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1. Introduction

This paper deals with the mixed problem in the domain D = {(f, x); 0<ί

+ oo, 0 < x < l } for the Hamilton-Jacobi equation (hereafter called (MP))

(1.1) n,+/(wj = 0, r>0, 0 < x < l ,

(1.2) ιι(0, jc) = κ0(jc), 0 < x < 1,

(1.3) w(ί, 0) = w(ί, 1) - 0, t > 0.

This investigation was strongly motivated by a recent paper [1] by S. Aizawa,

in which the Cauchy problem for the Hamilton-Jacobi equation

( *) ut +f(ux) = 0, / > 0, - oo < x < oo,

is treated from the viewpoint of the nonlinear semigroup theory. Aizawa suc-
ceeded in constructing a global solution of the Cauchy problem for (*) in the sense

of Kruzkov when the initial value lies in W^ (R) and its derivative is continuous

in Ll(R) under the assumption that /is merely continuous.

Mixed problems for the Hamilton-Jacobi equation have been treated by sever-

al authors. See, E. D. Conway and E. Hopf [7], S. Aizawa and N. Kikuchi
[3] and S. H. Benton [5, 6]. These authors proved the existence of generalized
solutions of mixed problems by using the variational method under the assumption

that /is convex.

The purpose of this paper is to prove the existence of a generalized solution of
(MP) by using the nonlinear semigroup theory. Our treatment needs no con-

vexity condition on /. Here we define a generalized solution of (MP) in the sense
of Kruzkov [13].

DEFINITION 1.1. A Lipschitz continuous function u(t, x) on D = [0, oo)
x [0, 1] is called a generalized solution 0/(MP) if

(i) u satisfies (1.1) a. e. on D as well as (1.2) and (1.3),

(ii) u satisfies the integral inequality
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> 0
0 J 0

for every T>0, every φ(t, x) e Cgt(0, T)x(0, 1)) swc/i f / z α f φ>0 and every keR.

We shall, as in [1], choose L°°(7) as the Banach space associated with (MP),
where / is the interval [0, 1]. Let/: R->R be a continuous function and satisfy
the following condition:

( f . l ) (i) /(0)<0.
(ii) There exists a nonnegatίve constant p0 such that f(p)>0 for

any p: \p\>p0.
Then, as we shall see, the semigroup approach enables us to prove the exist-

ence of a nonnegative generalized solution of (MP). Moreover, as an intermedi-
ate step in the development, the existence and uniqueness of nonnegative general-
ized solutions of the boundary value problem for any λ>Q (hereafter called

(BVP))

u(x) + λf(u'(x)) = h(x\ 0 < x < 1,
(BVP)

ιι(0) = n(1) = 0,

are established, where h(x) is a given nonnegative and Lipschitz continuous
function defined on / with /7(0) = /?(1) = 0. In order to solve (BVP), we introduce
the regularized boundary value problem

(x)}-m"(x) = h(x\ 0 < x < 1,
(BVPΓ)

ι/(0) = ι/(l) = 0,

for any ε>0.
In Section 2, we give a fundamental lemma concerning the generation of

nonlinear semigroups and define the operator A0: v^f(vx) in L°°(/) that may be
associated with (MP). In Section 3, we shall study the existence and uniqueness
of generalized solutions of (BVP). Here the solutions are obtained as the limits
of solutions of (BVPε). Various results concerning (BVPε) are developed as

needed. Section 4 deals with the existence of generalized solutions of (MP).
Here the solution of (MP) is obtained under the assumption that/eC 1 satisfies
Condition (f. 1) and the initial value ι/0 is nonnegative and Lipschitz continuous
such that ι/0(0) = tι0(l) = 0.

The question of uniqueness of our solution will be taken up in a later paper.
The author would like to express his sincere gratitude to Professor Sadakazu

Aizawa of Kobe University for his hearty encouragement, helpful discussions and
kind advices.
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2. Preliminaries and definition of the operator A0

In this paper we shall work in the Banach space L°°(/) of all real-valued, bound-
ed and measurable functions v on the compact interval / with norm ||t;||00 =
ess-sup {I φc) I; xel}. Before proceeding to the proof of an existence theorem
for a generalized solution of (MP) in the sense of Definition 1.1, we begin with a
basic lemma which is essentially included in the generation theorem of Crandall
and Liggett [9]. In order to construct a generalized solution of (MP) under the
assumption on/prescribed in this paper, it seems simpler to apply this lemma than
to apply the generation theorem.

Let X be a Banach space and A be an operator in X. As in [9], we interpret
A as a subset of XxX. For real A, Jλ will denote the set (I + λA)'1 and Dλ

= D(Jλ) its domain.

FUNDAMENTAL LEMMA. Suppose that R is a convex set satisfying the fol-
lowing conditions:

(a) D(A) c R c R(I + λA) for each λ > 0,

(b) if we restrict the domain of Jλ = (I + λA)~x to R9 then Jλ is a contraction
mapping (we denote Jλ restricted on R by JΛ),

(c) for each heR there is a constant C such that for any λ>0,
where yλ satisfies h = uλ + λyλ, yλeAuλ and uλ = Jλh.

Then

(2.1) lim j»/nu
H-»OO

exists for ueR and t>Q. Moreover, if S(t)u is defined as the limit (2.1), then

S(t) is a contraction semigroup on R:

(1) We have S(t): R-+R for ί>0; S(ί)S(τ) = S(ί + τ) for t, τ>0; \\S(t)υ

-S(t)w\\< \\v-w\\ for v,weR and ί>0; S(0) = / and S(t)v is continuous in the
pair (t, v).

(2) If vεR, then S(t)v is Lipschitz continuous in t on every compact inter-
val.

(3) // we denote uβ(0 = ^ϊ f/β]M0 f
or uo e ̂  then

limwε(0 = S(0w0
ε l O

PROOF. It is sufficient to prove only the convergence of (2.1). To prove
this, it suffices to check the properties corresponding to Lemmas 1.2 and 1.3 in
[9]. The statements (i) and (iii) of Lemma 1.2 hold under our conditions.
Conditions (b) and (c) imply that
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(2.2) \\Jλx-x\\<Cλ for λ>0 and xeR.

In fact, for x e R, by (b), there exists uniquely χλ = jλχ such that xλ + λyλ = x for

some yλεAxλ. By (c), we have \\Jλx-x\\ = \\xλ-x\\=λ\\yλ\\<Cλ.
The estimate (2.2) corresponds to (iί) of Lemma 1.2 in [8]. For x e R,

and real μ, we have

4 .v + -^V^ ΛJC e Z> „ and Λ* e /„ (J*χ + Ar
A A \ A /ί

In particular, for A>μ>0, these give

(2.3) JΛ.v =

by the convexity of R and (b). From this it follows that Lemma 1.3 in [9] is

valid with ω = 0. Thus the proof is complete.

By applying the above lemma, we shall prove the existence of a generalized
solution of (MP). Assume that the function / satisfies Condition (f. 1). Let us

define the operator A0 associated with (MP) in L°°(/). & (I) denotes the subspace

of L°°(7) consisting of all Lipschitz continuous functions. Let

and

j£0(J) = {M e JS?0(/); w(x) > 0 on /} .

DEFINITION 2.1. A0 is the operator in Lαj(/) defined by. VED(AΌ) and

/), w=f(vx) and

(2.4) gn0(^-fc){[/(^-/(fc)]^ + w jeφ}dx > 0

/or ei ery φeCg'ί/) swc/i ί/iαί φ>0 αnί/ ^y^ry keR, where / = (0, 1).

The following remark will clarify our definition of AQ.

REMARK 2.1. L e t / e C 1 satisfy Condition (f. 1). Then there are α<0

and β>0 such that /(α) =/()8) = 0. It is easy to verify that if υeC2(I) satisfies

v(x)>Q on /, ι<0) = ι<l) = 0, v'(G) = β and ϋ'(l) = α, then yeD(A 0) and AQυ=f(υx).

3. The boundary value problem (BVP)

In this section we want to discuss the existence and uniqueness of generalized
Λ. /

solutions of (BVP) for given h E &0(I) under the assumption that / satisfies Con-
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dition (f. 1). Throughout this sectioa we can assume λ= 1 in (BVP) without loss

of generality. We start with the definition of a generalized solution of (BVP).

DEFINITION 3.1. For each Lipschitz continuous function /?, a Lipschitz

continuous function u will be called a generalized solution o/(BVP) if u satisfies

(i) ιι(x)+/(M'(x)) = Λ(x) a.e. on 7,

(ii) ιι(0) = ιι(l) = 0,

(iii) Γ sign0 (u'-fc) {[/(u') -/(*)>' + [/ι'- u']φ}dx > 0
J o

for every φ e C^(I) such that φ>Q and every k E R.

If we define a generalized solution without requiring (iii), we can construct

infinitely many generalized solutions. The following example has been used in

[2]. We consider the boundary value problem:

(3.1) </(*) + 0/(x))2/2 = 0, xel,

(3.2) ιι(0) = κ(1) = 0,

in the case of /? = 0. For any couple α, β: 0<α</?< 1, we define

0 0 <x < α or β <x < 1,

"«/?(*) = -(x-a)2/2

-(x-β)2l2

Then wα/?(x) satisfies both (3.1) and (3.2). By the arbitrariness of α and β, we

can construct infinitely many Lipschitz continuous functions that satisfy (i) and

(ii).
First we prove the uniqueness.

THEOREM 3.1. There is at most one generalized solution of (BVP).

In order to prove this, we need the next Lemmas. Let u: I-+Rbe measurable.

We shall denote by signw the set of all measurable α: I^R such that |α(x)|<l

a.e. on / and α(x)w(x)=|w(x)| a.e. on /.

LEMMA 3.1. Let {un} andu be measurable functions defined on I such that

un-*u in L^S), where S is a measurable subset of I. 7/α"es ignw n , then there

is a subsequence {α"(0} and α e s i g n w (depending, perhaps, on S) such that

{α"(/)} converges to α in the weak-star topology on L°°(S).

Proof is clear from the fact that Lcc(S) = (L1(5'))ίic.
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LEMMA 3.2. Let h, g be Lipschitz continuous functions. If u, v are gener-
alized solutions 0/(BVP) corresponding to h and g, respectively, then there is an
αesign(w' — ι/) (depending, perhaps, on φ) such that

x > 0

for each given (peCo(/), where w=/(w') and z=/(ι/).

PROOF. We can prove this in the same way as in the proof of [8; Prop.
2.1].

PROOF OF THEOREM 3.1. In proving the uniqueness, we may assume, with-
out loss of generality, that h and g are Lipschitz continuous functions such that

) = λ(l) = 0 and 0(0) = 0(1) = 0.
functions:

0 < x < 1/m,

1/m < x < 2/ra,

(3.3)

Let {</?,„} be a sequence of piecewise

r o

m(x — 1/m)

-m(x-l + l/m)

0

1-2/m <x < 1-1/w,

1-1/m <x < 1.

By virtue of Lemma 3.2, we can choose {αm}csign(M/ — ι/) such that

\^m{U(uf^f(vf)Wm + ̂ '-^φm}dx > 0.

We show that

tends to 0 as ra-»oo. Since the integrand of the above converges to 0 as m->oo
for every xe(0, 1), and h(x) — u(x) — g(x) + υ(x) is Lipschitz continuous on /
and vanishes at both of the end points x = 0 and x= 1, we have

Using Lemma 3.1, we can find an αesign(V — ι/) such that
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From this, it follows

(3.4) (l\u'-v'\dx<(l\h'-g'\dx.
Jo Jo

Here, assuming h = g, we have u = v. Thus the proof of Theorem 3.1 has been

completed.

REMARK 3.1. The estimate (3.4) will be used essentially in Proposition 4.4.

We now proceed to the construction of a generalized solution of (BVP). As
was stated in the introduction, the generalized solution of (BVP) will be obtained
as a limit of solutions of (BVPε).

We shall first establish a priori bounds for the solutions of (BVPε), and then
prove the existence of solutions of (BVPε) by using the a priori estimates and ex-
istence theorems for C2(/)-solutions of the boundary value problems for the second
order ordinary differential equations.

It is obvious that i f/ is Lipschitz continuous on R and h e C(/), then there is
a solution uε e C2(/) of (BVPε). Indeed, we have only to apply, for instance, [4;

Theorem 6.3] or [14; Theorem 3.1]. It should be noted that the bound for | |i4lloo
depends, in general, on ε.

LEMMA 3.3. Letfe C(R) and u,vε C2(I) satisfy

u+f(u')-εu" = h on /, w(0) = u(l) = 0,
(3.5)

v+f(v')-εv" = g on I, ι<0) = v(l) = 0,

where ε>0. Then

(3.6) Halloo <:||Λ-0IL.

PROOF. We first assume that /e Cl (R). Putting wr(x) = u(x) - u(x), we have

w1(x) + α(x)w/

1(x)-εw/ί(x) = /ι(x)-0(x), xe/,

w^O) = Wi(l) = 0,

where a(x) =/'(ι/ -1- 0(x) (uf -1/)), 0 < 0(x) < 1. Putting w2(x) = || Λ - 01|«, and w(x)

= w1(x) —w2(x), we have

w + a(x)w'-εw" = h-g-\\h-g\\OD<0, xel,

and hence w(x) can not have a positive maximum in (0, 1). Since w(0) = w(l)

= - P - 9II oo ̂  0» we obtain

||/ι~0||0 0^0 for xe/.
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On the other hand, putting w(x) = w}(x) + w2(x) and proceeding in a similar
way to the above, we have

w(x) = ι/(x)-ι?(xH||h-0||rjo >0 for xel.

Consequently we have \u(x) — v(x)\ < \\ h — g \\ ̂  for x e /.
For /e C(R), if we proceed in the same way as in the second step in the proof

of [1; Prop. 3.1], then we see (3.6).

COROLLARY 3.1. Let /e C(R). Then there is at most one solution u e C2(7)

of(EVPE)forany h

LEMMA 3.4. Let feC(R) αnd/(0)<0. Suppose that h e C(/) is nonnega-
tive on I. Then the solution u e C2(/) o/(BVPε) is nonnegative on I.

PROOF. It is easily verified that u can not have a negative minimum in (0, 1)
so that w(x)>0 for xel by ι/(0) = ι/(l) = 0.

LEMMA 3.5. Suppose that feCl(R) satisfies Condition (f. 1) and that
hξCl(I) is a given nonnegative function with h(0) = h(l) = 0. Assume that
u e C2(I) is a solution 0/(BVPε). Then we have

(3.7) l l " Ί l o o < L and NL^L,

where L = max Oh' || a, p0}.

PROOF. Differentiation of the equation of (BVPε) yields

u'(x)+f'(ut(x))u"(x)-^u"t(x) = h'(x), xel.

Putting vl(x) = u'(x)9 v2(x) = L and v = vl — v2, we have

x)^εv"(x) = h'(x)-L < 0.

Thus ι (x) can not have a positive maximum in (0, 1). Note that w'(0)>0 and
t/'(ί)<0 by Lemma 3.4 and ι/(0) = ι/(l) = 0. Then we have ϋ(l) = ι//(l)-L<0.
We shall show that ί;(0) = w'(0)-L<0. If w'(0)-L>0, then u"(Q) = ε-lf(u'(0))
>0 by Condition (f. 1). Since υ(l) = u'(l) — L<0, v(x) has a positive maximum
in (0, 1). This leads to a contradiction. Therefore v(x) is nonpositive on /.
In a similar way we have u'(x) + L>Q for x e / . Consequently we have |M'(X)|
<L for xe/ . Thus the proof is complete.

Now we shall prove the existence of a C2(/)-solution of (BVPε).

LEMMA 3.6. Let /e C(R) satisfy Condition (f. 1). Then for each h e &0(I)
there exists a unique solution ueC2(I) o/(BVPε) such that u is nonnegative on

I and
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(3.8) NL<^ and I h / ' I L ^ L ,

w Λ e r e L = max{| |/ jΊL, p0}.

PROOF. Choose a sequence {/„},?=, of functions in C*(R) Π W^(R) such that
/Λ(0)<0 and {fn(p)} converges to/(p) uniformly on the compact set {p\ \p\<L}.
Further we approximate h(x) by {hn(x)}%=l of functions in C l ( I ) such that /7n(0)
= /ιrt(l ) = 0, /ίM(x)>0 on /, {hn} converges to h uniformly on / and {/?'„} converges
to h' a. e. on / as n-> oo.

By [4; Theorem 6.3], for each n there exists a unique solution unGC2(I)
of the boundary value problem :

u(x) +fn(u'(x)) - BU"(X) = /,„(*), x e /,
(BVPJ)

n(0) = κ(l) = 0.

From Corollary 3.1 and Lemmas 3.4 and 3.5, it follows that each un is non-
negative and satisfies H w J I ^ ^ L and H^'JI^^L. Therefore the relation

implies that {u'ή(x)} is uniformly bounded on /. Hence we can choose a sub-
sequence {un(ί}} of {un} such that {un(ί}} converges to u in Cl(l). Since {u"n(i)}
converges to ε~ * {w -f/(V) — h} as n(/)->oo uniformly on /, the limit weC 2 (/) is

a solution of (BVPε). The proof is complete.

Denote by uε(x) the solution of (BVPε). We shall prove that {uε(x)}E>0

is a precompact set in a certain topology and that the limit function as ε | 0 is
our desired (generalized) solution of (BVP).

The following lemma is a slight modification of [8; Prop. 2.3] (see also [1;
Prop. 3.3]).

LEMMA 3.7. LetfeC*. Suppose that w, veC2(I}) satisfy

u(x)+f(u'(x))-εu"(x) =

v(x)+f(v'(x))-sv''(x) =

for x e / j , where /Γ is an arbitrary compact interval I± c c/. // h and g are
Lipschitz continuous, then

(3.9) I lK'- i/ l lnί/,) < P/-^ΊlL1(/

PROOF. Let /! = [α, b}. Define Φ/(s) as
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(3.10)

— s

(//2)S2-

s

if s< -I//,

if \s\ < I//,

if s > l / / ,

and define α/(s) by α,(s) = Φ;(s). Let {φm}%=mo of C(/)-functions, where m0 is
sufficiently large, be defined by

1 on Im = [a + 1/m, b-l/w] ,

0 on outside 7 l 5

linear elsewhere.

It is clear that w = u' — v' satisfies

f(v'J)x ~εw" = h' — g' a.e. on Iί.

Multiplying the above by αz(w)φw and integrating over Il9 we have

(3.11)

We will estimate each term on the left hand side of (3.11) from below. Evi-
dently we have

= ί (H'-g
•//I

(3.12) \w\dx =
1 1 J i

as /-κx> by using the oddness of o^. Integration by parts yields

where Q^ίxe/i; |w(x)| = |u'(x) -v'(x)\ <!//}. We estimate the first term of
the above. By the bounded convergence theorem, we have

(3.13) Ή5K (/(tιO-/(ϋ')Xι(w)w>mdx
/-»c» I Jβ,

00 f

where Ω= Γ\ Ωt. Since u' = v' on Ω, w' = 0 a.e. on Ω. Thus \ |w'|dx = 0. For
i=l Jβ

the second term,
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(3.14) >-( \\u-v\\a,\φ'm\dx-( \\h-g\\^\φ'm\dx-ε( w'
Jii J / i J / i

= -2||ιι-t;||00-2||Λ-fl|L-e( v>'*M<p'mdx.
J / i

For the last term on the left hand side of (3. 11), by the integration by parts

and αj>0, we have

(3.15) -β( vv/'α/(w)<pwdx > β( w'<*Mφ'mdx.
J / l J / l

Consequently, using (3.11)-(3.15) and letting /, m->oo, we have (3.9). Thus

the proof is complete.

An immediate consequence of Lemma 3.7 is:

LEMMA 3.8. Let uε be a solution of (BVPε). Then for any compact
interval / t c c/, we have

(3.16) \\u'Λ(x + y)-u'B(x)\\Lί{ll) < \\h'(x + y)-h'(x)\\Lί(lί) + 4L\y\

for any small y so that /ιc=(|j;|, 1 — |y|), where L is a constant appearing in

Lemma 3.6.

PROOF. By the uniqueness of solutions of (BVPε), uε(x + y) is a unique

solution of the boundary value problem :

u(x) +/(w'(x)) - εu"(x) =

for each yeR. Using Lemma 3.7 and (3.9), we get (3.16) for each sufficiently

small y. Note that we can apply Lemma 3.7 under our assumptions, since uε(x)

is obtained as the limit of solutions of (BVP?). Thus the proof is complete.

We now establish the existence of a generalized solution of (BVP).

THEOREM 3.2. Let f satisfy Condition (f. 1). Then for each he£0(I)

there exists a unique generalized solution u 0/(BVP) such that

(3.17) N l o o < L and \\u'\\«><.L

(3.18) ιφc)>0 for xel.

PROOF. It is sufficient to prove the existence. We proceed in a similar
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way as in the proof of [1; Theorem 3.1]. Let {fn}™=ι be a sequence of C1

/s

functions given in the proof of Lemma 3.6. Given he&0(I), let t/ M eC 2 (/) be
the unique solution of (BVPl/ M) guaranteed by Lemma 3.6. By (3.8) and Lemma
3.8, there is a subsequence {wΛ(ί)} and a nonnegative Lipschitz continuous function
u such that {ww(ί)} converges to u uniformly on /, {u'n(i)} converges to u' a.e.
on / and u vanishes at both of the end points x = 0 and x = 1 .

Multiplying the equation of (BVP^/J by any φeCo(/) and integrating over
/, we have

Letting n tend to infinity through the subsequence {n(0}> we have

( \u +f(u'))φdx = (l'hφdx.
Jo Jo

Since φ is arbitrary, u+f(u') = h a.e. on /.
Next we shall prove that u satisfies (iii) of Definition 3.1. Let φeC%(ϊ)

and Φ have a piecewise continuous second derivative. Multiplying the equation

Un+f'nWu'i-^-u'Z =h' a.e. on /

by Φ'(u'w)φ and integrating over /, we have

^ {u'nΦ'(u'n)φ - [Φ'ίfO/K) - Φ'(k)fn(k)W

for every keR. Assuming, in addition, Φ">0 and φ>0, we see \ Φff(uf

n)u'ή2φd
Jo

>0. Letting n->oo through the subsequence {n(i)}> we obtain

(lh'Φ'(u')φdx
o

for φeCo(/) such that <p>0 and keR. Hence, choosing Φ(s) = Φl(s — k), where
Φl is given by (3.10), and letting /->oo, we have
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Γ sign0 («'-*) {[/(«') -/(fc)]φ' + [Λ'-«'Mdx > 0
Jo

for every φ 6 €$(!) such that φ>0 and every k e R. This completes the proof.

4. Existence of generalized solutions of (MP)

The aim in this section is to establish our main result, that is, the existence
of a generalized solution of (MP). We shall prove the existence via the theory
of semigroups of nonlinear transformations. To this end, we choose L°°(/)

^ ^
as the Banach space and Jδ?000 as the convex set R in Fundamental Lemma as-
sociated with (MP). We have to verify the conditions (a), (b) and (c) of Funda-
mental Lemma for the operator A0 of Definition 2.1.

By the definition of A0 and Definition 3.1, we have

PROPOSITION 4.1. Let feC satisfy Condition (f. 1). Then for any λ>Q
*>

and every /ιe j£?0(/), u is a generalized solution of

(BVP) u + λf(u') = h, tι(0) = tι(l) = 0

if and only if u eD(A0) and u + λA0u = h.

PROOF. The "if,, part is evident by Definition 2.1 and the "only if,, part
is clear by Theorems 3.1 and 3.2.

By Theorem 3.2 and Proposition 4.1, we have

PROPOSITION 4.2. Under Condition (f. 1) on f , we obtain

/\
for any /l>0, that is, for every h e«£P0(7) and any Λ,>0, there is a unique gener-
alized solution u of (BVP) such that HwH^L and \\ux\\ao^tL9 where L

= max { || Λ, || oo. p0}.

The next proposition is an immediate consequence of Lemma 3.3.

PROPOSITION 4.3. Let f satisfy Condition (f. 1). // u, veD(A0) satisfy

= he£0(I) and v + λA0v = ge &0(I\ then we have

(4.1) ll^lloo< IIΛ-0IL.

PROOF. By Proposition 4.1, Theorems 3.1 and 3.2, we can regard w, v as
the limits of {un} and {vn}, respectively, that are C2(/)-solutions of

ux)-uxx = h on 7, ιι(0) = w(l) =0,
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) - v x x = g on 7, υ(0) = ι>(l) = 0.

Applying Lemma 3.3, we have llUn-v^^^^h-g^ and hence (4.1). The proof
is complete.

According to Propositions 4.2 and 4.3, we can verify that A0 satisfies (a) and

(b) in Fundamental Lemma. Next we will observe (c). If v e &0(I)9 then u = Jλv
satisfies u + λf(ux) = υ and hence, by (3.17), we have ||ιιJC||00^L = max{||ι;JC||00, p0}
Consequently we have

(4.2) MOII || „ = H/ίiiJIL < sup |/(p)| .
\p\<.L

Thus we have

THEOREM 4.1. LetfeC(R) satisfy Condition (f. 1). Then the semigroup
S(t) obtained from A0 through Fundamental Lemma is the contraction semi-

group on
/s

Let u0 e &0(I) and uε(t) be a unique solution of

( β- J (u(t) - u(t - ε)) + A0w(ί) = 0 t > 0,
(4.3)

[ u(i) = u0 t<0.

Then

for ί>0 and by Proposition 4.2,

(4.4) I l i K O I I o o ^ L and ||(Mε(0),|loo < L

hold for ί>0, where L = max{||M /

0 | |0 0, p0}. The following proposition is a core
in our proof of the existence theorem for (MP).

PROPOSITION 4.4. Suppose that /e C satisfies Condition (f. 1). Let u0
4\

be an element of &0(I) such that (UQ)X is regarded as the limit of {(un)x} in L}(I),
where uneD(A0). Then for all t>Q

("'«)*— > (5(0*0), in L\I)

as ε I 0. Assume, in addition, that feC1. Then this convergence holds for

every w0e^0(7) and all ί>0.

PROOF. Let uεD(A0) and A0u = v. Then ux, vxεL«>(I)<=L1(I). Define
the operator BQ: Lί(I)-*Ll(I) by BQux = vx if ueD(AQ) and ^40w = ί;. We shall
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show that D(BQ)^R(I + λB0) for λ>0. For each hxeD(Bo) we have some u
in D(AQ) such that h = u + λA0u by Proposition 4.2. From this, it follows that

ux e D(BQ) and B0ux = λ~ 1 (hx — ux), and hence hx = ux + λB0ux e β(7 + λβ0) From
the inequality (3.4) proved in the proof of Theorem 3.1, we find that BQ is an ac-
cretive operator in Ll(I). We define the operator B as the closed extension of
BQ in Ll(I). Then B is accretive in L*(7). For any ft e D(B) we have a sequence

{A;}cD(Uo) such that {ft;} converges to ft in 7^(7). Let {ux} be a sequence in
L*(7) such that w;-l-/U30w; = ft;. Then by the accretiveness of BQ9 {u$} is a
Cauchy sequence in L*(7). Hence {un

x} converges to some ύ in LJ(7). Then

BQU» = λ~\h*-u'x)-+λ-l(ϊi-u) in LJ(7). Thus we get ueD(B) and heu+λBu
Therefore D(B) a R(I + /IB) = β(7 + λB) for /ί>0, since £ is accre-

tive and closed.
It is important to note that for ueD(A0) and

Όux = hx iff u + λA0u = ft.

y\

Then we find that for u0

is equivalent to

Applying the generation theorem of Crandall and Liggett, we can see that for
XV

every ι/0ej£?0(/) such that (M0)xe7)(5) and for every ί>0, (wc(i))x converges to
some v(t, x) in Ll(I). Hence we have

(S(f)«o)M = v(t, y)dy
Jo

for jc e 7. Consequently (S(t)u0)x = v(t, x) a. e. on 7.

Assuming, in addition, that/eC 1, we can see easily that hxeD(B) in Ll(I)

for every ft e &Ό(I) by using Remark 2.1 and an approximation argument. Thus
the proof of Proposition 4.4 is complete.

We now prove that (S(t)u0) (x) = u(t, x) is a generalized solution of (MP).
By the definition of A0, uε(t) satisfies the equation

(4.5) ε~1(wβ(0-tte(*-β))+/((Me(0)je) = 0

for ί>0. Let Γ>0. Since S(t)u0 is Lipschitz continuous for 0<f<Γand

||(S(Otto)jclloo ̂ L for every ί>0, u(t, x) is (totally) differentiate a. e. on [0, T] x 7.
Moreover, by Proposition 4.4 and the bounded convergence theorem, we find

that (wε(0)Λ converges to (S(t)u0}x in (̂[O, T] x 7) as ε i 0. Therefore we find
a subsequence {ε(/)} such that {(uε(i) (t))x} converges to (S(t)uo)x a. e. on [0, T]
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x/ .
Multiply (4.5) by φ e C£((0, T) x /) and integrate over [0, T] x /. Integrat-

ing by parts and letting ε | 0 through the subsequence {ε(i)}, we have

= 0,

which implies that u(t, x) satisfies (i) of Definition 1.1. To prove that w(ί, x)
satisfies (ii) of Definition 1.1, we proceed as in the case of the Cauchy problem

[1; Theorem 4.3]. Let uε(t, x) = u*(i)(x). By Definition 2.1, we have

(4. 6) \ ' {sign0 (u ϊ(f , x) - fc) [/(««(*, x)) -
Jo

+ ε-1θ4('-e, *)-"£(*, jc))sign0(tιj(ί, x)-k)φ]dx > 0

for every φ = φ(ί, x) 6 Q((0, Γ) x /) : φ > 0 and every fe e /?.
Integrating (4.6) over [0, T], we have

(4.7) (T{sign0(ιιi(f, x)-fe)[/(«J(ί, x))
J o J o

> 0,

where hε(t, x) = (uε

x(t, x) —k)sign0(t4(f, x) — /c). Since w£(f, x) converges to ux(t,
x) in L *([(), T] x /), the second term converges to

ux(t, x) — k\φt(t, x)dxdt

as ε I 0. Letting ε | 0 through the subsequence {ε(0} in (4.7), we see that u(t, x)
satisfies (ii).

Thus we conclude

THEOREM 4.2. Suppose that feC satisfies Condition (f. 1). Then for u0

e^0(/) such that (u0)xeD(B0) in Ll(I), u(t, x) = (S(f)wo)(x) ί5 a generalized
solution of (MP). Assume, in addition, that feC1. Then u(t, x) is a gener-

alized solution of (MP) for u0 e JS?000
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