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1. Introduction and statement of results

In this paper, we let R* be the n-dimensional Euclidean space (n=2). We
use the notation:

x=(x, x,)eR"! xR1,
R% = {x = (¥, x,) € R"; x, > 0},
Ry = {x = (¥, x,) eR"; x, = 0}.
For a positive number a and a point £ € R}, we set
I'¢; a) = {x = (x, x,)eRY; |(x, 0)—¢| < ax,}.

Let u be a function on R?. We say that u has a non-tangential limit at £ e R}
if

lim  u(x)
I'(&;a)ax—¢

exists and is finite for any positive number a. Our aim is to show
THEOREM 1. Let 1<p<oo and —oo<a<p. Ifu is a harmonic function
on R satisfying

1) SS |grad u|Px%dx'dx, < oo for any bounded open set Q < R%,
2

then there is a Borel set Ec R} such that B, _,, (E)=0 and u has a non-tan-
gential limit at each { € R} —E.

Here B,_,;,,(E) denotes the Bessel capacity of E of index (1—a/p, p)
(cf. [1]). By [3; Theorem A], [4; Theorems 2.4, 3.2 and Proposition 3.1} and our
theorem, we have

COROLLARY. Let o, p and u be as in Theorem 1. Then u has a non-tan-
gential limit at each £ € R} —E, where E is a Borel set in R} such that

Co-o(E)=0 if p<2 and p—asn,
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Cpa-o(E)=0  foranyewith 0<e<p—ua
if 2<p=n+a
and
E is empty if p—a>n.

Here C4(E) is the Riesz capacity of E of order . This corollary is a
generalization of a result of H. Wallin [7; Theorem 3] and a result of T. Murai
[5; Theorem 2]. We note that A. A. Bagarshakyan [2] evaluated the size of the
exceptional set in our problem by means of a capacity of different type.

In case —1<a<p—1, Theorem 1 is the best possible as to the size of the ex-
ceptional set in the following sense:

THEOREM 2. Let 1<p<o and —l<a<p—1. Let E be a set in R} with
By _up(E)=0. Then there is a harmonic function u on R% such that

Jlgrad u|Pxidx < oo and limgn .. ,.u(x)= oo for every { € E.

+

2. Proof of Theorem 1

Let o, p and u be as in Theorem 1. Given M >0, let us consider the existence
of non-tangential limits of u at points in B,,={¢ e R}; |£|<M}. Set

xa/?|(grad u) (x)|, if x=(, x,)eR" and |x| <2M,
f(x) =

, otherwise.

Then fe LP(R") by our assumption. We denote by g4, 0<f <00, the Bessel ker-
nel of order B, which has the following property (cf. [1; p. 878]): There is a con-
stant ¢, >0 such that for all x e R" with |x|<2M

(i) gp(x) 2 cylxlf~"if 0<B<n,
(ii) g, 2 ¢, it f2n
Setting

E={xe R";Sgl-,/p(x—y)f(y)dy = 0},

we see that B, _,, (E)=0. Let ¢ e By —E befixed. Inthecase wherel—a/p <
n, we have

© > g 91 -aE= M)y
r(§;a)
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> ¢, S gwr”““’f('f+ro)drdS(a)
S(a)

0
= min {1, (a+1)"*/?P}¢, SS(“JS? |(grad u) (¢ + ro)|drdS(o),

where r=|y—¢&|, a=(y—¢&)/r, S(a)={x € I'(O; a); |x|=1}, dS is the surface ele-
ment and ¢, >0 is chosen so that |£+rg|<2M whenever 0<r<g, and o € S(a).
Hence there is ¢* € S(a) such that

Age = S::I(grad u)(E+ro*)|dr < oo.

Since Scolau(€+ra*)/6r|dr§A,., lim, , gu(& +ro*) exists and is finite. For x=
0

(x', x,)eI'(¢; a), we denote by x,. the point on {£+re*; r>0} whose n-th

coordinate is x,, and by L, the line segment between x and x,.. Since Ju/0x;,

j=1, 2,..., n, are harmonic on R",

ou

) P (x)=caxi| Qu

|x=y|<xn/2 3y_,

(y)dy, j=1,2,..,n,

with a constant ¢, >0 independent of xe I'(¢; a). Noting that y,<|¢é—y|<(a+
3/2)x,<(2a+3)y, whenever x € I'(¢; a) and |x—y|<x,/2, we obtain from (2)
that for x e I'(¢; a) sufficiently close to &

5

J

)| sernr| |grad ul dy

|x=y|<xn/2

< x| (€= yl1=1rf ()

1§=yl<(a+3/2)xn

< c4x;1§ 01— E= NS D)y,

[&=yl<(a+3/2)xn
where c;=c,(a+3/2)* ! max {1, (2a+3)*?} and c,=c7'c;. Consequently,
[u(x) —u(x,0)| < |x—x,4|sup |grad u|
Ly
<2a.nc S —_a(E— dy,
= \/_ 4 |§—y|<(a+3/2)xngl /p(f Nfy)dy

which tends to zero as x, ! 0. Therefore limp,,)....4(x) exists and is finite.
We can show the case 1 —a/p=n in the same way as above by using (ii) instead
of (i). Since M is arbitrary, we obtain the theorem.
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3. Proof of Theorem 2

By our assumption that B,_,, (E)=0, there is a non-negative function
fe LP(R") such that Sgl_a,p(f—y)f(y)dy=oo for every (e E. We denote by

F the restriction ofggl_a,p(x—y)f(y)dy to R*" 1, i.e.,

F&xy = gg 1-a/p((X', 0 =) f(y)dy, x'eR"1!.

We note that F belongs to the Lipschitz space A%5:%,.),,(R"~1) (cf. [6; Chap. 6,
§4.3]). Let u be the Poisson integral of F with respect to R%. In view of [6;
Chap. 5, Proposition 7', Lemma 4']1,

S Llgradu|Px2dx < .
R+

Moreover we see from a property of the Poisson integral and the lower semi-
continuity of F that limgns,_.u(x)=o00 for every {€ E. Thus u satisfies all the

conditions in the theorem.
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1) In the inequalities (61) and (62), « —1 should be replaced by 1 —a.





