., e.g. for type A,: all, for type B,, C,, and D,: p+#2),
then the set of regular unipotent elements of G, forms a single conjugacy class.

Let G, 0, G,, B, T, P and M be as above. By abuse of language, we shall
call B,, T,, P, and M, a Borel subgroup of G,, a torus of G,, a parabolic sub-
group of G, and a Levi subgroup of P,.

§2. The Brauer lifting and an inner product formula

An integral linear combination of characters of complex representations of
a finite group is called a virtual character or a generalized character.

The following Lemma was introduced by J. A. Green, in his well-known
work on the characters of GL,(k), whose proof is based upon Brauer’s charac-
terization of generalized characters.

Lemma 2.1 (J. A. Green [5], Theorem 1). Let H be a finite group, r: H
—GL, (k) be a (modular) representation of H and let 0. K*—C* be a character.
For xeH, u(x),..., u,(x) denote the eigenvalues of r(x). Then the function
b,o on H defined by b, o(x)=231,0(ulx)), (xe€ H), is a generalized character
of H.

In this paper we call b, 4 the Brauer lifting of r associated to 6.

ProposiTION 2.2 (T. A. Springer [12], 1.2). Let G, be as in §1 and f

be an element of 1(G,). Assume f(x)=f(y) for any elements x, y € G, such that
X,=y,. Then

erGaf(x) = ZTZ!Equ(t) s

where Y means sum over all a-stable maximal tori of G.
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In the proof, Lemma 1.9 plays an important role.

Let Ti,..., T, be the set of representatives of G,-conjugacy classes of o-
stable maximal tori of G. Put W;=Ng (T))/T,, for i=1,..., h. The next corol-
lary is the simplest one among those obtained by N. Kawanaka [7].

CoOROLLARY 2.3 ([7], Theorem 3.1). Let f and g be elements of 1(G,)
which satisfy the condition of Proposition 2.2. Then

<fyg>¢, = ZlalWl"' <f 9>,
Proor. By Proposition 2.2,
<f,9>6, = G| ' ZrZeer, [(9(1) = TAITNIG,I" <f. g>1,

= YT INg (T <f, g> 1, = 2 IV <f, 9> 1,
q.e.d.

ProrosiTION 2.4, Let G and G, be as in §1. Let r: H=G,—~GL,(k),
u; (i=1,..., m) and 0 be as in Lemma 2.1. Assume that 0 is injective and that
for any ag-stable maximal torus T of G, no root relative to T vanishes on T, and
that there exists te T, such that ut)#uyt) (i#j). Then

<b,g b.y>¢, = m.
Proor. For any g-stable maximal torus T of G,
<bpg brp>1, = |T,I7 Zeer (X1 1 0(ui1)) (X 7= 1 0(u (1))
= YT e, 0 ()0 (1) = X ;<0u;, Ouy>p, = 3, ;0;; = m.

Let T,,..., T, be the set of representatives of G, -conjugacy classes of og-stable
maximal tori of G and W;=N; (T)/T,, for i=1,..., h. By Corollary 2.3,

<br,0’ br,0>Gg = ’”Z?=1|Wi|—1-

If we denote by c; the element of H!(g, W) corresponding to the maximal torus
T; (Lemma 1.5), then we have by Corollary 1.8,

IWIWI™! = e,
where W is the Weyl group of G. Hence
AW = WP E el = 1. q.e.d.

COROLLARY 2.5. Let H be the finite classical group mentioned in 1.1,
r be the natural representation of H and 0: K*—C* be injective. Then we have:

a) If H=GL,(k) and |k|>2, then <b,g, b, g>L,.y=M.
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a") If H=U,(k,) and |k|>2, then <b, g, b, o>y, 1,y=M.

b) If H=S80,,:,(k) and |k|>3, then <b,q, b, 4> s0,,,,00=2n+1.
c) If H=GSp,,(k) and |k|>3, then <b, g, b, 9> Gsp,. =21

d) If H=GO%(k) and |k|>3, then <b, g, b, o> o3 )y=2n.

d’) If H=GO0%,(k) and |k|>3, then <b,,, b, 0> o2t uy=2n.

Proor. The condition of Proposition 2.4 is satisfied if |k|>2 when G=A4,
if |k|>3 when G=B, C, D and D’, which can be easily checked.

§3. Decomposition of the Brauer lifting b, ,

The aim of this section is to describe b, 4 as an alternating sum of irreducible
characters of G, when G, ¢ and G, are as in 1.1, r is the natural representation
and 0 is injective. Our proof is based upon the same method as that of T. A.
Springer [12].

We begin with the following notion and some consequences due to Harish-
Chandra for the characters of finite Chevalley groups G,.

DEerINITION 3.1. A complex valued function f on G, is called a cusp form
if

ZyEUgf(xy) = 0

for all elements x of G, and all parabolic subgroups P,=M_U,# G,. A character
of G, which is a cusp form is called a cuspidal character. An ordinary represen-
tation of G, is called cuspidal if its character is a cusp form.

Let P,=M_,U, be a parabolic subgroup of G, and y e I(M,). We can extend
¥ to an element ¥ of I(P,) by putting j(mu)=y(m), ime M,,ueU,). Now de-
fine the two-sided ideal I(P,) of the group algebra C[G,] as the smallest two-
sided ideal of C[G,] which contains all the irreducible constituents of Ind§«(j)
as y runs over all the cuspidal characters of M,.

This definition depends only on P, and not on the Levi decomposition
M,U,.

Two parabolic subgroups P, and Q, of G, are said to be associated if there
exists g € G, such that P, and gQ,g~! have a common Levi subgroup. This is
an equivalent relation over the set of all parabolic subgroups of G,. The im-
portance of Definition 3.1 is the following

ProrposiTiON 3.2 ([13], §6). a) Let P, and Q, be parabolic subgroups
of G,. Then I(P,) and 1(Q,) either coincide or annihilate each other, according
as P, and Q, are, or are not, associated.
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b) Let € be the set of representatives for equivalence classes of associated
parabolic subgroups of G,. Then C[G,] is the direct sum of the two-sided
ideals 1(P,), (P, € ).

With these preparations on character theory for finite Chevalley groups,
we study b, , for finite classical groups mentioned in 1.1, using a case by case
analysis.

Case 1. GL, (k). We assume that g=]k|>2. Asin Lemma 2.1, we assume
0 to be injective and r to be the natural representation GL,(k)—GL,(k), and
we write b, o for b, 5. As maximal parabolic subgroups in € of GL,(k), we choose

A *
P, = Hi }IAGGLi(k),DEGL,,_,-(k) s i=1,..,n—1.
O D

For a character y of GL/(k), we extend y to the character § of P; by the natural
homomorphism P;—GL/(k). The following theorem is proved in T. A. Springer

[12].

THEOREM 3.3. a) There exists a unique irreducible cuspidal character
7,0 0f GL,(k) such that <b,q, 7, 9> Gr, ) #0.

b) Let m; 4 be the irreducible cuspidal character of GL(k) defined in a).
Then Ind §L»®¥(R, ) is irreducible for i=1,..., n—1.

¢) bue=Xr={(=1)"Ind§EN(R, o) +(—1)"" 7, .

Case 2. GSp,(k)={xeGL,,(k)|xJ;}x=21J}, Aek*},
o J, o 1IN
J, = R J, = n.
-J, O 1 o )
—n—

We assume that g=|k|>3. As in Lemma 2.1, we assume 0 to be injective
and r to be the natural representation GSp,,(k)—GL,,(k), and we write b,,,
for b,,. As parabolic subgroups in € of GSp,,(k), we choose P=P; ; .=

A *

B A, A €GL; (k), AJ;'A = \J,,; B, B € GL,,(k),
X BJ,'B =M, ;...; ,
‘B Xe€GSpy(k), XJ\'X = AJ}, )€ k*
0 A

(jl 20,]‘220,...;i20,j1+_i2+"'+i = n).

In particular, as maximal parabolic subgroups in € of GSp,,(k), we choose
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-4 *
Po={ ]lA’DGGLn(k), AJn'D‘:}‘JmAEkx ’

LO D.
(A *
A, DeGL,_i(k), AJ,_;'D = J,_;
P, = e , (=1, n—1).
X e GSpy k), XTiX=2J), )\ € k=
(0]

For a character y of GL,_/(k) (resp. GSp,/(k)), we extend y to the character
¥ of P; by the natural homomorphism

A = A x
P,> X ——AeGL,_y(k) (resp. P;> X — XeGSp,(k)).
o D O D
With these notations, we have the following theorem.

THEOREM 3.4. a) There exists a unique irreducible cuspidal character
Ty 9 0f GSP,,(k) such that <by, g, T, 6> Gspyuky 70

b) For i=0,1,2,...,n—1, let m,_; 4 be the irreducible cuspidal character
of GL,_(k) obtained in Theorem 3.3. Then Ind §3P2»() (%, _, o) is irreducible
for every i.

c) For i=1,2,...,n~1, let nj 4 be the irreducible cuspidal character of
GSp,(k) defined in a). Then

< Indﬁf"““‘)(ﬁ;,o), Ind g}spz,.(k) (ﬁg,a) >Gs“"(k) =2

and there exists a unique irreducible constituent m; of Ind §5P2»U(7] o) such
that <b2"’9, m,~>Gsp2"(k)#0.

d) bae=212) (= D" 'Ind g2 ®U(R, o) + (= 1)"m) o+ TIZH(— 1)im,.

ProOF. a) We prove the theorem by induction on n. For n=1, GSp,(k)
=GL,(k). This reduces the proof to the case of Theorem 3.3. We assume
that the statement a) is true for GSp,,(k) (i<n). Let P be a parabolic subgroup
of GSp,,(k), M be a Levi subgroup of P and y be an irreducible cuspidal charac-
ter of M. By Frobenius reciprocity theorem,

n( ) (5 = n 7
<b;pp, Ind §572 BD(p)> GSpanky = <Res§SP2 (k)(bZn,B)’ X>p
= <Res gtsp’"(k)(bzn,e), X> M-

If P=lesj2,~-.;i (75 GSPZn(k)), then
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A 0
B A, A € GL,,(k), AJ,'A = \J, ; B, B €GL,,(k),
M= X BJ, B =iJ;;...;
‘B X € GSpy,(k), XT' X=A€J, }ek*
o A

For m=diag(4, B,..., X,..., B', A’)e M, we have
byne(m) = b; o(A)+b;, o(B)+ -+ by o X)+ -+ b, (B)+bj, (4A").
Following this decomposition we have
bang = bY, o+Db5, g+ +b%; g+ -+ b1, g+ b 4,
where b% o(m) = b; o(A),..., b3; o(m) = by; o(X),..., b}, o(m) = b; «(A).
Then
<Res§PP2nW(by, o), x>0 = <b%, g, x> p+ <bB, g0 x>yt
+ <b%i0 X>pt o+ <bY, g XS M+ <bY o > M
Let
MY = {diag(A4,,..., Ay_ 1, I, Apsysoos Ap X, AL, Apyy, A, Ajyseen, AY)
eM|A,, A1 eGL; (k), A\J;'A} = AJ;,,...; X € GSp,y(k), XT} X = AJ;,
Aek*}
and
MY = {diag(;,....1;,_, D, 1;,, ,.... 1, 15, I;,.... 1, ., DI _,..,1I;)
eM|D, D'e GL; (k), DJ;,'D" = J,}, (th=1,.,71).
Then M" and MY are subgroups of M and
M = M'M4 (direct product).

We can write y=y" x4, where y} is an irreducible cuspidal character of M* (i=1,
2). Let

N, = {diag(1,..., 1, X, 4,..., A)e M|X € GSp,(k), XJ\'X = AJ,, A€ k¥}

and

N, = {diag(4, B,..., I;,..., B, A)e M|A, A'€ GL;(k), AJ,; 'A' = J,,...}.
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Then N, and N, are subgroups of M and
M = NN, (direct product).

We can write y=yx,x2, Where y; is an irreducible cuspidal character of N; (i=1,
2). We have

<Res§FP8(b,, o), x>y = <1M{s xi >M1<b7l,e’ X2.1’>M;+ et

<lpyn, X4 > mn<bf, 00 x> mnt o+ <b3i X1 >N, <y 2>y, +0

<lpyn, 14> mn<bfy 00 X8> pn+ oo+ <Xy, 21> m1 <bY5 00 23> M1
where 1, denotes the trivial character of a group H. Hence

<byye Indgs222O(7)> ;e 1 =0 unless P associates with

-4 o
b A, A’ e GLy(k), AJ /A" = J,
0, = 4 . b b,....d, d', Aek, . G=1..n),
T |Ibb =ee=dd =2

L0 4"
or

a *

X € GSpy(k), XJI'X = AJ,
Q; = 4 X ’ a, a,....,d,d, Aek*, s (i=1,.,n-1).
d'-‘ aa’ =---=dd =1

(0] a’

If P=Q; (j=1,..., n), then
(=D~ if F=mnf, or mj,

< b2n, ) Indgspzn(k)(i) > GSpan(k) = .
0 otherwise,

where m;, is the irreducible cuspidal character of GL(k) obtained in 3.3 and
nh, (resp. n%) is the character of Q; obtained from =n;, by the natural homo-
morphism
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A *
b
Q3 d d —— A e GL;(k) (resp.
"
LO A’;
(A4 x|
b
0,3 d 7 — 4 € GL(k) ).
”
o A

If P=Qj (i=1,..., n—1), then by induction hypothesis
(=17 if §=m,

<b,,, , Ind§5222®(P> ;o ) = .
0 otherwise,

where 7j% is the character of Q} obtained from 7}, by the natural homomor-
phism

Qi € X — X e GSp,(k),

o o
(Induction hypothesis defines 7; , for i<n). On the other hand, by [13], 4.8,
4.9, we see

Ind P20 (n% ) = Ind §P2®)(n? )

and
<Indgf"2n""(n§’-,o), InngSPZ'-"‘)(ng"o) > Gspanti) = 0.

Hence, there are 2n—1 irreducible characters which intertwines with b,,, by
+1 and induced from irreducible cuspidal characters of proper parabolic sub-
groups. From 2.5, a) is now proved.

b) The maximal parabolic subgroups P; of GSp,,(k) contains Q,_; (i
=0, 1,..., n—1). We have
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lndgf‘if"""(nﬁ-,-,o) = Ind(r;}gpz"(k) [nd(s:,_,-(ﬂp—i,o) s
and by Frobenius theorem,

<Ind§:

n=i

(nﬁ—i,ﬂ)i ﬁn—i,0>P,» = ].
On the other hand, by the same computation as in the proof of part a),
<bane Ind G20 (R, 0)> G5p, iy = (— D" 1.

The irreducibility of Ind §572»K)(7, o) follows from [13], 4.12.
The maximal parabolic subgroups P; of GSp,,(k) contains Q; (i=1,..., n—1).
Similarly to b), we have

Ind §7 2 (mi%) = Ind §§72* Ind Zi(mi%) ,

P ~ ~ .
<Ind,i(mi%), fii,p>p, =1 and <b,,,, Ind §5°2- (] 0> 5,00 = (= 1V
From Mackey’s formula,

<Ind §5P2-0(&; 5), Ind §SP2K(F] 5)> GSpan(k)

— P ~7 9P; ~!
=2 4ePiGSpantk) P <RES Biap (7] o), Respiap (975 6)> p pop,

We can make an identification P,\GSp,,(k)/P;={1, w}, (we W), where W is
the Weyl group of GSp,,. We easily see that

Yt o(x) = @ o(X) for xeP;n"P,.
Thus
<Indgsr2-®(&; o), Ind §522-O(R} 0)> G500 iy = 2.
d) follows from a), b), c). q.e.d.

Similarly one can decompose the Brauer lifting for other classical groups.
Since main parts of proofs are quite similar to that of Theorem 3.4, we shall
only note some points for each case.

Case 3. SOy, (k)={x€SLyys (K)|xJ 2p+1"Xx=J3p+1}

] 1
Tyney = 1 2n+1.
1 o
—2n+1—

We assume that g=|k|>3. As in Lemma 2.1, we assume 60 to be injective
and r to be the natural representation SO,,,,(k)>GL,,,,(k), and we write
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by,+1,6 for b,y As maximal parabolic subgroups in € of SO,,. (k), we choose

A *
A, DeGL,_(k), AJ,_;'D =J,_;
P, = X , (i=0,1,.,n=-1).
X €80,;4,(k)
o D

THEOREM 3.5. a) There exists a unique irreducible cuspidal character

Tn0 Of SO3,.4 (k) such that <b,,.y, , Tn,6> 50,1007 0.
b) For i=0,1,2,...,n—1, let n,_;, be the irreducible cuspidal character

of GL,_(k) obtained in 3.3. Then Ind§%2»+1®)X(&, _, ;) are all irreducible.
c) For i=1,2,...,n—1, let n;, be the irreducible cuspidal character

of SO,;. (k) defined in a). Then
<Ind 392+ 17, o), Ind §927+ 10T} 6)>s0,,, 00 = 2

and there exists a unique irreducible constituent m; of Ind§02n+1 (7] o)
such that <bjuyq9, Mi>50, 10070

d) brur1e=20= (= D" Ind §02m e B(F, )+ (= 1)1, o+ TI=H(—1)'m,
+1,
where 1 is the trivial character of SO, (k).

Proor. We only check that 1 is a constituent of b,,.;, with multiplicity
one. By 2.3,

<bsi1,00 1> 500010 = 2t=1IWil™ 1 <bgpiq, , 1>1,, =1,

because any element of T, is conjugate to diag(a,,..., a,, 1, a;!,..., a7!), a,e K*
(i=1,..., n). q.e.d.

Case 4. GOsH(k)={xe€ GL,,(k)|xJ,,'x=2J,,, detx=A", Ae k*},
0] 1 ]
Jon=| ) 2n.
1 o J

;2’1—-./

We assume that g=|k|>3 and char.k#2. As in Lemma 2.1, we assume
0 to be injective and r to be the natural representation GO%%(k)—GL,,(k), and
we write by, for b,,. As maximal parabolic subgroups in € of GO%H(k), we

choose
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A * .
Py = [ }jA, DeGLk), AJ,'D = AJ,, Lek*},
0 D
A *
A, DGGLn_i(k), AJn_itD = lJ"_i
P, = X (i=1,....,n—1).
X € GO%H(K), XJ ' X = Ay, A€k
0 D

THEOREM 3.6. Assume that n>2. a) There exists a unique irreducible
cuspidal character m, 4 of GO%}(k) such that <b,, g, T, 9> Goss ) #0-

b) For i=0,1,2,...,n—1, let n,_, 4 be the irreducible cuspidal character
of GL,_{k) obtained in 3.3. Then Ind §93+ ) (%, _, ) are all irreducible.

c) For i=2,..,n—1, let nj, be the irreducible cuspidal character of
GO%t(k) defined in a) and let

na,‘,([g ;D:(J(a) for [j fl]eGOg“‘(k). Then

o -~ o+ -~ -
<Ind o5 (&; o), Ind 92" ) (7] ) > goszn =2  for i=1,2,..,n—1,

and there exists a unique irreducible constituent m; of Ind §033 (7} o) such
that <bj, g, M;>Gogsay#0 for i=1,...,n—1.

d) baue = TI=¢(= D" 1 Ind §O3 R,y ) + (= 1) In o+ TI{(— 1)1

Proor. We only note here the following. For GO%*(k)={[z ‘[’11|a, d
€ k"}, we have b, g=n+n', where n(\;g ‘;:D:H(a), n’<\;z 3])=9(d). Let
a *
X eGOst(k), XJ,'X = Ay, a,a',...,d,d', Lek>
a ! aa’ == dd' = A '
o ..a'

It is a Borel subgroup contained in P,. Let n? and n'" be the character of Q,
obtained from = and n’ by the natural homomorphism
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a *
d
0, 3 X —— X € GO%* (k).
dl
(0] o
Then by [13], 4.9, we have Ind §0% ®)(n?)=1Ind 0%+ ()(n'"). g.e.d.

Case 5. GO%(k)={xe€GL,,(k)|xF,'x=AF,, detx=A", A€ k*},
0 Joes o 1
1 ]
Fn — Fo , J"_l = l n—] and Fa = 1)
Jn—l o ! 0

~—p— 1—

where ¢ is a non-square element in k.

We assume that g=|k|>3 and char.k+#2. As in Lemma 2.1, we assume
0 to be injective and r to be the natural representation GO$%,(k)—GL,,(k), and
we write b,, o for b,y As maximal parabolic subgroups in € of GO%,(k), we
choose

A *
A, DeGL,_(k), AJ,_;'D = AJ,_;
P, = X , (i=1,...,n—1).
X eGO%;(k), XF;'X = AF;, e k*

THEOREM 3.7. Assume that n>2. a) There exists a unique irreducible
cuspidal character n, o of GO%,(k) such that <b,,, M, 6> o3 #0-

b) Fori=1,2,...,n—1, let m,_; 4 be the irreducible cuspidal character of
GL,_ (k) obtained in 3.3. Then Ind§2%:®)(#,_, o) are all irreducible.

c) For i=2,...,n—1, let n;4 be the irreducible cuspidal character of
GO%;(k) defined in a). Then

<Ind §93- ¥ (7} ), Ind §O%- (7] ,) >Gognk) = 2
and there exists a unique irreducible constituent m; of Ind §93-(5)(7; o) such
that <b,, 9, M;i> o354y #0. For xe GO% (k), let u,(x) and u,(x) be the eigen-
values of x. Then Ou, and Ou, are characters of GO% (k). There exists a unique
- ~ °- ~
irreducible constituent my (resp. m') of Ind §92=(©)(Qu,) (resp. Ind §92= ()(Ou,))
such that <b,,p, My >Go3=y#0 (resp. <bzng, M'y> G031y #0)-
d) bawe=TITH(— D NGO R,y )+ (= D) 1 o4 my )+ T3S
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(=i~ Im,
Proor. We only note here the following. For GO4 (k), b, g=0u;+0u,.

o= ~ ~ 10— ~
<Ind §O57*)(0u ), Ind §257) (0t ,) > gog-x) = 0,

where
a *
X e GOy (k), XF,'X = AF,
d
0, = X a, a'...,d,d, Lek*, ,
dl
aa' =---=dd =)
(0] a

a Borel subgroup of GO%,(k). Fori=1, 2,
<Indg?g;(")(é\l;,), Indg?g;(k)(é\&,) > G035 (k) =2. q. €. d-

Case 6. U,,(ky)=1{x€ GLy,(k;)|xJ,'(a(x))=J,},

o |
-1

k=F, ky=F; and J,, =

q o*

1
-1 o

We assume that g=|k|>2. As in Lemma 2.1, we assume 6 to be injec-
tive and r to be the natural representation U,,(k,)—>GL,,(k,), and we write
by, for b,y As maximal parabolic subgroups in € of U,,(k,), we choose

P, = ” JIA, DeGL/(k,), AJ,D* = J,},

O D

A *

X e U,(k,), A, De GL,_ (k)
P, = X , (i=1,..,n=1),
AJn—lD* = Jn—i

0] D

D* = (D).

THEOREM 3.8. a) There exists a unique irreducible cuspidal character
7,0 0f Ujn(ky) such that <by, g, Ty 6>y, (k) 7 0-

b) For i=0,1,2,..,n—1, let m,_;, be the irreducible cuspidal character
of GL,_(k,) obtained in 3.3. Then Ind §2+)(R,_, ) are all irreducible.

c) Fori=1,2,...,n—1, let @4 be the irreducible cuspidal character of
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U,ik,) defined in a). Then <Ind§znk2)(#; ), Ind §2nk2X(7} )>y, ,y=2 and
there exists a unique irreducible constituent m; of Ind§:+k2)(7; ;) such that
<b2n,0! mi>U2n(kl)¢0'

d) byne=2"120(— D" nd B¢ (R, ) + (= D" 1y o+ XHH(— D!
m;.

Case 7. Ujpy(ky)={x€GL3uy (k)IXJ 204 {(0(X) =T 2041},

0] |
-1
J2"+1 = 1 1 2n+1 .
o
—2n+1

We assume that g=]k|>2. As in Lemma 2.1, we assume 0 to be injective
and r to be the natural representation U,,,(k;)—GL,,,(k;), and we write
byns1,6 for b,y As maximal parabolic subgroups in € of U,,,,(k,), we choose

A«
P = e X e U, (ky), A, DeGL,_(k;), AJ,_.D* = J,_, ),
o D
(i=0,1,..,n—1), D* = {(a(D)).

THEOREM 3.9. a) There exists a unique irreducible cuspidal character
T, Of Uzns1(ka) such that <byyy 19, M0 vy, k) #0-

b) For i=0,1,2,...,n~1, let m,_; 4 be the irreducible cuspidal character
of GL,_(k,) obtained in 3.3. Then Ind§2+*2)(7,_; ;) are all irreducible.

c) Letm, 4 be the character of U, (k,)={xe€k,|xx9=1} defined by =, o(x)
=0(x) (xe Uy(k,)), and for i=1, 2,..., n—1, let n; 4 be the irreducible character
of U,y (k,) defined in a). Then

<IndBzr+1*2(f o), IndB2n+1*D(R] ) >y, 0y = 2

and there exists a unique irreducible constituent m; of Ind§zn+1(k2)(7] o)
such that <bjyiy.9, Mi>y, ., k70

d) baps1,e=1EH(— D" ndpen e EO(R, _; g) +(= 1)y 0+ ZHZ8(— Dim.

REMARK 3.10. Similarly one can decompose the Brauer liftings for SL,(k),
Spyn(k), SO,,(k) and SU,(k,), as alternating sums of induced and cuspidal
characters.
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§4. Constituents in the Brauer lifting b, ,

Our purpose in this section is to investigate the irreducible constituents of
b, obtained in §3. These are given in 4.2. We first summarize some results
obtained by P. Deligne and G. Lusztig [3].

4.1. Recently P. Deligne and G. Lusztig [3] have constructed certain
virtual representation of finite Chevalley groups and have proved Macdonald’s
conjecture (see [13], 6.7). More precisely, let G be a connected reductive
algebraic group defined over a finite field k, let o be the Frobenius map of G
with respect to k, let T be a g-stable maximal torus of G and let w be an arbitrary
character of T,. They have then introduced the virtual representation R¢ of G,
as the alternating sum of the /-adic cohomologies with compact supports of the
variety consisting of Borel subgroups of G which are in a fixed relative position
with their o-transform, with coefficients in a certain G,-equivariant locally con-
stant [-adic sheaf of rank one (see [3], Chapter 1). If w is in general position
(for definition, see below Def. 4.1.2), then R$% is irreducible. The vanishing
theorem (see [3], Chapter 9) provides an explicit model for it provided that
q=1k|>30 (if G is a classical group or G,-type, then any g will do).

Let G, o and T be as above. The Green function Q¢ is the restriction
to the unipotent elements of the character of the virtual representation R}, where
1 is the trivial character of T.

The character of R, denoted also by R, can be expressed in terms of w
and of the Green functions.

TueoreM 4.1.1. a) ([3], 4.2). Let x=su be the Jordan decomposition of
xeG. Then

" 1 -
$(x) = l—ZW deGg,ng"CZ"(s)w(g ng)QyTg‘l,Z"(s)(u) s

where Z°(s) is the identity component of Zy(s), the centralizer of s in G.
b) ([3], 7.1). Let s(G) (resp. s(T)) be the k-rank of G (resp.T). Then

= ( — s(G)—s(T) lGoI
Or,¢() = (-1 TALEOR

where St is the Steinberg character of G, (see [15]).

¢) ([3], 7.2). For any semisimple element s € G,,

s(Z°(s))-s 1 -
Rg(s) = (—1)s2°6n (T)TgtmiTngG,g‘lsgeTaw(g lsg).

The values of Qy g(u) seem to be polynomials in g (g=|k|) but it is not
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known in general.

DEFINITION 4.1.2. The character w of T, is said to be in general position
if it is not kept fixed by any non-trivial element of W(T),.

ProposiTION 4.1.3 ([3], 7.4). If w is a character in general position of
T,, then (—1)$©=s(DRL is proper irreducible.

Let k,, be the unique extension of k of degree m in K and ¢™ be the Frobenius
map of G with respect to k,,. Let Tbe a o-stable maximal torus in G. We define
the norm map N: T,.—T, by N(x)=xxx°""’x°"""' (xeT,»). It is known
that N is a surjective homomorphism.

DEFINITION 4.1.4. Let T and T' be two o-stable maximal tori of G,
and let w, " be characters of T,, T,. The pairs (T, w), (T', ®') are said to
be geometrically conjugate if for some m the pairs (T, oN), (T', @' N), where
N is the norm from T,m to T, (resp. T,m to T,), are G m-conjugate.

THEOREM 4.1.5. a) ([3], 6.3). If (T, w)and (T', ') are not geometrically
conjugate, then no irreducible representation of G, can occur in both virtual
representations R$ and R§..

b) ([3], 6.8).
<R$, Rg>; = [{we W(T, T') "0’ = w}l,
where W(Y; T'):{geGITg=gT/}/T;‘

ProrosITION 4.1.6 ([3], 7.7). For any irreducible representation p of G,,
there exist a o-stable maximal torus T and a character w of T, such that
<p, R§p>¢, #0.

We have considered the Brauer lifting b, g in §2 and in §3. This generalized
character satisfies the condition b, g(su)=>b,4(s). Such kinds of characters are
considered in [3], Chapter 7.

ProPOsSITION 4.1.7. a) ([3], 7.11). Let p be a generalized character of
G, such that p(su)=p(s) for any sueG,. Let T be a g-stable maximal torus
and w be a character of T,. Then <p, R§>¢; =<p, 0>r,.

b) ([31, 7.12). Let p be as ina). Then

_ 1 ®
p= ZTI_WTGTZwETZ <p, 0>7 R%,

where Y means the summation over all G,-conjugacy classes of a-stable maxi-
mal tori T of G and T} is the character group of the finite abelian group T,.
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By 4.1.5, b) and 4.1.7, b), we have:

CoroLLARY 4.1.8 (N. Kawanaka [7]; [3], 7.13). Let p be as in 4.1.7.
Then

1
<p,p>g, = ZTWT)-I <p, p>r,-

Let P be a g-stable parabolic subgroup of G and let T< P be a o-stable maxi-
mal torus. Let M be a o-stable Levi subgroup of P and let n: P— M be the canoni-
cal projection. This 7 induces an isomorphism T=n(T); hence also an isomor-
phism T,=n(T),. Let w be a character of T, and @ be the corresponding charac-
ter of n(T),.

DEerFINITION 4.1.9. We denote by Rf% p the pull-back of the virtual re-
presentation R%y, of M, under n: P—M.

THEOREM 4.1.10. a) ([3], 8.2). R¢=Ind§=(R% p)

b) ([3], 8.3). Let T be a minisotropic o-stable maximal torus in G, i.e.,
T is not contained in any a-stable proper parabolic subgroup of G. Let w be
a character in general position of T,. Then (—1)*@~s(DRY can be represented
by a cuspidal G,-module.

DEFINITION 4.1.10. Let G (resp. G*) be a reductive algebraic group defined
over k and let T (resp. T*) be a o-stable maximal torus contained in a o-stable
Borel subgroup of G (resp. G*). We call G* a dual to G if there is an isomorphism
from T* to a dual of T, this isomorphism carrying simple roots to simple coroots.

About some properties of this duality, see [3], 5.21. Let G and G* be dual.
By the definition, G and G* have the same Weyl group. Let T be a o-stable
maximal torus in G, and let w be a character of T,. Fix T’, a corresponding
maximal torus in G*. The character w defines a (N(T')/T’),~conjugacy class
of elements w’ of T'. In that way, we get a bijection between G,-conjugacy
classes of pairs (T, w) as above, and G¥*-conjugacy classes of pairs (7', @),
T’ a o-stable maximal torus of G* and w’ an element of T,. By forgetting
T’, we see that each G,-conjugacy class of pairs (T, w) defines an element ®’ € G*
well defined up to G¥-conjugacy.

ProrosiTiON 4.1.11.  a) ([3], 5.22). Two pairs (T, ;) and (T,, w,)
are geometrically conjugate if and only if w{ and w’, are geometrically con-
jugate.

b) ([3], 5.24). If the center of G is connected, two pairs (Ty, w,) and
(T3, w,) are geometrically conjugate if and only if w and wy are G¥-conjugate.
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©) ([3], 5.7). The number of geometric conjugacy classes of pairs (T, w)
is |Z2|q', where q=|k|, Z° is the identity component of the center of G and |
is the semisimple rank of G.

Let G be the set of equivalent classes of ordinary irreducible representations
of G,, and let © be the set of all geometric conjugacy classes of pairs (7, w).
For any pe G), there exist a o-stable maximal torus T and we T, such that
<p, R¢> #0 (4.1.6); moreover the geometric conjugacy class [w] of (T, w) is
uniquely determined by p (4.1.5, a)). We thus get the well-defined surjective
map

(1) G —> G.

In the rest of this part 4.1, we shall assume that the center Z of G is connected.
Let Tand B be a g-stable maximal torus and a o-stable Borel subgroup containing
T. Let U be the unipotent radical of B and U! be the subgroup of U generated
by the root subgroups corresponding to non-simple roots. The quotient U/U'!
is commutative and is a direct product over the simple roots «:[],U, with
U, one-dimensional. Let I be the set of orbits of ¢ on the simple roots. For any
iel, let U;=T1,;U,. Then U/U!'=]];qU;. This decomposition is o-stable;
hence we have also U,/U}=TT;qU;,-

DEFINITION 4.1.12.  The representation I'g=1Ind§=(y), where y is a linear
character of U, which is trivial on U! and defines a non-trivial linear character
of U,, for all i € I, is called the Gelfand-Graev representation.

It is known that I'; is well-defined up to isomorphism ([8], 6.9).

DEFINITION 4.1.13.  Let 4, be the class function on G, such that, for
x € G,

|Z,lq" if x is regular unipotent,

46(x) =
0 otherwise,

where [ is the semisimple rank of G.
The following result shows that this is the character of a virtual representa-
tion of G, (which will be also denoted by 4;).

ProrosITION 4.1.14 ([3], 10.3; [8], 6.10). For any subset JclI, let
P(J)> B be the parabolic subgroup generated by B and by the root subgroups
corresponding to minus the simple roots in o-orbits in J. Let L(J) be a Levi
subgroup of P(J). Then

a) d=2%,c(—1"Ind ,G»;’p),(FL(J)),
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(Note that the center of L(J) is connected, since so is that of G; hence I'yy is
welldefined).

b) I'g=3%,c(=DVI Indgfj),(ALu))-

THEOREM 4.1.15 ([3], 10.7). Let xS, and x' be a representative of
the corresponding semisimple conjugacy class in the dual group G*. We
define 6, to be the k-rank of the centralizer of x'.

a) The formulas

_ (—1)s(@)=s(T)
Px Z(T,a))mod.G‘, <R?, R?> T

wl=x

and

1

"= (=1)5(6)8x S S
px ( ) Z(T,w)mod.Gd <R‘«1"1, R?>

[wl=x

Ry

define irreducible representations of GY. The |Z,|q" elements p,eG), xe &
(resp. p,. e GY, xe @) are distinct. The maps xwp,, X—p. are two cross-
sections of the map (1).

b) One has

o= st g = Tues(=1*Op).
c) Let S* be the centralizer of x'.  We have

; = 1G.1/Stc(1) ‘m o’ =
dim py = [S*|[Ste(T) Sts.(1), dimp} =

|G, |/Sts(1)
[SZ1/Sts(1)

CoRLLARY 4.1.16 ([3], 10.8, 10.9; [6]; [8], 6.12). a) For any peG,,
the average value of the character of p on the regular unipotents in G, equals
0,1 0r —1. Thisvalue is +1 if and only if p=p’, for some x e S.

b) If we assume that p is a good prime for G, then the character of p at
any regular unipotent in G, equals 0, 1 or —1.

Proor. This average value is just <p, 45>, and b) follows from 1.11, b).

DErFINITION 4.1.17. When G has a connected center, we shall call the
representation p} (x € ©) a semisimple representation and p, (xe S) a regular
representation.

4.2 We consider classical groups H treated in §3. Let r be the natural
representation of H and 6: K*>C* be a character (not necessary injective).
Let b, 4 be the Brauer lifting of r associated to 0 (2.1).
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Let G, 0, G, and T, be as in 1.3.

Put W=Ny(T,)/T,.

We call an element w of W a Coxeter element (in the twisted sense) if w is the

product in some order of the simple reflections, one in each orbit of .

Let T

be a og-stable maximal torus of G. When T corresponds to cre H'(a, W) (1.5),
and c¢; contains a Coxeter element (in the twisted sense), we shall say that T,
is a Coxeter torus of G,.

First we determine the Coxeter tori of classical groups treated in § 3.

are given in the next table.

These

4.2.2. Table of the Coxeter tori.
G, T, (Coxeter torus) w(T),
{diag(a, a4,...,a?" |a ek} generated by
. diag(a, a4,..., a?" )
GLn(k) lTo'I =4 -1 diag(aq, aqzs'”’ a)’
cyclic of order n
{diag(a, a4,...,a?" "', 1, a4", generated by p
vy @1?" YNaek,,, aa? =1} | diag(a,...,a?" ", 1, a?",
2n-1
SOsn41(k) — g i 8)
el ITsl = q"+1 ~diag(aq,..., a?", 1, a?""’,
vy @),
cyclic of order 2n
{diag(a, a4,..., a?""", a?", generated by
GSpaa(k) vy @ Y)a€ ky,, aa?" e k*} | diag(a, a4,..., a?’" " )
GO5.(k) diag (a4, a?’,..., a),
IT,l = (g"+D(qg—1 cyclic of order 2n
{diag(a, b, b4,...,b9" 7%, b2""", | generated by
..., b?*" 7 a%aek,, diag(a, b,..., ba"7",
GOst(k) beky,_,, bb1""" = aa’} e b7 a0
et diag (a4, b4,..., b7",..., b, a),
Tl =(a+ D@ +Da—-1 cyclic of order 2n-—2
{diag(a, a?®,..., a?*®""®, generated by
U2n(k2) 2n-1 . 2 2(2n-2)
N b)laek,,_,, aal =1, diag(a, a?’,..., a4 , b)
(@=1) bek,, bbi=1} —diag (a®’, at*,..., a, b),
(1.0 cyclic of order 2n-—1

ITl=(@+1)(g*" ' +1)
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Uszps1(k2) {diag(a, a?’,..., a?>*"" ", q4*") | generated by
(0'_'__1) laeky,,s aa?"" ' =1} diag(a, a?’,..., a4*")—
y diag(a?, a?’,..., a),
= 2n+1
(t) T = +D cyclic of order 2n+1

a) We denote by diag(a, b,..., ¢) the diagonal matrix
a (0]
b
(0] c
b) The elements in T, which we use in this table are not necessarily elements
of G,, but their canonical forms in an extention field of k.

By 4.1.10. b), for a minisotropic o-stable maximal torus T and for a charac-
ter in general position w of T,, we have an irreducible cuspidal character R$.
Note that the Coxeter torus is minisotropic ([14], II, 1.14). For the Coxeter
torus T, of a finite classical group, we now define a character in general position
of T,.

4.2.3. For each positive integer m, let k,, be the unique extention of k of
degree m in K. We write

(km)Z,l = {X € /"Zm!qum = ]}9 (km)l,k" = {x € k2mlqum € kx} .
Casel. G,=GL/(k). For i=0, 1,...,n—1, let
2. T,>diag(a, a4,..., a?"" ") — a? e kX

If the restriction of 0 to k¥ satisfies the condition: 0(x)# 0(x%) for some x € kZ,
then 64, is a character in general position of T,,.

Case2. G,=S0,,..(k). Fori=0,1,...,2n—1, let
At T,adiag(a,...,a?" ™", 1, a?",..., a?" ") — a? € (k,),,1-

If the restriction of 6 to (k,), satisfies the condition: 0(x)#60(x?) for some
x e (k,),,; then 04; is a character in general position of 7.

Case 3. G,=GS,,(k) or GO%,(k). Fori=0,1,...,2n—1, let

g2n-1

A T,adiag(a,..., a?" ", a?",..., a ) > a?' €(k,); -

If 0 satisfies the condition: 0(x)# 6(x?) for some x € (k,), ;~ then 61; is a character
in general position of T,.
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Case 4. G,=GOs%H(k). For i=0,1,...,2n-3, let

At T,adiag(a, b,..., b, b4*" ">, a9) — b4' € (Kp_ 1)y 0.
and
u;: T,adiag(a, b,..., b2 ", b*" >, a9) —a¥ek3 (j=1,2).

If 0 satisfies the condition: 0(x)# 6(x4) for some x € (k,-); 4, then 01, is a charac-
ter in general position of T,. If 6 satisfies the condition: 6(x)# 0(x9) for some
x €(k,—1)24~ and for some x e k3, then 6(4;u;) is a character in general position
of T,, where (A;u;) is defined by

(A (diag(a, b,..., b b,a" 2, b©", a9)) = be'.a% € k%, _,.
Case 5. G,=U,(ky). Fori=O0,1,...,2n—2, let
A2 T,adiag(a, a?%,..., a "™ b) — a?*' € (kyp-1)21
and
u: T,odiag(a, a?,...,a?’ "™ », b) —> bek, ;.

If 0 satisfies the condition: 6(x)#60(x?*) for some xe&(k,,—4),,, then 04; and
0(A,;u) are characters in general position of T, where (4;u) is defined by

(Ap) (diag(a, a?,..., a?* "> b)) = a?*' -bek},_,.
Case 6. G,=U,,,,(ky). For i=0, 1,...,2n, let
A T,adiag(a, a?,..., a?"") — a? € (kyp+1)2,1-

If 0 satisfies the condition: 0(x)50(x9*) for some x € (ky,+1)2,1, then 04; is a
character in general position of T,.

THEOREM 4.2.4. Let G, be as above and T, be the Coxeter torus of G,.
If 0 satisfies the above regularity condition; Case 1~6 respectively, then

a) +R% is an irreducible cuspidal character of G,.

b) If G, is a split orthogonal similitudes group of size 2n (resp. a unitary
group of size 2n), then + R%%) (resp. +R84W) is an irreducible cuspidal
character of G,.

€) <b.g RPFi>¢. =1; if G,=GO%k(k), then <b,g RE*#)>; =0; if
G,=U,,(k,) then <b, g, R§*m > =0.

d) R%:i=R%% for any i,j; if G,=G0O5%4(k), then RY*ir)=R§ A1) for
any i,j,h and 1(i—j=h=1); if G,=U,,(k,), then R{* ¥ =R%%w for any
i, j.
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Proor. a), b) follow from 4.1.10. b).

c) If G, is the matrix group of size m, then we can write b, y=0u +--- +0u,,.
By 4.1.7. b),

<b, g R >, = <b,p 04;>1, = X" <Ouj, 04>,
1 ifu; =2,0onT,
0 otherwise.
On the other hand
<b, g R4 > o = Fm_, <Ouy, 0(A4u;)>r, =0.
d) follows from 4.1.5. b). g.e.d.

COROLLARY 4.2.5. The irreducible cuspidal character m,, (if G,=GL,(k))
or m, o (otherwise) obtained in §3 coincides with +R%*:, 0 injective.

In the rest of this section we shall assume that the center of G is connected
and g =|k| satisfies the condition of § 3 respectively for G=GL,, SO,,., GSp,-..
etc. Moreover we assume that 0 is injective. Now the characteristic p of k is a
good prime for G; hence any character p of G, takes the values 0, 1 or —1 on
any regular unipotent in G, (4.1.16. b)).

ProrosITION 4.2.6. Let r: G,—»GL,(k) be as in §3. Then all the ir-
reducible constituents of b, 4 (0; injective) are semisimple (4.1.17).

Proor. Let u be a regular unipotent in G,. Then b,4(u)=m. On the
other hand, we have <b,j, b, s> =m by 2.4. - Hence all the irreducible con-
stituents of b, , have value +1 on a regular unipotent in G,. q.e.d.

Next we characterize m; which is, defined in §3, an irreducible constituent
both of Ind §(#; 4) and of b, 4.

ProposITION 4.2.7. Let P,=L,V, be a parabolic subgroup of G, and y
be an irreducible semisimple cuspidal character of L, and j be a character of
P, defined by J(hv)=yi(h), (he L,, veV,). Then there is a unique irreducible
semisimple character p’ of G, such that <Ind gg(np), p'>¢,#0.

PrOOF. By 4.1.9, we can write = +R§, p, where T, is a minisotropic torus

of L and ¢ is a character in general position of T,,. By 4.1.10. a), we have Ind §=(\})
=+R§,. Put

_s 1 6’ is the k-rank of
I (—])S(G)-4d @
pl=(=1) Lo <Re, Res K Ze@) @.1.11,4.1.15) )
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where ¥ 7, ») means the sum over all (7, ) which are geometrically conjugate to
(T,, &) (mod. G,). Then p’ is semisimple by 4.1.16. a), and we have

<Ind§s(h), p'>, = 1.

On the other hand, if p” is another semisimple character of G,, then by 4.1.16. a),
we have
- 1 . (6" is the k-rank
" — (—1)s(G)=dé” ., oy
p ( 1) Z(T »0') <R'f-’:, R'i’;> RT <0f ZG.((D") );
where Y 1, means the sum over some geometric conjugacy class (mod. G,)
which does not contain (7, £). By 4.1.5. a),

<p’, R}, >, =0. g.e.d.
By the proof of this proposition, we also have

COROLLARY 4.2.8. Let the notations be as in 4.2.7. Let §= +R§, p,
where T, is a minisotropic torus of L and let £ be a character in general position
of T,,. Then

-5 1 ¢’ is the k-rank of
' — (—1)8(G)-é —
Pr= (O E o —gre, mes R\ Zeu@) @111, 4.1.15) )

where 3 (1, s means the sum over all (T, w) which are geometrically conjugate
to (T,, &) (mod. G,).

ReEMARK. In 4.2.7, one can omit the assumption ‘‘y is semisimple’’, because
one can prove that “‘If Indgg(d;) contains a semisimple character, then { is semi-
simple.” This remark and 4.2.7 are obtained also by J. A. Green, G. I. Lehrer
and G. Lusztig [6].

ProOOF. A semisimple character can be written as

- 1
"= (—1)5(6)-5x -
px ( ) [zw:](:?;‘,m)modAGq <R?, R‘T“)>

R?,

(xe S, where & is the set of all geometric conjugacy classes of pairs (7, w)).
Let (T, w) be a maximal split pair in x ([3], 5.25). There exists a o-stable para-
bolic subgroup Q<G such that T is contained in some o-stable Levi subgroup
M of Q and (T, w) is in general position ([3], 5.28). One chooses Q and M so
that the T is minisotropic in M. Then

<p’, Ind§=(R% 0)>¢, = £ 1.

If Indgg(lﬁ) and Ind§z(R%, o) have a common irreducible constituent p}, then by
3.2, Q and P are associated i.e., there exists g € G, such that M,=gL_,g~!, and
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9)=R¢ ,. Hence y is a semisimple character. q.e.d.

In §3 (e.g. in the proof of Theorem 3.4), we take a parabolic subgroup
Q; of G, which is contained in P; such that the character 7, is cuspidal on
the Levi subgroup of Gji. Then irreducible constituents of Ind§:(7;,) are

1
irreducible constituents of Ind§=(7; ,). Hence we have:

COROLLARY 4.2.9. One can characterize m; as the unique semisimple
character in the irreducible constituents of Ind§e(7; o).

Next we describe b, 4 as the alternating sum of semisimple characters when
G=GSp,, and 0 is injective. For other classical groups, it can be done similarly.
By 3.4,

b, = bype = 212§ (— )"~ Ind §5P2n(X(7, _; )+ (—D)"7r;, 4
+ X1 (=im;.

Here Ind §SP2n(0)(f,_; o) is irreducible and m; is an irreducible constituent of
Ind §Sr2n®) (7] ). By 4.2.4, we have ), ,=(—1)"R§{}, where T(n) is the
Coxeter torus of GSp,, and 6(n) is an injective character of T(n),. We study
here on m,.

The irreducible cuspidal character m; , of GSp,(k) can be described as
), e=(—1)'R§{. Put

d X € GSpy(k),
Q; = b'g € GSpy, (k) .
d a,a,....,d,d € k*

(0] @

Then Q) is a parabolic subgroup of GSp,,(k) and contained in P,, Let M,
be a Levi subgroup of Q;. Let p (resp. n) be the canonical projection p: M,
—GSp,ik) (resp. n: Q;—>M,;). We denote by I;4 the character of M; defined
by I ¢(x)=n}e(p(x)), xe M;. Then [,4 is an irreducible semisimple cuspidal
character of M;. Since M; and GSp,(k) have the same unipotent sets, we have
l;e=(—1)'R§,, ; by the character formula 4.1.1. a), where

a (0]
T(i) is the Coxeter torus
T, = T@) € GSp,,|0f GSpy;,
dl
a,d,..,d,d eGL,



520 Naohisa SHIMOMURA

and §(0)=00) (p(1), 1€ T,,.

Let 7,-,0 be the character of Q; defined by 7,»,0=l,-’,,(7r(x)), xeQ;. We then
have 7,-,6=(—1)"R§~0,Q;.. The pairs (T, w) which are geometrically conjugate
to (T,, £) have the forms

T\, O Ty, i
T]l 7112 J

T=|0 TG O < GSpy,s where{
Ty, Ty,

Ty O Tap

is a g-stable maximal torus of GSp,,_; and

tyy O iy, tyy O iy,
4.2.100 o|| 0 1G) 0 ||=00wG), |0 @) O |eT,
tyy O i3, ] ty1 O iy,

Let T,_; be the set of g-stable maximal tori of GSp,(,—;) (mod. GSp,,_;(k)). Put
[ Ty T, } |
€ xn—i ’
TZ 1 T22

X = {(T, w)|Te T and o satisfies 4.2.10} .

Tll 0 T12 )
T=(|0 TG O |<GSp,,

Ty O Ty

Then X is a geometric conjugacy class (mod. GSp,,(k)) which contains
(T,, &). The irreducible constituent m; of Ind §5P2»(¥)(7; ) is an irreducible
constituent of Ind gf"z"(")(i,.,o). By 4.2.7 and 4.2.9, m; is the unique semisimple
character in the irreducible constituents of Indgf"z"(")(ii,g). Hence, by 4.2.8,
we have:

PROPOSITION 4.2.11. Let X be as above. Then

; 1
my=(—1) Z('r,w)ewa?‘-

We compute the degrees of the irreducible constituents of b,, .

LEmMMA 4.2.12 (J. A. Green). Let y, be an irreducible cuspidal character
of GL(k). Then the degree of y,, i.e., (1), is (q—1)(q®2—1)---(g" ' =1).

COROLLARY 4.2.13.

(q2(i+l)_ 1),,,(q2(n—1)_ I)(q2n___ 1)
qn—i_l

a) IndgSran(,_; ) (1) =
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;) = (2= D@ =D (g =)
b) nn,o(l) - q,,+1 E)
2(n—i+l)_1)...(q2(n—1)_1)(q2n_])

o my(l) = n

ProoF. Since m,_; 4 is an irreducible cuspidal character of GL,_;(k), we have

_(g=D-(g" 11
() = qn*i_l .

nn—i,o

Here Ind §5P2(0)(7, _, ;) is irreducible, so we have a) if we compute |GS,,(k)|
and |P;). Let f: Sp,,»PSp,,=GS,,/Z be the central covering. Let T and T’
be the o-stable Coxeter tori of GSp,, and Sp,, respectively and let P} be the
parabolic subgroup of Sp,, such that f(P;)=P,/Z i.e., P; has the form

A *
X A,BEGL”_i,AJtB=J,XeSp2i .
O B

Note that we use the notational identifications P;;=P; and P;,=Pj. Then,
by [1], (16.8), we have

|GSp2,(K)] = ISp2u(K)1Z,] = (g*—1)-+(g*>"" "' = 1)(¢?"~D)g*(g—1),
[P = |Pi|1Z,| = |GL,- (k) ISp.dk)lq*(g = 1), (2 = (n—i)(n+3i+1)/2),
and
IT,l = |T,l1Z,] = (¢"+ 1) (g—1).

Hence we have a). b) follows from 4.1.1. b). Let X be as in 4.2.11. Let S*
be the connected centralizer in the dual group GSp%, corresponding to X. Then
the dual group S of S* have a form

X1y O x4, t(i) is in the Coxeter torus of
S = [0 t(l) o € Gszn X111 X112 .
GSpsi, € GSPy(n-i)
X1 O X3, X211 X22
Since |S*|=1S,|, we can compute ¢) by 4.1.15. c). g.e.d.

In the rest of this section we give the similar results as those of 4.2.11 and
4.2.13 for other classical groups SO,,, (k), GO%,(k), GO%%(k), U, (k,) and
U,,+1(k;). Main parts of proofs are quite similar to those of 4.2.11 and 4.2.13.
Hence we omit them in most cases.
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PrOPOSITION 4.2.14 (Case G,=S0,,.,(k), 3.5). a) Let I,_; be the
set of g-stable maximal tori of SOy, 4+ (mod. SOy(,_;)+1(k)). Let T be the
set of all o-stable maximal tori of SO,,,, isomorphic to T@)xT', (T'eZ,_))
and let 6(i) be an injective character of T(i), defined by 0, where T(i) is the
Coxeter torus of SO,;,,. Put

X = {(T, 0)ITe T, o((#(), 1)) = 6() (1), ((1(0), )€ T(); x To=T,)}.

Then X is a geometric conjugacy class (mod. SO,, , (k) and we have

i 1

m; = (—1) wei—pnapo— R

( ) Z(T, JeX <RT’ T> T
b) Ind302m+1®(#,_; 6) (1) = (qZ(M)—1";ffi(f;)—l)(q2"_l),

, 2 1)eer (g2 1) (g2"—1
O (1) = (g2=1) (qan )(q ) ,

2(n—i+1) _ vee 2(n—1) _ 2n _

d) m(l) = (g 1)--(q (g 1) .

g’ +1
Proor. The connected centralizer in the dual group SO%,.,=Sp,, which
corresponds to X is
X131 O xy3

X1 X12
S* = o t(i) o € szn |i }GSPZ(,,_,-), t(l)E T(l) 9

X1 O x5,
where T(i) is the Coxeter torus of Sp,;. Then
IS*] = (¢ + 1) (g2 —1)--+(g> =P —1)q(n=D7,
Hence we have d). q.e.d.

ProrosITION 4.2.15 (Case G,=GO%}(k), 3.6). a) Let I,_; be the set
of maximal tori of GO%{,_;y (mod. GOS%!,_;(k)). Put

T,, O Ty, T() is the Coxeter torus of
I= O T(i) 0 (e GO%: Tll le .
GO3i, €I,
Ty O Ty, Ty, Ty,

Let 0(i) be an injective character of T(i), defined by 6. Put
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X={T,0)TeT, w|| 0 t@{E) o = 0(i) (¢(i))} .
1 o0 13,
Then

- 1
m;=(—1)! IZ(T.w)eae———————<R? Re> R2,

8) g O, , ) (1) = LHDEED D@ Do DE =D
F oy =@ =D (gD —1)(g"—1)
O Mol =T neE )

_ (qn—i+ 1)(q2(n—i+l)_ 1),,,(q2(n—1)__ 1)(qn_ 1)
@) = @¥DE= +1) '

PrOPOSITION 4.2.16 (Case G,=G0%,(k), 3.7). a) Let I,_; be the set of
maximal tori of GO%{,-;y (mod. GO%Y,—;)(k)). Put

T,, O Ty, T (i) is the Coxeter torus of
T=(0 TG O |<=GO%, T, Ty, .
Go‘i_i ’ € Tn-i
TZ 1 o TZ 2 TZ 1 T2 2

Let (i) be an injective character of T(i), defined by 6. Put
| ti1 O ty,
X={T, 0)|TeX, w|| 0o tG o = 0(3i) (#(i))} .
t,y o0 i,
Then

i 1
m; = (—1)} IZ(T,w)ex———————<R? R9> R%,

°- i 2(0+1) _1)eeo(g2(n—1) n
b) Ind§osito(z,_, , (1) = (L =D( D-(g2" D= 1)(g"+1)

qn'—l —_— 1

c) we(l) = (qz—l)"'(q;i”;ll)—1)(q"+1) ,

(=@ D@D - 1) (g2 D —1(g"+1)
d  m(D) = :
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ProrosiTION 4.2.17 (Case G,=U,,(k;), 3.8). a) Let I,_; be the set
of all maximal tori of U,_y(ky) (mod. Uy,—;(kz)). Put

T,, O T,, T(i) is the Coxeter torus of
IT=(|0 TG O c Usp(ky) Ty Ty, ] .
2i kZ ’ € n—i
T,y O Ty, Tyr Tay |

Let 6(i) be an injective character of T(i) defined by 0. Put
tyr 0 Iy,
X = {(T, w)|T’s are tori of GL,, such that T,e T, w|| o t@) o || = 00)(())}.

t; 0 i,
Then

m; = (—1)" I — * 1]
i ( ) Z(T,w}e:’f <R%", R‘f> T

(q2i+1)(q2(i+1)__1) 2n l+l) (an_l)
q2(n l)_l)

b) Ind§CD (7, _; o) (1) =
L) = (g+D(g*=1)-(g*" '+ D(g*"—1)
(g+D(g*" ' +1) ’

2(n—i)+ l)(qZ(n—Hl)__ 1),,_(q2n—l + ])(qln_ l)
(g+D(g* 1+1) '

c)

d) m(l) = (q

PrOPOSITION 4.2.18 (Case G,=U,,,(k;), 3.9). a) Let I,_; be the set
of all maximal tori of U,,_;(k;) (mod. U,,—i(k,)). Let T be the set of all
maximal tori T of GL,,,, such that T, is isomorphic to T(i)x T’ (T(i) is the
Coxeter torus of Uy, (ky) and T' €, _;) and let 0(i) be an injective character
of T(i) defined by 0. Put

X ={(T, o)ITeZ, o((1(i), 1')) = 6()) (¢(), ((1(i), ) e T()x T'~T,)}.
Then

; 1
m; = (—l)lZ(T,m)ef———‘<R? R3S R%,

(qZ(H-l)_]) (an_l)(q2n+l+1)
q2(n-l) —1

b) Ind§zer k(7 6)(1) =

’ 1 - 2n 2n+1
0 (1) = L@V @RI DEE])

(qZ(n i)+1+1) (q2n_1)(q2n+l+l)
q21+1 + 1

d) m(l) =
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