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1. Introduction

Let r, i=0, 1,..., n be positive continuous real-valued functions on the
interval [ty, o0). For a real-valued function h on [T, o), T=t,, and any k=0,
1,..., n we define the k-th r-derivative of h by the formula

DiRh = ri(ry_ ((ri= o (-(ry(roh)’) +)')'Y
when obviously we have
DO = roh
and
D®h = r(D*—Vhy (k=1,2,....,n).

Moreover, if D (¥h is defined as a continuous function on [T, o), then h is said
to be k-times continuously r-differentiable. We note that in the case where

r0=r1=---::rn=l

the above notion of r-differentiability specializes to the usual one.
Now, we consider the n-th order (n>1) differential equation with deviating
arguments of the form

(En) (D (%) () +a(F(x[a,(1)];..., x[0,(D]) = b(1),  tZt,,

where r,=1. The continuity of the functions involved in the above equation
(E,) as well as sufficient smoothness to guarantee the existence of solutions of
(E,) on an infinite subinterval of [t,, c0) will be assumed without mention.
In what follows the term ‘‘solution” is always used only for such solutions x(f)
of (E,,) which are defined for all large t. The oscillatory character is considered
in the usual sense, i.e. a continuous real-valued function which is defined on an
interval of the form [T, o) is called oscillatory if it has no last zero, and otherwise
it is called nonoscillatory.

Furthermore, the conditions (i) and (ii) below are assumed to hold through-
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out the paper:
(i) Foreveryi=1,2,..,m

tli_)tga,.(t) = 0.
(i) The function F has the following sign property
Vi=1,2,...,m)y; > 0=F(yy, Yareees V) >0
and

Vi=1,2,...,my; < 0= F(y;, Y250005 V) < 0

2. Preliminaries

Let p be a real-valued function which is defined and positive at least on the
interval (¢y, o0) and let R;, i=0, 1,..., n be the functions defined as follows:

R,=p
and for every j=n—1,n-2,...,0
Rj = rjR}+l.

The function p is said to be of the type r[k], 0Sk<n—1, if:
(o) the functions R, j=k+1,..., n are defined at least on (t,, ),
() Ry., is a constant nonzero function on (¢y, ),
(y) if k<n—1, then for every j = k+2,...,n

!irgRj(t) exists in {0, — o0, + 00}
and
(0) if k <n—2, then for every j = k+2,...,n—1
Ri()#0 for all t>t,.

We give below some interesting examples of functions of the above type which
will be used later.

1. Let i, j be integers with 0<i< j<n—1 and let
1, if i=j
@;(1) = St 1 Ss,- 1 SSHZ 1

to "j(sj) to rj—l(sj—l) o Fir1(Siv1)

dsi+1“'de_1de,

if i<j.
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For each k, 0=k<n—1, the function ¢, ,_, is of the type r[k], provided that in
the case where k<n—1,

lim @, (f) = o forevery j=k+1,..,n—1.
t— 0
We note that the last requirement is satisfied, if

Sw dt o) forevery j=k+1,...,n—1.

GO
2. Let the integer k, 0£k<n—1 be such that in the case where k<n—1,

S°° dt

Tj—(—t)—<oo forevery j=k+1,...,n—1.

Then the function g,

1, if k=n-1
(D) = Soo 1 goo 1 Soo 1

. dsk+1"‘ds _zds -1
t rn-l(sn—l) Sn—lrn-Z(sn—Z) " n

s+ 2Pkt 1 (k1)
if k<n-—1
is of the type r[k].

3. Letr;=lforj#0,n—1andr,_,=r. Ifforsome integer k, 0sk=n-2,

then the function ,

o = |TEI g

is of the type r[k].

4. Let r;=1 for j#0, n—N and r,_y=r, where N is an integer with 1<N
<n-—1. If for some integer k, 0<k<n—-N-—1,

Sao tn-N-l—k

) dt < oo,
and for j=1,2,...,N—-1,

wiu_to)n—N—I—k

s r(u)
then the function w, y_, is of the type r[k] provided that for every j=1,..., N—1

W (0) = S;o(t—s)f‘lg duds,
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limw,(t) existsin {0, oo}.
=00

LemMA 1. Consider the linear differential equation

, R'(2) R'(1)
(L) z———R(t)z+ R

H(t) =0,

where H is continuous on the interval [T, o), R is continuously differentiable
on [T, o©) and such that:

R(#®) #0 and R'(®)#0 forevery t=T
and

limR(t) belongs in {0, — o0, +0}.

t—0
If lim H(t) exists in the extended real line R*, then so does the limu(t),

where ut_t:;)the solution of (L) with u(T)=0. Moreover, o

lim|H(t)| = o implies limu(t)] = .
t—0 t—©
ProoF. The solution u is given by the formula

- R'(s)H(s)
u(t) = R(t)ST ) gy,
If lim u(t) does not exist in R*, then following the arguments used by Kusano
and Onose [3, Lemma 2] we conclude that 1|m [(=R@®)/R'())u'(t)+u(f)] does
not exist in R* and so does the lim H(), since from (L)

t—0

_ R(@)

HO = = ®ay

—u' (t)+ u(e).

To complete the proof of the lemma we suppose that lim |[H(¢)]=oco0 and we
t—0
consider the following two cases.

Case 1. limR(t) = 0.

t—0

In this case it is easy to see that

R (t)H(¢t)
ST R2(2) dt= =+

when we obtain
t R'(s)H(s)

im0 - FiTRG)T —
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Case 2. limR(t) = + 0.

t—®

The improper integral

® R'(¢)H(t)
ST RRHD a

exists in R*, since the integrand is of constant sign for all large ¢. So, if this inte-
gral is different from zero, obviously

lim |u(t)] = oo,
t—o0
otherwise,
t R'(s)H(s) !

: — i ['S Rs) ] _y
fim u(®) = lim = T Hm H()-

LEMMA 2. Let p be a function of the type r[k],0k=<n-—1, and h an
n-times continuously r-differentiable function on [T, ), T >t,.
If the improper integral

S:p(z)wﬁn’h)(t)dt

exists in R*, then so does the lim (D{¥h)(t). Moreover,
t—00

Swp(t)(DS")h) ()dt = + 0 implies lim(DFh)(t) = + 0.
T t—o©

Proor. For k=n—1 the function p must be constant, say p=c,, Where
¢o is a positive constant. In this case the lemma is obvious, since we have

lim (D{"~Vh)(t) = (D{" Vh)(T )+71~S:p(t)(l7$")h)(t)dt-
t— ]

Thus, we assume that k<n—1 and we consider the functions Rj, j=n, n—1,
..., k+1 assigned to p by the definition as a function of the type r[k].
If

t (J)
q;(t) = STRj(s)%ﬂds (j=k+1,...,n),

then, integrating by parts, for any u=n, n—1,..., k+2 we obtain

t ( t
a,(0) = ng%ﬂds = [ RUDE=1Ry (5)as

= RO 1) () = R(DOF=PW (1)~ | Ry DF~h) (s)ds
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_ R,() (D=Ph)(@) 7_ (=1 _
Ry 1()[r,—1 (1) [R“" ® ru-1(2) ] RU(TYD~Vh)(T)

(D~ Vh)(s)
S (S) /,t l(s) d

t
= R G O = RUAT)DE V(D)= gy, 0,
Hence g,_, is a solution of the differential equation

(L) 20~ D20+ D H, 0= 0,

where H, ()= —R,(T)(D{*~Vh)(T)—q,(t). Obviously, this solution satisfies
the initial condition q,_,(T)=0.
Now, if lim g,() exists in R*, then so does the lim H,(f). Hence, applying
t—© t—®

Lemma 1 for the differential equation (L,) we obtain that limg,_,(t) also exists
t—®

in R* and moreover that

lim|g,(t)] = co implies lim|g,_,(t)] = ©
t—00 t =00

Next, we assume that the improper integral Swp(t) (D{h) (f)dt exists in R*,
T
Since

lim g,(1) = S:p(t) (D h) (tydt,

we can consecutively apply the above procedure for u=n,n—1,...,k+2 to
obtain that lim g, , ,(?) exists in R* and it is infinite in the case where
t—00

0
[To @@ ©at = £ 0
T
Finally, since R, , is a constant nonzero function ¢, we have

g0 = ¢ ! LLEZBO) 45— (D0 - (DPRNT)]

and consequently

lim (D(Xh) (1) = (DPh) (T) - (1/c) lim g4 1(2)

which proves the lemma.
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3. Main results

In this section we give sufficient conditions which guarantee that

liminf|x(f)) =0 or limx(t)=0
t—00 t—00

for the nonoscillatory solutions x of the differential equation (E,,).

THEOREM 1. Consider the differential equation (E,) subject to the con-
ditions (i), (ii) and

(iii) limsup rq(t) < oo0.
t—00
Moreover, let there exist a function p of the type r(k], 0Sk<n-—1, so that the

conditions (C,) and (C,) below are satisfied:
(Cy) If k>0, then for every i=1, 2,..., k

(C,) For every uy, u, with O<p, <1 and pu, >0,

[0 Lt =)= albiodr = o0

or
Swp(t) [ura=(t) —a* (1) — u,|b(D)|]dt = o,

where a*(t)=max {a(t), 0} and a~(t)=max { —a(?), 0}.
Then for all bounded solutions x of the differential equation (E,,),

liminf|x()| = O.
t—00

Proor. We assume that the conclusion of the theorem is not valid, when
there exists a bounded nonoscillatory solution x of (E,) with liminf|x(¢)]>0.

Without loss of generality, we suppose that x is a solution on the w}?ole interval
[to, o©). Moreover, this solution is supposed positive on [t,, ), since the sub-
stitution u = — x transforms (E,,) into an equation of the same form satisfying the
assumptions of the theorem.

For the solution x, by taking into account (i), it is easy to see that there exist
positive constants M, and M, such that for some T >t, and every t=T,

M, <x[c(M1<M, (i=1,2..,m).
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Thus, we have that for every 1> T,
¢, = F(x[o,(0)], x[o2(D],..., x[0,(N]) < 3,

where the constants ¢; and ¢, are chosen to be positive, because of (ii).
Now, from equation (E,,) after some manipulations, we obtain that for every
12T,

p(O)(DIx) () £ —cop() [uya* (1) — a=(£) — u,b(1)]
and
p(t)(DVx) (1) Z c,p(t) [pya= (1) — a*(6) + ub(H)],

where u,=c,/c, and p,=1/c,. Obviously, O<pu, <1 and u,>0, when, by con-
dition (C,), we have

WOCESIOTEETS

Next, by applying Lemma 2, we get

lim (D®x)(f) = + o0
t =00

which implies

lim (D{®x)(f) = + co.
| Sde]

Indeed, we assume that k>0 and we observe that for some T, =T we have

1

(DWx)() 2 1, ie. (DEVx) (t) 2 for every 21T,

r(?)
or
(DWx))Z—1,ie. (D Dx)(t) < — r it) for every t>T,.
k
Hence, by integrating from T; to ¢, it follows respectively
(DE %) @) 2 (DE V)T + (| 2
T, rk(S)
or
(D¥x) 1) < (DR Dx)(T) - [ 45
- T4 7i(S)

and consequently, by condition (C,),
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lim (D~ Vx) () = +o0.
t—®©

Thus, following the same procedure, we finally obtain our assertion.
But this assertion is exactly a contradiction, since, by (iii), the function
D (9x=ryx is bounded.

THEOREM 2. Consider the differential equation (E,) subject to the con-
ditions (i), (i) and (iii). Moreover, let there exist a function p of the type r[0]
so that the conditions (C;) and (C,) below are satisfied:

(Cy) ["pibit < oo,

(Cy) Swp(t)a“(t)dt = o and Soop(t)a"(t)dt <
or
Smp(t)a“‘(t)dt <o and S“p(_z)a-(t)dz = .
Then for all bounded nonoscillatory solutions x of the differential equation

(Em),

lim ro()x(t) = 0.
t—00

Note. Obviously, under the additional condition

@iv) liminf ro(f) > 0
t—0

we obtain that

limx(t) =0

t—00
for all bounded nonoscillatory solutions x of (E,).

Proor. Let x be a bounded nonoscillatory solution of (E,,). As in the proof
of Theorem 1, we suppose that x is a solution on the whole interval [¢,, o0) and
positive on [t,, o).

If, by (i), T>1t, is chosen so that for every t= T,

a,(t) g to (i = 1, 2,..., m),

then from equation (E,,) we obtain

[l o @) 5)s = § p©b(s)s—{ p(9a*OF(xLo1(9,..., x[ou&Dds
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+ S’Tp<s)a-(s)F(x[a,(s)1,..., x[0,(s)])ds

for every t=T. Because of (ii) and the boundedness of x, the function Fo(xo0s,...,
Xo0,,) is positive and bounded on [T, o). Thus, by conditions (C;) and (C,),
the improper integral

o) @) @yt

exists in R* and consequently, by virtue of Lemma 2, the lim(D{?x)(¢) also
exists in R*. o

Now, we observe that conditions (C;) and (C,) imply condition (C,), when,
by applying Theorem 1 for k=0, we obtain

liminfx(f) = 0

t—o
which, by (iii), gives
liminf(D{9x)(f) = 0
t—0
and finally lim (D{?’x) ()=0, i.e.
t—©
lim ro(2)x(t) = O.
t—0

THEOREM 3. Consider the differential equation (E,),
(E,) (D{”x) () + a(HF(x[a(H)]) = b(t), where o =0,

subject to the conditions (i), (ii), (iii) and

® dr
v) S OB
(vi) liminfr,(f) > 0.

Moreover, let there exist a function p of the type r[1] which satisfies condition
(C,) and the following one:
(Cs) For some 6>0,
t
t

fim infg " o(s)at(s)ds > 0 and S“’p(t)a—(t)dt <o
t—o

or
t
t

lim infS " (s)a~(s)ds > 0 and Swp(t)a*’(t)dt < o.
t—©
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If the function o is differentiable with bounded derivative on [t,, o),
then for all bounded nonoscillatory solutions x of the differential equation

(El),
lim ro()x(t) = 0 = lim r, () (ro()x(t))’ .
t—®© t—®©
PrOOF. Let x be a bounded nonoscillatory solution on [#,, o) of the differ-

ential equation (E,) which is supposed positive on [#,, ).
From equation (E,) we obtain

1) S;P(s) (Di"x) (s)ds = S;p(s)b(s)ds - S;p(s)a+(s) F(x[o(s)])ds

t
+{ s P LoD ds
for every t=T >t,, where T, as in the proof of Theorem 2, is chosen so that for
every t=T,
a(t) = t,.
Thus, since the function Fo(xo¢) is positive and bounded on [T, o), by conditions
(C,) and (Cs), the improper integral
("o @ war
T

exists in R* and consequently, by virtue of Lemma 2, the lim (D{"x)(f) also
t—

exists in R*. Moreover,
2 lim (D{Vx)(¢) = 0.
t— 0
Indeed, in the opposite case there exists a positive constant M such that for some
T, =T we have

(D)) = M, ie. (DOx) (1) 2 % for every ¢ T,
1

or

M
ry(?)

Hence, by integrating from T, to ¢ and taking into account condition (v), we
conclude that

(DVx)(t) £ —M,ie. (DOx)' (1) £ — forevery t=T,.

lim (D{®x) () = + oo,
t—o
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which is a contradiction, since, by (iii), the function D{®x =ryx is bounded.
Also, it is noteworthy that

3) lim (D{”x) (1) = 0,

which immediately follows from

(1)
04y — De’x
Dy = 2%,
by virtue of (2) and condition (vi).
Now, it remains to prove that
4) lim (D{9x)(f) = 0.
t -0

To do this, we observe that (v) implies condition (C,) for k=1, as well as (Cj)
and (C,) imply condition (C,). Thus, applying Theorem 1 for k=1, we obtain

liminfx(#) =0

t =0
and consequently, because of (iii),

lim inf (D{?’x) () = 0.
t—

To complete the proof of (4), we have to verify that

lim sup (D{9x) (f) = 0.
t—0

Indeed, in the opposite case we have

liminf(D{®x)[6()] =0 and limsup(D{®x)[c(t)] = K
t—00 t—0

for some positive constant K. Hence, based on the arguments used by Hammett
[1] (cf. also Singh [5, 6]), we derive that there exist three sequences (a,), (8,)
and (y,) with limea,= oo and such that for every v=1, 2,...

T=o, <7, <Py =4y,
(Df¥x) [a(,)] = 3K = (D{”x) [0(B,)],
(Di¥x)[o(y)] > K,
(D9x)[o()] > 3K forevery te(a,, B,).

By mean-value theorem, we have
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(D®x)[6(,)]1— (D{Vx)[o(x,)] _ o' (¢, )(Dx) [a(&,)]

Pv— %y

and consequently

K , ,
m <o (Cv)(DS'O)x) [a(év)]s

where obviously lim&,=o00. Thus, because of (3) and the boundedness of ¢’
we obtain

(5) lim(B,—a,) = co.
Next, we observe that for every v=1, 2,...
(D{9x)[o(H)] = 3K for every tel[a,, B8]
and consequently, by (iii),

K K
x[o(t)] 2 27o[0 (D] = Zsup ro@) >0 for every te[a,, f,].
t2to

We have thus proved that the bounded function xoo has a positive lower bound
on the set \U%[«,, B,]. ‘Hence, because of (ii), we have :

F(x[o()]) 2 M forevery te\Ui,[a, 8],

where the constant M is positive.
Obviously,

[ pa* (LoDt 2 £2..(" parF Lo

2 M 22, (" pvaz .
But, by virtue of (5) and condition (C;), we have
¥ 3°=1SZ “p(f)a*(dt = 0 or | :;,S': p(f)a-(t)dt = oo
and consequently
["oarOFaLo®Ddt = o or | pa-@F Lo Ddr = oo
Thus, from (1) it follows that

7o) (D) (3t = £ o
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Finally, by Lemma 2, we obtain
lim (D{Vx) () = +
t—0

which contradicts (2).

Finally, we shall restrict our attention to the case where a is nonnegative.
For nonnegative a, Kusano and Onose [2, 3] have considered the cases

.. © dt .
£ = =1.2 -
(vii) S 0] 00 (i=1,2,....,n—1)
and
© dt . _
(viii) S 0] < 00 (i=1,2,...,n—1)

and they established conditions under which for all nonoscillatory solutions x
of the differential equation (E,) with ro=1,

lim x(¢t) = 0.

t—w
The results of Kusano and Onose [2, Theorem 3; 3, Theorem 3] can easily gener-

alized for the differential equation (E,). More precisely, we have the following
two theorems.

THEOREM 4. Consider the differential equation (E,) subject to the con-
ditions (i), (ii), (iii), (iv), (vii) and:
(C¢) The function a is nonnegative and such that

Swa(t)dt = 0.
(C;) liminf F(yy, y35-..s V) >0 and limsup F(yy, Y25-.es Vi) <O.
i=1y,12—,.‘f.,m i=yli,_’2_,f).,m
(Co) ["poibiar < o,
where
p(t) = S' 1 Ss"_‘ 1 “'Sh;dh‘“d&.-zd%-p
to Pn-1(Sn=1) Jto  7pn—2(Sy-2) to71(54)

Then for all nonoscillatory solutions x of the differential equation (E,,),

limx(f) = 0.

t—0
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PrOOF. Let x be a nonoscillatory solution on [t,, c0) of the equation (E,,)
which is supposed positive on [¢,, ).
From equation (E,,) we obtain

[\ o) (@) s =  pbis)ds— [} PO L3, 3D

for every t=T>t, where T is chosen as in the proof of Theorem 2. Thus,
because of (ii) and (Cg), the improper integral

WOICERIO

T

exists in R* and consequently, by Lemma 2, so does also the lim(D{?x)(¢).
t =00

Now, we assume that lim (D{%x) ()= co, when, by (iii),
t—0

lim x(¢) = lim (2220@) _

t—w t = ro(2)

So, by (ii) and condition (C,), the function Fo(xos,..., xoa,,) has a positive lower
bound and consequently, by condition (Cy),

S:a(t)F(x[al(t)],,.., x[on(O]dt = oo.
From equation (E,,) we have
D) () = (D) (D)= [ aF (L7, x[ousDds+ [ bs)ds
But obviously, because of (Cs),
S°°|b(t)pdt < o.

Hence,

lim (D{"~Vx)(f) = — 0

t—
from which, by taking into account (vii) and following the same arguments as
in the proof of Theorem 1, we derive the contradiction

lim (D{®x)(f) = — 0.

t—

Thus, we have just proved that lim (D{?’x)(¢) is finite and consequently, by
t+ o0
(iv), the solution x =(D{®x/r,) must be bounded.
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Finally, we note that p=¢, ,_, where the function ¢, ,_ is given in the first

example of section 2. So, p is of the type r[0] and hence the theorem follows
now immediately from Theorem 2.

THEOREM 5. Consider the differential equation (E,) subject to the con-
ditions (1), (ii), (iii), (iv), (viii) and:

(Co) [“Ibeodr < oo,
(C,0) The function a is nonnegative and such that
(patd = oo,

where

® 1 S°° 1 S‘” 1
t) = - veeds . _odS._+.
p() St rn—l(sn—l) Sn—lrn—z(sn—l) s2 "l(sl)dsl ettt

Then for all nonoscillatory solutions x of the differential equation (E,,),

lim x(t) = 0.
t—0
PrOOF. Let x be-again a nonoscillatory solution on [to, o) of the equation
(E,,) which is supposed positive on [t,, o).
From equation (E,,) we have

(D=3 (1) = (DF=3)(T) = {| a6 F Lo s, xTowDds + | bds
T T
for every t=T >t,, where T is chosen as in the proof of Theorem 2. Thus,
because of (ii) and (C,), for some constant M,_, and every t=T,
D Vx)(0) = M, _,.
By integrating from T to ¢ and taking into account (viii), we obtain that for every
t2T,

DI 2x)@) S DEPT) + Mo, 25 <,

Thus, following this procedure we finally obtain that D{®x=ryx is bounded and
because of (iv), the solution x is also bounded.

Furthermore we note that p=y,, where the function y, is given in the second
example of section 2.  So, p is of the type r[0] and hence the theorem follows
from Theorem 2.
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4. Applications

We shall now clarify the importance of the main results by applying them
in the particular case where for some integer N, 1< N<n-1, we have

rj=1 for j#n—N and r,_y=r.

More precisely, we shall give below some corollaries concerning the differential
equation

(Dmy)  [r(Ox=DOTN + a(OF(x[o4(D)],..., x[0,(D]) = b(D),  t 2 to.

All these corollaries are new, except Corollary 1 which slightly improves a recent
result due to Staikos and Sficas [7].
The three first corollaries follow from Theorem 1.

COROLLARY 1. Consider the differential equation (D,,) subject to the
conditions (i), (ii) and

ot

Moreover, let there exist a real number T and an integer k, 0Sk<N—1, such
that for every p,, u, with O<u; <1 and p,>0,

("¢t - a@-palbodr = o

or
("= D ma - a0 - walbodr = o0,

Then for all bounded solutions x of the differential equation (D,,y),

liminf|x(¢)| = 0.
t—00

Proor. Without loss of generality, we assume that t,=>7. It is easy to see
then that the function p,

p() = (t—T)*

is of the type r[n—1—k]. Thus, the corollary follows by applying Theorem 1
with n—1—k in place of k.

COROLLARY 2. Consider the differential equation (D,,y) subject to the con-
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ditions (i) and (ii). Moreover, let there exist an integer k, 0Zk<n—N-—1,
such that

and for every u,, u, with O<u,; <1 and p,>0,

(o) a0~ a0 = alb(01de = o0
or

o0 ) - a* (0= o b0 1dt = o0,

where

£ (t—s)N"I(s—tg)"N-1-k

p(t) = g = ds.

Then for all bounded solutions x of the differential equation (D,,y),

lim inf | x(#)| = O.
t—®0

Proor. By Theorem 1, it suffices to verify that p, is of the type r[k].
Indeed, in the case considered here the function ¢, ,_, given in the first example
of Section 2, is of the form cp,, where c is a positive constant.

COROLLARY 3. Consider the differential equation (D,y) subject to the
conditions (i) and (ii). Moreover, let there exist an integer k, 0<k<n—N-—1,
such that:

© gn—N—-1-k
Vo

(B) If N>1, then for every j=1, 2,..., N—1

dt < «©;

(@)

lim S (z—s)fﬂgww duds exists in {0, 0} ;
t—o Jto s r(u) ’ ’

and
(y) For every u,, u, withO<u; =1 and u,>0,

(00 L% —a- - walb(11dt = oo

or
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S“’pk(t) [uya(t)— a*(t) — uy | b(H(1dt = oo,

where

pi(t) = ' ( ———
-2\ T (u—to)" ;

1 Sto(t s) S D) duds, if N>1.

Then for all bounded solutions x of the differential equation (D,y),

lim inf |x(t)| = 0.
t =0

PrOOE. Obviously,

/7 if N=1
Pr =

WDyN=15 if N>1,

where ¥, and w, y_ are the functions given in the third and fourth example of
Section 2. Thus, the function p, is of the type r[k] and consequently the corollary
follows immediately from Theorem 1.

Kusano and Onose have recently obtained some results [2, Theorems 1 and

2; 3, Theorems 1 and 2] included in Theorem 2. This is exactly the case m=1

and p=¢,,_; or p=y,, where the functions ¢,,_, and y, are given in the first

and second example of Section 2. From the above mentioned results of Kusano

and Onose only those in [2] can be applied for the equation (D, ), when the con-
dition

© tn-—N— 1

S r(t)

must be valid. In the opposite case, however, our Theorem 2 can applied suc-
cessfully for the differential equation (D,,). More precisely we have the follow-
ing corollary.

dt = o©;

COROLLARY 4. Consider the differential equation (D,,y) subject to the con-
ditions (i), (ii) and:

dt < o©0;

(@)

(B) If N>1, then for every j=1,2,..., N—1

lim St (t—s)f‘lga0 (u—to)" " duds exists in {0, o0} ;
t—o Jto s r(u) ’ ’
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and
o) [patoibds < co
and either
Swpo(t)a‘“(t)dt = and S“’po(t)a-(t)dt <
or
Swpo(t)a"(t)dt <o and S“’po(t)a—(t)dt = o,
where

®©(s—ty)" 2 . _
po(t) =

S:o(t—s)"‘zgjL:(‘)z;il— duds, if N>l

Then for all bounded nonoscillatory solutions x of the differential equation
(DmN)9

lim x(f) = 0.

t—o0
Proor. It is obvious, since the function

l//0’ if N=1
Po =
COO,N_I, if N > 1

is of the type r[0].
The following corollaries 5, 6 and 7 follow from Theorem 3.

CoROLLARY 5. Consider the differential equation (Dy ,- ),
(Dyp-1) [r@Ox' )]V +a®F(x[o(1)]) = b(t), where ¢=0,

subject to the conditions (i), (ii) and:

@) S”r_% —w and liminfr()>0;
® St"‘zlb(t)ldt < ;

and
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(y) For some 6>0,

lim infyﬁs"‘za*(s)ds >0 and Swt"'za‘(t)dt < o0

t—0 t

or

J ©
lim infSH s"2a=(s)ds >0 and S t"~2a*(t)dt < oo.

t—® t

If the function o is differentiable with bounded derivative on [t,, o),
then for all bounded nonoscillatory solutions x of the differential equation

(Dy,n-1)
tlirg x(t)=0= ‘1132 r@x@)' .

Proor. It follows immediately from Theorem 3 applied for the function

P,
p() = (t—10)" "2,

which is of the type r[1].

COROLLARY 6. Consider the differential equation (D,y) with N<n—1,

(Dyy) [r@x*=M(E)]M™ + a()F(x[o(t)]) = b(t), where o = o,

subject to the conditions (i), (ii) and:

() Sw!—n;%:)——z dt = o,
) gmpl(t)lb(t)ldt <o

and for some 3>0 either
t
t

lim infg * p(s)a*(s)ds > 0 and Swpl(t)a‘(t)dt <o
P
or
. t+d @©
lim mfg p(s)a~(s)ds > O and S p,(Dat()dt < o,
t—®© t

where

t (t— S)N—I(S _to)n—N—Z

" (5) ds.

pr0 = |
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If the function o is differentiable with bounded derivative on [t,, ),
then for all bounded nonoscillatory solutions x of the differential equation

(DIN)’

limx(1) = 0 = limx'(?).
t—®

t—0

PrOOF. As it is remarked in the proof of Corollary 2, the function p,
is of the type r[1], and so the corollary follows from Theorem 3.

COROLLARY 7. Consider the differential equation (D,y), N<n—1, subject
to the conditions (i), (ii) and:

(B) If N>1, then for every j=1, 2,..., N—1

(o) dt < ©0;

lim St (t—s)i“Smwduds exists in {0, o0};
t—=o Jto s r(u) ’ ’

and

) Smpl(t)lb(t)ldt < o

and for some 6>0 either

L] 0
1iminfg'+ p.(s)a*(s)ds > 0 and S 0, (Da-()dt < o
t—0 t
or
L. (1t ©
lim 1nfS pi(8)a~(s)ds >0 and S pi(Ha*(t)dt < oo,
t— t
where

p1(2) =

t _ N‘ZSQO (u_to)n—N—Z .
Sm(t s) e R duds, if N>1.

If the function o is differentiable with bounded derivative on [t,, o),
then for all bounded nonoscillatory solutions x of the differential equation

(DIN)’

lim x(f) = 0 = lim x'(f).
t—0

t—®©
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Proor. It is obvious, since the function

vy, if N=1

b= .
Dy N-1> if N>1

the type r[1].
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