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Introduction

In the paper [8], the author introduced the notion of Dirichlet integrals,
or rather that of gradient measures, on self-adjoint Brelot's harmonic spaces.

The purpose of the present paper is to give the definition and basic properties of
gradient measures on more general harmonic spaces which are not necessarily

self-adjoint.

We shall consider a harmonic space X in the sense of C. Constantinescu and

A. Cornea [3], and only assume that X has a countable base and that there is a
sheaf homomorphism σ of ̂  into the sheaf of Radon measures on X, where ^

is the sheaf of germs of differences of continuous superharmonic functions (cf.

[12], [5]), such that a non-negative measure corresponds to a superharmonic

function. We shall see that such a sheaf homomorphism exists for a large class

of harmonic spaces.
The definition of gradient measures is given in terms of σ, in almost the same

way as in [8] however, due to the lack of symmetric Green functions, a different

approach is necessary to obtain basic properties, i. e., Theorems 1 and 2. It
turns out that our new approach considerably simplifies the proofs of the corre-
sponding theorems in [8] and [9].

As an application of the general theory, we can associate a differential equa-

tion (whose coefficients are measures) to a harmonic structure given on a euclidean

domain (Theorem 4). Problems of this type were considered first by G. L.
Tautz [10], and later by J.-M. Bony [1]. Our result contains that in [10]-I;

but not directly related to the results in [10]-Π and [1].

1. The sheaves ̂  and ^0

Let (X, J>ίf) be a harmonic space in the sense of [3] with a sheaf of "harmonic

functions" Jf = {jf(U)} (U: open^X). We shall assume in this paper that X
has a countable base. For various notions in the theory of harmonic spaces, we

refer to [3].

As in [12] and [5], we consider the sheaf ^ = {̂ (17)}, where for each open
set U in X9 &(U) is the set of functions on U which are locally expressed as differ-

ences of continuous superharmonic functions. (In [8], this space 3$(U) was
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denoted by ^c,ioc(^) ) Each &(U) is a linear space of continuous real-valued
functions on U. The proof of [5, Proposition 3.3] applies to our case and
yields

PROPOSITION 1. ///, g9 hε@(U)andh>Q on 17, then fg/hε&(U).

By using [3, Theorem 2.3.1], we can easily show that there is h0e&(X)
such that /t0>0 on X. We introduce another sheaf ^0

 = {^o(^)} which is
defined by

^o(^) = {f/h'J, he@(Ul /ι > 0 on 17}

for each open set U. By Proposition 1, we see that each &0(U) is an algebra
containing 1, &0(U) = {f/hQ',fe&(U)} with the above Λ0 and geό?0(U) implies
gh E 3t(U) for any h e (̂17). Obviously, 3?0(U) = @(U) if and only if 1 e (̂17).

Let Wbe an open set in X and h be a strictly positive continuous function on
W. For each open set U^W, we write

Then (W,3ety) with JPty = {jf(k\U)}UC:W is again a harmonic space. The
spaces &(U) and &0(U) for U £ if considered with respect to this harmonic space
will be denoted by ^(Λ>(t7) and ^(

0

Λ)((7), respectively. Obviously, they are given
by

aW(U) = {flh;fe#(U)} and &0

h\U) =

If he@(W) and /?>0 on W, then by Proposition 1,
for any open set U £ W.

2. Measure representations

By a sheaf homomorphism σ of ̂  into the sheaf Jt of Radon measures on
X, we mean a set of mappings {συ} such that

(i) for each open set 17, cr^ is a linear mapping of &(U) into the linear space
of (signed) Radon measures on 17, and

(ii) for open sets U and Fwith V^ U,fe&(U) implies

By virtue of property (ii), there will be no ambiguity in writing σ(f) instead
of *„(/).

A sheaf homomorphism σ: &^>Jt will be called a measure representation
of ̂  if it satisfies the following condition :

(iii) For each open set 17 and /e^(L7), σ(/)^>0 on U if and only i f / is
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superharmonic on U.

REMARK. If we consider the specific order in &(U) (see [3, Chapter 8])
and the natural order in Jt(U\ then &(U) and Λ(U) are vector lattices and con-
dition (iii) above means that σ gives a vector lattice homomorphism of
into (̂17) whose kernel is

The existence of measure representations will be discussed in § 6.
If h is a strictly positive continuous function on an open set W, then

σ(*>(0) = σ(hg) for gε^h\υ\ U^W

defines a measure representation σ ( Λ ) of {&(h)(U)}UcW with respect to the har-
monic space (W,

LEMMA 1. Let U be an open set in X and suppose 1 eJF(U). Let sί and

s2 be bounded continuous superharmonic functions on U and put f=sί — s2,
α = supt// and β = inf^/. Then

is superharmonic on U for any p>\.

PROOF. Let V be any relatively compact resolutive set (see [3]) such that
FC U. For a continuous function φ on the boundary of V, let Hφ denote the
Dirichlet solution for Kwith boundary values φ. Put w^s,- — HSi on F(i=l, 2).
Then w f^0, ί=l, 2. Since ieJ>ίf(U) and α— /^O on 17, we see that #(α_/)P

)*. Hence

on F. It is easy to see that

(α -/+*!- w2y ^ (α -/y - p(w2 - W l) (α -/)P- 1

on V. Hence

H.^^-Xα-/)^^^^

on K Therefore vp is superharmonic on U.

PROPOSITION 2. Lei L/ be an open set in X and p be an integer>i. If
1 e Jf(U) and if σ is a measure representation of &, then for any /
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(i) Σ(-i) f c

Λ = l

on U.

PROOF. Let Fbe any open subset of U for which f\V=sί — s2 with bounded
continuous superharmonic functions Si and s2 on V. Put M = supF |/|. Let
ε>0 (ε< 1) be given. Since /is continuous, for each x e V there is an open subset
W of V containing x such that supwf— infwf< ε. Put α = sup^/and β = mfwf.
By the previous lemma, we have

-σL(*-fW + p(«-β)p-1σ(s2) ^ 0

on W. Hence

^ -pεσ(S2)

on W. (Note that σ(l) = 0 since 1 e ̂ (ί/).) Since

on jy(/c=l,..., p), we have

(2) Σ(
fc=l

on VK, where

n = Σfc=l

is a non-negative measure defined on K Since both sides of (2) are independent
of W, (2) holds on F. Therefore, ε>0 being arbitrary, (1) holds on V\ and since
such F's cover L7, (1) holds on U.

COROLLARY. Let U be an open set in X and suppose 1 e Jf(L7). If σ is a

measure representation of Ί%, then

(3) σ(fgh) -fσ(gh) - gσ(fh) - hσ(fg) +fgσ(h) +fhσ(g) + ghσ(f) = 0

on U for any f , g, hε&(U).

PROOF. In case /? = 3, the inequality (1) in the above proposition becomes

Applying this to — /, we obtain the converse inequality. Hence
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(3)' σ(/3)-3/σ(

Then (3) follows from (3)' by the linearity of σ. (For instance, substitute /-f tg
+ sh with real numbers t and s for/in (3)' and compare the coefficient of ts.)

3. Gradient measures

In this and the next sections, we assume that there exists a measure represen-
tation σ of ̂  and fix it. Let U be an open set in X. We shall define gradient
measures relative to this σ for functions in &0(U). First we prepare

LEMMA 2. Let /, 0e^0(l/), he^(U) and h>0 on U. Then the signed
measure

(4) ^{fσ(gh) + gσ(fh) - σ(fgh) -fgσ(h)}

does not depend on h.

PROOF. Let V be any open subset of U for which there is we«^(K)such
that w>0. Since 1 eJf<l/>(F), the corollary to Proposition 2 implies

on V. Since σ<M>(/) = σ(ιι/) for any /e^0(K) = ̂ ")(K), it follows that

(fσ(gh) + g σ ( f h ) - σ(fgh) -fgσ(h)}

the right hand side of which is independent of h. Since any point in U is con-
tained in such F (Axiom of positivity see [3, §2.1]), we obtain the lemma.

We now define the mutual gradient measure δ^^ of /, ge&Q(U) (relative
to σ)by (4), i.e.,

for some strictly positive he&(U). By the above lemma, δ[/iff] is well-defined.
Obviously, the mapping (/, g}-*δUίg^ is symmetric and bilinear on

). The measure <5/ = <5[/}/] is called the gradient measure of /e^

REMARK. Jn case 1 e&(X)9 we can choose /z = l in the above definition and
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have the same form as in [8].

THEOREM 1. <5/^0 on U for anyfe&Q(U).

PROOF. Let V be an open subset of U for which there is a strictly positive
ueje(V). Applying Proposition 2 with /? = 2 to the harmonic space (V,
and the measure representation σ(u\ we obtain

on Kfor/e^M>(K) = ̂ 0(F). Hence

σ<">(/2)} ^ 0

on V. Then, by the Axiom of positivity, we see that δf^0 on U.

COROLLARY. For any f , g e^0(l/) and for any Borel set A in U,

in particular, δf = Q on U implies <5[/,0] = 0 on U for any

PROPOSITION 3. Let W be an open set in X. If he&(W) and /ι>0 on W,
then the mutual gradient measure δ{h

f\g^ of /, g e^(Λ)(lΓ)= @o(U) (U^ W)
with respect to the harmonic space (W, J^ffl} and relative to σ ( Λ ) is given by

PROOF. Since 1 e^(Λ)((7), we have

= y (fσ(gh) + gσ(fh) - σ(fgh) -fgσ(h)}

THEOREM 2. For /, g, h e ̂

PROOF. Let V be an open subset of U for which there is a strictly positive
). By the corollary to Proposition 2, we have

σ^(fg) - σ^(fgh)
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= 0.

Thus, (5) holds on Fby virtue of the above proposition. Since such F's cover 17,
(5) holds on 17.

PROPOSITION 4. &(U) and &0(U) are vector lattices with respect to the
max. and mίn. operations and δ\f\=δf for fe&0(U).

This proposition can be proved in the same way as in [8, §4.2].

4. Composition of functions in &Q(U) with C2 -functions

First we prepare

LEMMA 3. Let gj(j=\,...,m) and fn (n = l, 2,...) be functions in &(U)
and let φjtn (j = l,..., m; n = l, 2,...) be continuous functions on 17. Suppose
fn (resp. φjftt) converges to f(resp. φ3) locally uniformly on U as n-+oo and

<r(fn) = Σ 9j.n°(&j\ n = 1, 2,....

Thenfe&(U) and

PROOF. Let V be a relatively compact open set such that V^ U and gί9...,
gm can be expressed as differences of continuous superharmonic functions on V.
Then there is a continuous superharmonic function s on Fsuch that \σ(gj)\^σ(s)
for all j. Put

7n = Σ suplφ^-φ l, n = 1, 2,....
j=l V J J

Then yM->Ό (n-*oo) by assumption and

(6) \σ(fn) -

^on F for all n. Let ε>0 be given. Since φl9...9 φm are continuous, for any x e V
there is an open set W such that x e W^ W^ V and



126 Fumi-Yuki MAEDA

< £, j = 1,..., m.

Put ctj = supwφj9 βj = mfwφj9j = \9...9 m and

{/^ - α/s -

Since <τ(s)^0 and σ(s —

(7)

on W^. Hence, it follows from (6) that /„ — i^-h^s and ~/n-l-^2 + 7«s are super-
harmonic on W9 so that their uniform limits/— v1 and —f+v2 are superharmonic
on W^. Since this is true for any x e V9 we conclude that /e ̂ (K). Furthermore,
for the above PF, σ(ι;1)^σ(/)^σ(ι?2) on V7. Hence, in view of (7) we obtain

|σ(/)- Σ Ψjσ(ffj)\ ^ Φi-^i) ̂  3εmσ(s)

on W. Noting that the first and the last terms are independent of W, we see that

on V. Since such F's cover C7, we obtain the lemma.

THEOREM 3. Letfl9...,fke&0(U)andput f=(/l5...,/k). Let Ω be an open
set in Rk containing f(C/). // φeC2(Ό), ί/?en φ°f€&0(U) and the following
equalities hold:

/or any heό?(U) with h>G on U;

(9) ^.f.rt =

/or any gf 6^0(ί7), m particular
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PROOF. (I) First we consider the case where φ is a polynomial of k variables.
Since &0(U) is an algebra with 1, φ°fe&0(U). If φ=l, then both sides of (8)
and (9) are reduced to 0. If φ(xl5..., χk) = χj9 then both sides of (8) (resp. (9))
are reduced to 0 (resp. δUj^. Since both sides of (8) and (9) are linear in φ,
it follows that these equalities hold if the degree of φ is 1.

Now suppose (8) and (9) are valid for polynomials φ1 and φ2 and let <p = (
Then, using Theorem 2, we have

and

= y{ .Σ ( |̂ -

Thus, (8) and (9) hold for φ. Then by induction we see that (8) and (9) hold for
any polynomial φ.

(II) Next, let <peC2(Ω). We can find a sequence {φn} of polynomials of
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k variables which converges to φ in the topology of C2(Ω). By the result in (I),
we have

= -A

+ Σ
j—\ j

Since φn°f-+φ°f9 (dφn/dxj)°f-+(dφldXj)°f and (d2φn/dxidXj)of-^(d2φ/dxidxJ)of

all locally uniformly on U as n-»oo, the previous lemma implies that (φ°Γ)he
and

Hence φof 6^0(17) and (8) holds.
Next, consider the function

Then ΦeC2(ί2xR). Given ge@0(U\ applying (8) to f* = (/ι,...,Λ, flf) and
Φ, we obtain

= ^{g g^ jϊΓ ° f)

Hence, again using (8), we have

which is the required equality (9).

REMARK. Given fe&Q(U), if φeC2(Ω) with θ2/(t/) and <p'VO on/(t7),
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then from (8) we deduce

(10) δf = ~[(^VK<W-M^

In case φ(t) = t2, (10) is nothing but the definition of δf. Thus we may define δf

by (10) using any φ as above.

5. The case where X is a euclidean domain

THEOREM 4 (cf. [9, §5]). Suppose that the base space X of the harmonic
space is an open set in the k-dimensional euclidean space Rfc and that a measure
representation σ of & is given. If C2(X)Γ\&0(X) is dense in C1^) (or, if
the coordinate functions Xj all belong to &0(X))9 then C2(U)^@0(U) for any
open set U in X, and writing

we have

for /, geC2(U). The matrix (αί7 ) is symmetric and positive semi-definite in

the sense that μ,*=Σι\j£i£/αu ιs a non-negative measure on X for each ξeR*.
//, in addition, le@(X), then with βj= -σ(xy) + x/r(l), j=l,..., /c, and γ =
— σ(l), every feC2(U) satisfies the equation

on U.

PROOF. Let V be any bounded convex open set such that V^X. Since
coordinate functions belong to C1(X), by assumption we can find \ l / ί 9 . . . 9 ψ k

eC2(X)n&0(X) such that \(dφi/dxj)(x)-δij\<ll4k for all xeV and f , j = l,...,
k. Put Ψ = (\l/ί\V,...,\l/k\V). Then, by the convexity of 7, we see that Ψ: V
->Ψ(V) is a bijection and if we put Ψ~l =(φl9...9 φk\ then φJ6C2(^(F)),7 = l,...,
/c. Hence foψ-^eC2(Ψ(U n F)) for feC2(U). Since <A/|t7 n Ve@0(UΓ( V\
Theorems implies that f=(foψ-^oψe^0(U n F); and since such Fs cover
X,fe&0(U). Hence C2((7) c ^0(t7). Now we obtain (11) and (12) from
(8) and (9) in Theorem 3 by considering //x) = x/, j=l,..., fc. Obviously, (αlV)
is symmetric and μξ = (5^jjcj^0 for ξeRk by Theorem 1.

COROLLARY. Under the same assumptions as in the above theorem (includ-
ing the assumption \ε@(X)\ ueC2(U) belongs to Jf(U) if and only if



130 Fumi-Yuki MAEDA

Θ2u

on U, Jor any open set U in X.

6. Existence of a measure representation

As we have seen in [8] (also, cf. [11]), if integral representation of potentials
in terms of Green functions is possible, then we can define a measure representa-
tion.

Let Fbe a φ-set (see [3, §2.3]) in X. By a Green function on F, we shall
mean a lower semicontinuous function G: Fx F-»[0, +00] which is finite con-
tinuous off the diagonal such that for each y e F, the function x->G(x, y) is a non-
zero potential on Fand is harmonic on V— {y}.

The existence of such a Green function and the possibility of integral represen-
tation were investigated by R.-M. Herve [6] for Brelot's harmonic spaces and by
K. Janssen [7] for more general harmonic spaces. To apply Janssen's result,
we need the following assumptions:

(KD) The harmonic sheaf Jί? possesses the Doob convergence property (see

[3, p. 9]);
(A) Each x e X has a neighborhood Wsuch that X is the smallest absorbent

set (see [3, §6.1]) containing X-W\
(P) (Proportionality condition) For each φ-set F, any two non-zero po-

tentials on F having the same point support are proportional.

Note that Brelot's harmonic spaces satisfy (KD) and (A). The harmonic
space determined by the heat equation on a euclidean domain satisfies all of these
assumptions (see [3, § 3.3] and [4]).

Under the assumptions (KD), (A) and (P), each ψ-set Fin X possesses a Green

function G and any potential p on F is expressed as p(x) = \ G(x, y)dμ(y) by a

uniquely determined non-negative measure μ on F ([7, Theorem 3.4]). Thus,
by the same reasoning as in [11, Lemma 1.5 and Theorem 1.6], we can show that
there exists a "consistent" system of Green functions, that is, a system {GF}Γ:^_set

such that each Gv is a Green function on F and for any ^3-sets F and V with V
^ Fand for any y e F', there is uy e 3ί?(Vf) satisfying

GF,(x, 3;) = Gv(x, y) + uy(x) (x e V).

With respect to such a system we obtain a sheaf homomorphism σ of ̂  into Λ

as follows: for each/e ̂ (17), there is a unique σ(f)e^(U) such that
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with u^eJ>ίf(V) for every relatively compact ^β-set V whose closure is contained
in another φ-set ̂  u. It is easy to see that this σ is a measure representation of
.̂ Thus we have shown

PROPOSITION 5. Under the assumptions (KD), (A) and (P), there exists
a measure representation of &9 defined with respect to a consistent system of
Green functions. In particular, a Brelofs harmonic space satisfying (P)
possesses such a measure representation.

REMARK. If there is a consistent system of Green functions {Gv} such that
each Gv is symmetric, i.e., GF(x, y) = Gv(y, x), then we may call (X, Jf) self-
adjoint (cf. [8]). Under the assumptions (KD), (A) and (P), we can show that if
(X, Jf) is self-adjoint, then it is a Brelot's harmonic space. In fact, Theorem 1
and a result similar to [8, Proposition 2.2], which is also valid in the present case,
imply that each Gv is of positive type. Then each Gv satisfies energy principle
in view of [3, Theorem 2.3.1] (cf. [2]). By a classical method of H. Cartan (cf.
[2]), we see that the domination principle holds on each φ-set. Then, by [3,
Propositions 9.2.1 and 3.1.4, Corollary 3.1.2 and Exercise 3.1.3], we conclude
that (X, 3?} is a Brelot's harmonic space.

The following examples show that conditions (KD), (A) and (P) are by no
means necessary for the existence of a measure representation.

EXAMPLE 1. Let $ be the harmonic sheaf on R2 defined by the solutions
of the heat equation

Lu = - = 0 * '

Let X = R x (- oo, 0] and for an open set U of X, let [/* = U n {R x (- oo, 0)}
and

= {u eC(C7); ιι|l/* e jF(l/*)} .

Then (X, Jf ) is a harmonic space which does not satisfy (KD) (see [3, Exercise
11.1.9]). If we define

<τ(/) = L(/|l/*) for /€#([/),

where Lf is taken in the distribution sense, then σ gives a measure representation
of & (cf. [4, p. 263]).

EXAMPLE 2. Let (X, j f ) be the harmonic space given in [7, Remark
(3.1)], i.e.,
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X = 0 Xn <Ξ R2

n = 0

with

X0 = (-l, +oo)x{0} and Xπ = {1/n} x(0, 1/n], n = l,2,...,

and

h\U Γ\Xn is linear for n = 0, 1,...; h is ]

constant on U ΓΊ Xn (n ^ 1) if (1/n, 1/n) 6 17 J

This harmonic space satisfies neither (A) nor (P). Still we can construct a measure
representation as follows :

If U is an open set in X and u(x, y) is a continuous superharmonic function
on U, then u is a concave function of x (resp. of y) on X0 n U (resp. on each Xw

D ί/, n^l), and furthermore, monotone increasing in y on Xn Π I/ (rc^l) in case
(1/n, l/ιι)el7. It follows that μ0= -(d2u/dx2) on X0 n 17 (resp. μn=-(d2u/
dy2) on Xπ n 17, n^l) in the distribution sense is a non-negative measure on X0

Π U (resp. X. n 17). We see that if (1/n, 0) e 17, then \ ydμn(y)< + oo and if in
Jo

addition Xn^U9 then

It follows that if we define σ(w) = μ0 on X0 Π U and σ(u) = (l/n2)yμn on XM n 17,
n = l, 2,..., then σ(u) is a non-negative Radon measure on 17. Now it is easy to
see that the mappings w->σ(w) induce a measure representation of .̂

7. Open questions

Here, we raise two open questions, whose answers are known to be affirma-
tive in the case of self-adjoint harmonic spaces ([8] and [9]).

(1) In case the harmonic space is elliptic (see [3, p. 66]), does <5/ = 0 imply

/= const, for/e &0(U) when 17 is connected?
(2) Let U be an open set in X. For each compact set K in U and /e

put

Then &o(U) is a Hausdorff locally convex space with respect to the family of

seminorms {pκ}. Is it possible to embed the completion of &Q(U) into C(17)?
In other words, if {/„} and {gn} are Cauchy nets in &0(U) and if limπ/w = limn^w
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pointwise, then do {/„} and {gn} determine the same element in the completion of
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