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1. Introduction

Let ri9 ΐ = 0, 1,..., n be positive continuous real- valued functions on the

interval [f0, oo). For a real-valued function h on [Γ, oo), T^ί0, and any /c = 0,

1,..., n we define the k-th r-derϊvative of h by the formula

when obviously we have

and

D<*>Λ = ΓfcCD**-^/!)' (k = 1 , 2,..., n).

Moreover, if D (

r

k)h is defined as a continuous function on [Γ, oo), then ft is said
to be /c-times continuously r-differentiable. We note that in the case where

the above notion of r-differentiability specializes to the usual one.
Now, we consider the n-th order (n>l) differential equation with deviating

arguments of the form

(EJ (D <">x)(0 + *(θn*[*ι(0],..., x[>M(0]) = KO, t ^ t09

where rn = l. The continuity of the functions involved in the above equation

(Em) as well as sufficient smoothness to guarantee the existence of solutions of
(Em) on an infinite subinterval of [ί0, oo) will be assumed without mention.

In what follows the term "solution" is always used only for such solutions x(t)
of (Em) which are defined for all large t. The oscillatory character is considered

in the usual sense, i.e. a continuous real-valued function which is defined on an
interval of the form [T, oo) is called oscillatory if it has no last zero, and otherwise
it is called nonoscillatory.

Furthermore, the conditions (i) and (ii) below are assumed to hold through-
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out the paper:
(i) For every i=!9 2,..., m

limσ^ί) = oo.
ί-»oo

(ii) The function F has the following sign property

(Vi = 1, 2,..., m)yi > 0 => F(yl9 y29...9 yj > 0

and

(Vί = 1, 2,..., m)Λ < 0 **F(yl9 y29...9 yj < 0

2. Preliminaries

Let p be a real-valued function which is defined and positive at least on the
interval (ί0, oo) and let Rh ι = 0, 1,..., n be the functions defined as follows:

Rn = P

and for every j = n — !9 n — 2,..., 0

^j = Γ/ ̂ +i

The function p is said to be of the type r[fe], O^k^n — 1, if:
(α) the functions RJ9 j = k+ 1,..., n are defined at least on (ί0, oo),
(/?) /? fc+1 is a constant nonzero function on (ί0, oo),
(y) if fc < n — 1, then for every; = /c + 2,..., n

lim/J/0 exists in {0, — oo, +00}
ί-*oo

and

(δ) if k< n-2, then for every; = fc + 2,..., n-l

R/0 ^ 0 for all t > t0.

We give below some interesting examples of functions of the above type which
will be used later.

1. Let i, j be integers with O^i^ jgn-1 and let

1, if ί=j

<Pij(t) = f< 1 Γ^ 1 (s" * l_
Jtofj(Sj) )t0rj-ι(Sj-ι) Jto ri+ί(Si

if i
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For each /c, O g f c g n — 1, the function φ M _j is of the type r[/c], provided that in

the case where k<n — l,

\imφk j(i) = oo for every j = fe f !,.-•» n — 1 .
f-»00 '

We note that the last requirement is satisfied, if

S OD Jf
— ττx-= oo for every 7 = Λ + 1, ...,«- 1.
OW

2. Let the integer ^ O ^ f c ^ n — 1 be such that in the case where k<n — 1,

(oo ,//

\ — 77Γ< °° for every 7 = k+ 1,..., i — 1.
J /"yW

Then the function χfc,

1, if fe = π-1

Γoo I j*cχ) J (oo I

\ 7 — r: — Λ \ — Γϊ — r \ : — 77 — ̂ Jfc+i—^if-2^ii-i.
Jί ^M-lUn-lJJsn-i^-i^Λ-lJ Jsk+2^k+l(^k+ί)

if fc<n-l

is of the type r[/c].

3. Let Γj = 1 for 7 7^ 0, n — 1 and rn_ l = r. If for some integer fc, 0 ̂  fc g n — 2,

S oo tn-2-k

™ϊίΓΛ<eo

then the function ι/^k,

$o o / c _ _ / Λ«-2-fc

/J ^) ^

is of the type r[/c].

4. Let 7^=1 for 7 7^0, M — N and rw_N==r, where JV is an integer with 1<N

^n— 1. If for some integer fc, Ogfe^n — JV— 1,

oo fn-N-l-kS oo fn-

-

andfor j = l, 2,..., N-l,

— t \n-N~l-k

then the function ωk)N-ί is of the type r[/c] provided that for every j= 1,,.., N —
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lim(okj(t) exists in {0, oo}.
ί-»oo

LEMMA 1. Consider the linear differential equation

( r ) Σ'-
R'(t) z+

R'(i) H(t}-0
(L) Z R(t) + R(t) ( ) '

where H is continuous on the interval [T, oo), R is continuously different iable

on [T, oo) and such that:

R(t) Φ 0 and R'(t) + 0 for every t ^ T

and

limR(t) belongs in {0, — oo, +00}.
ί->00

If\imH(t) exists in the extended real line R*, then so does the limw(0,
ί-»oo f-κ»

where u is the solution of(L) with w(T) = 0. Moreover,

lim |H(ί)| = oo implies l im|M(OI = oo.
f-*oθ ί-»oo

PROOF. The solution u is given by the formula

If lim u(t) does not exist in R*, then following the arguments used by Kusano

and Onose [3, Lemma 2] we conclude that lim[(-fl(f)/K'(OX(0 + w(0] does
f-*00

not exist in R* and so does the lim //(*), since from (L)
ί-*oo

H(t)= --

To complete the proof of the lemma we suppose that lim \H(t)\ = oo and we
f-K»

consider the following two cases.

Case 1. lim £(0 = 0.
f -»00

In this case it is easy to see that

when we obtain

'(s)H(s)Γ_f' R'

= L Jrlim u(t) = lim r

 Γ t - +- = lim H(t) .
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Case 2. \\mR(t) = ±00.

The improper integral

Γ°° R'(t)H(t)

exists in R*, since the integrand is of constant sign for all large t. So, if this inte-
gral is different from zero, obviously

lim |w(ί)| = 00,
f-»oo

otherwise,

Γ _ f ' R'

= l__il_lim u(t) = lim _ _ l _ _ _ = limH(t).

LEMMA 2. Let p be a function of the type r[/c], O^fc^n — 1,
n-times continuously r-dίjferent table function on [Γ, oo), Γ>ί0.

If the improper integral

T

exists in R*, ί/zew so ί/o^5 ί/ί^ lim(Dίfc)/7)(0. Moreover,
f-»00

ί °°p(0 (Dίw)/ι) (ί)dί = ± oo implies lim (D^/i) (ί) = ±00.
JT ί-κx>

PROOF. For k = n — 1 the function p must be constant, say p = c0, where
c0 is a positive constant. In this case the lemma is obvious, since we have

CQ JT

Thus, we assume that k<n — 1 and we consider the functions RJ9 j = n, n — 1,
..., fc+ 1 assigned to p by the definition as a function of the type r[k~\.

If

0/ί) = Γ Rj(s) (D?]V(S) ds (j = k+ 1,..., n) ,
^Γ 'j\^J

then, integrating by parts, for any μ = n, n— l,. . . , fc + 2we obtain

(̂0 = (' ̂ (J) (/>ΓS(j) ̂  = Γ ^(jXDί"-1^)'^^
JΓ ' μ V ^ / JT

ί"- » >Λ) (ί) - Rμ(T) (D<"- > >A) (T) - Λ; (s) (J>0 - »
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Hence < j f μ _ j is a solution of the differential equation

where Hμ(i)= -Rμ(T)(D(/-ί}h)(T)-qμ(t). Obviously, this solution satisfies
the initial condition #μ-ι(T) = 0.

Now, if lim qμ(t) exists in R*, then so does the lim Hμ(f). Hence, applying
ί-»oo ί-»oo

Lemma 1 for the differential equation (Lμ) we obtain that lim^-^f) also exists
t-»oo

in R* and moreover that

1^1 (̂01 = 00 implies limj^.!^)! = oo.
ί-»oo r-*oo

(Oo
Next, we assume that the improper integral \ p(t)(D(

r

n'h)(t)dt exists in R*.
JT

Since

we can consecutively apply the above procedure for μ=n, n — 1,..., k + 2 to
obtain that lim qk+ t(ί) exists in R* and it is infinite in the case where

f-»oo

Finally, since Rk+ι is a constant nonzero function c, we have

and consequently

lim(Dί»fc)(0 = (D<*
ί-*oo

which proves the lemma.



Asymptotic Behavior of Nonoscillatory Solutions 15

3. Main results

In this section we give sufficient conditions which guarantee that

liminf \x(t)\ = 0 or limx(0 = 0
f-»00 f-»00

for the nonoscillatory solutions x of the differential equation (£m).

THEOREM 1. Consider the differential equation (Em) subject to the con-
ditions (i), (ii) and

(iii) Iimsupr0(f) < oo.
i-+oo

Moreover, let there exist a function p of the type r[/c], 0^/c^n — 1, so that the
conditions (Ct) and (C2) below are satisfied:

(CJ ///c>0, then for every i = l, 2,..., k

("JL
J rff)

oo.
-,(*)

(C2) For every μί9 μ2 with 0<μ 1gl and μ2>0,

= oo

or

β = oo,

where α+(f) = max{α(f), 0} αnd α~(0 = max{ — α(ί), 0}.
Then for all bounded solutions x of the differential equation (Em)9

liminf |x(OI = 0.
f-»00

PROOF. We assume that the conclusion of the theorem is not valid, when
there exists a bounded nonoscillatory solution x of (£w) with liminf |x(ί)|>0.

f->oo
Without loss of generality, we suppose that x is a solution on the whole interval
[ί0, oo). Moreover, this solution is supposed positive on [ί0, oo), since the sub-
stitution u = — x transforms (Em) into an equation of the same form satisfying the
assumptions of the theorem.

For the solution x, by taking into account (i), it is easy to see that there exist
positive constants Mί and M2 such that for some T>t0 and every ί^T,

Mx g xfoO)] ^ M2 (ί=l,2,...,m).
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Thus, we have that for every t ̂  T,

Cί ^ F(x[ffl(i)], x[σ2(f)],.. , x[σm(ί)]) ̂  c2,

where the constants c1 and c2 are chosen to be positive, because of (ii).
Now, from equation (£m) after some manipulations, we obtain that for every

and

where μι=c 1/c 2 and μ2 = l/c2. Obviously, 0<μ!^l and μ2>0, when, by con-
dition (C2), we have

= ±00.
r

Next, by applying Lemma 2, we get

lim(Difc)x)(i) = ±00
r-*oo

which implies

Iim(/>ί0)jc)(0= ±00.
f-*00

Indeed, we assume that /c>0 and we observe that for some 7\ ̂  Γ we have

J^ cXV) ^ 1, i.e. (/><*- ̂ '(ί) ̂  — j^- for every / ^ JΊ

or

for every t ^ Tl.

Hence, by integrating from 7\ to ί, it follows respectively

ds

or

and consequently, by condition
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= ±00.

Thus, following the same procedure, we finally obtain our assertion.
But this assertion is exactly a contradiction, since, by (iii), the function

D <0)x = r0x is bounded.

THEOREM 2. Consider the differential equation (Em) subject to the con-

ditions (i), (ii) and (iii). Moreover, let there exist a function p of the type r[0]
so that the conditions (C3) and (C4) below are satisfied :

(C3) J P(t)\b(f)\dt < oo,

(C4) Vp(i)a+(i)dt = oo 0m/ 1°°ρ(t)a~(t)dt < oo

\°°ρ(ί)α+(OΛ < oo and \°°ρ(t)a~(t)dt = oo.

Then for all bounded nonoscillatory solutions x of the differential equation

lim r0(ί)x(0 = 0.
ί-»oo

Note. Obviously, under the additional condition

(iv) Iiminfr0(0 > 0

we obtain that

limx(0 = 0

for all bounded nonoscillatory solutions x of (£m).

PROOF. Let x be a bounded nonoscillatory solution of (£w). As in the proof
of Theorem 1, we suppose that x is a solution on the whole interval [ί0, oo) and
positive on [ί0, oo).

If, by (i), T>tQ is chosen so that for every ί^ T,

then from equation (Em) we obtain
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for every t^.T. Because of (ii) and the boundedness of x, the function Fo(χoσ l 5...?

x°σm) is positive and bounded on [T, oo). Thus, by conditions (C3) and (C4),

the improper integral

exists in R* and consequently, by virtue of Lemma 2, the lim(Z)<0)jc)(0 also
r-»oo

exists in R*.

Now, we observe that conditions (C3) and (C4) imply condition (C2), when,

by applying Theorem 1 for /c = 0, we obtain

liminfx(0 = 0
r->oo

which, by (iii), gives

and finally lim(Dί0)x)(0 = 0, i. e.
r-»oo

lira r0(ί)x(0 = 0.
f->oθ

THEOREM 3. Consider the differential equation (J^),

(E,) (D^x)(t) + a(t)F(xlσm = b(t\ where σ = σ,

subject to the conditions (i), (ii), (iii) and

(vi) liminfr^ί) > 0.
r-»oo

Moreover, let there exist a function p of the type r[l] which satisfies condition

(C3) and the following one:

(C5) For some <5>0,

Ct+δ foo
l iminf\ ρ(s)a+(s)ds > 0 and \ ρ(f)a~(f)dt < oo

r->oo Jr J

fί+5 foo
liminΠ p(s)a~(s)ds > 0 and \ p(f)a+(i)dt < oo.

ί-»oo Jf J
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// the function σ is differentiable with bounded derivative on [f0, oo),
then for all bounded nonoscillatory solutions x of the differential equation

lim r0(ί)x(ί) = 0 = li
r-»oo r-»oo

PROOF. Let x be a bounded nonoscillatory solution on [ί0, oo) of the differ-
ential equation (£x) which is supposed positive on [ί0, oo).

From equation (Ej) we obtain

(1) \ p(s)(D(

r

n)x)(s)ds = \ p(s)b(s)ds—]

JT JT JT

for every t^T>t0, where Γ, as in the proof of Theorem 2, is chosen so that for
every ί^T,

Thus, since the function FO(XOCΓ) is positive and bounded on [T, oo), by conditions
(C3) and (C5), the improper integral

exists in R* and consequently, by virtue of Lemma 2, the \im(D(

r

1)x)(t) also
ί-»QO

exists in R*. Moreover,

(2) lim(Dί1)x)(ί) = 0.
f-»00

Indeed, in the opposite case there exists a positive constant M such that for some
T^Γwehave

(/><*>*)(/) ^ M, i.e. (Z><0);c)'(/) ^ -̂ - for every / ^ Γxr\(t)

or

for every / ^ Γ l β

Hence, by integrating from Tt to ί and taking into account condition (v), we

conclude that

= ±00,
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which is a contradiction, since, by (iii), the function D<0)x = r0x is bounded.
Also, it is noteworthy that

(3)
f

which immediately follows from

by virtue of (2) and condition (vi).
Now, it remains to prove that

(4) lim(D<0)x)(0 = 0.
ί-*oo

To do this, we observe that (v) implies condition (Cj) for fc=l, as well as (C3)
and (C5) imply condition (C2). Thus, applying Theorem 1 for fc=l, we obtain

liminfx(0 = 0
r-»oo

and consequently, because of (iii),

liminf(D<0)x)(0 = 0.
f-»oo

To complete the proof of (4), we have to verify that

limsup(D<0)x)(0 = 0.
ί-»oo

Indeed, in the opposite case we have

lim inf (D<0)x) [σ(ί)] = 0 and lim sup (D£0)x) [σ(ί)] ̂  K
ί-*oo ί-*oo

for some positive constant K. Hence, based on the arguments used by Hammett
[1] (cf. also Singh [5, 6]), we derive that there exist three sequences (αv), (j?v)
and (yv) with limαv= oo and such that for every v= 1, 2,...

<°>x) [σ(αv)] =

(Dί°>x)[α(0]>iX for every ίe(αv,j?v).

By mean-value theorem, we have
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and consequently

K

where obviously limξv=oo. Thus, because of (3) and the boundedness of σ'
we obtain

(5)

Next, we observe that for every v = 1, 2,...

(Dί0)x)[σO)]£iK for every ίe[αv,/ϊv]

and consequently, by (iii),

We have thus proved that the bounded function x°σ has a positive lower bound
on the set W*=ι[αv, j?v]. Hence, because of (ii), we have

F(x[σ(0]) ̂  M for every t e W^= t [αv, ]8V] ,

where the constant M is positive.
Obviously,

But, by virtue of (5) and condition (C5), we have

or

and consequently

oo or pta-tFx_σ)t = oo
T JT

Thus, from (1) it follows that

= ±00.
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Finally, by Lemma 2, we obtain

Km(D(

rVχ)(t) = ±00
ί-»oo

which contradicts (2).

Finally, we shall restrict our attention to the case where a is nonnegative.
For nonnegative α, Kusano and Onose [2, 3] have considered the cases

(vii)

and

(viii)

and they established conditions under which for all nonoscillatory solutions x
of the differential equation (E^) with r0 = 1,

lim x(0 = 0.
f-»oo

The results of Kusano and Onose [2, Theorem 3 3, Theorem 3] can easily gener-
alized for the differential equation (£m). More precisely, we have the following
two theorems.

THEOREM 4. Consider the differential equation (£m) subject to the con-
ditions (i), (ii), (iii), (iv), (vii) and:

(C6) The function a is nonnegative and such that

S ao
a(t)dt = oo.

(C7) liminf F(yi9 y2,..., yj > 0 and limsup F(yi9 y2,...9 ym) < 0.
y f-^oo ^(-+-00

i=l,2 ..... m i=l,2,. . . ,m

(Cβ) "p(0|6(0|dί < oo,

Then for all nonoscillatory solutions x of the differential equation

limx(ί) = 0.
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PROOF. Let Λ; be a nonoscillatory solution on [f0, oo) of the equation (Em)

which is supposed positive on [f0, oo).
From equation (Em) we obtain

for every t^T>tQ, where T is chosen as in the proof of Theorem 2. Thus,

because of (ii) and (C8), the improper integral

T

exists in R* and consequently, by Lemma 2, so does also the lim(£)<0)x)(f).
ί-»OO

Now, we assume that lim(Dί0)x)(ί)=oo, when, by (iii),
ί->00

So, by (ii) and condition (C7), the function F°(χo<τlv.., χoσm) has a positive lower

bound and consequently, by condition (C6),

From equation (£m) we have

But obviously, because of (C8),

Hence,

lim (/)<»- ̂ xXO = -oo

from which, by taking into account (vii) and following the same arguments as

in the proof of Theorem 1, we derive the contradiction

= -oo.

Thus, we have just proved that lim(D£0);c)(0 is finite and consequently, by
f<-00

(iv), the solution x = (D£0)x/r0) must be bounded.
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Finally, we note that p = φ0itl_ 15 where the function φ0,n- 1 *s given in the first
example of section 2. So, p is of the type r[0] and hence the theorem follows
now immediately from Theorem 2.

THEOREM 5. Consider the differential equation (Em) subject to the con-

ditions (i), (ii), (iii), (iv), (viii) and:

(C9)

(C10) The function a is nonnegative and such that

^p(t)a(ί)dt = oo,

where

COD 1 Γoo 1 foo 1

P« = r * Λ 7—77—7- -jUr«frι «fr.-2<fr.-ι.Jt / / l_ 1( 4yn_ 1; jSn_ί rn-.2(sn-ι) Js2^ι(^ι)

Then for all nonoscillatory solutions x of the differential equation (Em),

limx(0 = 0.
ί->00

PROOF. Let x be again a nonoscillatory solution on [f0, oo) of the equation

(Em) which is supposed positive on [ί0, oo).
From equation (Em) we have

(Dί-'^xXO = (D^-^xHT) - (' α(5)F(x[σι(S)],..., x[σm(s)])^ + (' b(s)ds
J T J T

for every t^.T>tθ9 where T is chosen as in the proof of Theorem 2. Thus,
because of (ii) and (C9), for some constant Mπ_1 and every t^. T9

By integrating from Γto t and taking into account (viii), we obtain that for every

^ Mn.2.

Thus, following this procedure we finally obtain that D(

r°^x = r0x is bounded and
because of (iv), the solution x is also bounded.

Furthermore we note that p = χ0, where the function χ0 is given in the second
example of section 2. So, p is of the type r[0] and hence the theorem follows

from Theorem 2.
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4. Applications

We shall now clarify the importance of the main results by applying them
in the particular case where for some integer N, l^N^n — 1, we have

Γj = 1 for j Φ n — N and rn__N = r.

More precisely, we shall give below some corollaries concerning the differential
equation

(£U) [KO*(w-"KO](N) + 4θn*[̂ «],.. , x[σm(ί)]) = b(t\ t ̂  tQ.

All these corollaries are new, except Corollary 1 which slightly improves a recent
result due to Staikos and Sficas [7].

The three first corollaries follow from Theorem 1.

COROLLARY 1. Consider the differential equation (DmN) subject to the

conditions (i), (ii) and

dt

Moreover, let there exist a real number T and an integer fc, O^k^N— 1, such
that for every μi9 μ2 vviί/ί 0<μ1gl and μ2>0,

= oo

or

Then for all bounded solutions x of the differential equation (DmN)9

liminf|x(OI =0.
ί-»oo

PROOF. Without loss of generality, we assume that t0 ̂  Γ. It is easy to see
then that the function p,

is of the type r\n — 1 — fe]. Thus, the corollary follows by applying Theorem 1
with n — 1 — k in place of fc.

COROLLARY 2. Consider the differential equation (DmN) subject to the con-
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ditions (i) and (ii). Moreover, let there exist an integer k, 0^/crgn — JV—1,

such that

S ao +n-N-l-k
1—ϊ-.—dt= oo

r(t)

and for every μί9 μ2 with 0<jUx ^1 and μ2>0,

γpM[μ1a+(t)-a-(t)-μ2\b(t)\]dt = o o -

— / }n-N-l-k

- .
r\s)

Then for all bounded solutions x of the differential equation (DmN)9

liminf |x(ί)| = 0.
ί->00

PROOF. By Theorem 1, it suffices to verify that pk is of the type r[k],
Indeed, in the case considered here the function φ k > n_ι, given in the first example
of Section 2, is of the form cpk, where c is a positive constant.

COROLLARY 3. Consider the differential equation (DmN) subject to the

conditions (i) and (ii). Moreover, let there exist an integer fc, O ^ k r g n — JV— 1,

such that:

o fn-N-ί-k

___ Λ <co;

(J5) IfN>l, then for every j= 1, 2,...,JV-1

Γί . Γ°° fu — f Λn-N-l-k
l i m \ (ί-^y-M l" rQ\ - rfwrfj ex/5/j i/i {0, 00}
ί-ooj ί o

v Js r(u)

and
(7) For βf^ry μί9 μ2 with 0<μ1gl αnrf μ2>Q,

or
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^Pk(t)[μ1a-(t)-a+(t)-μ2\b(t)\'ldt = oo,

where

foo f c _ / \n-2-k
s9 if N = I

Ct foo f , y _ / Λn-N-l-k

\ (t-s)N~2\ (U ίo; , duds, if N>1.
Jto Js r\u)

Then for all bounded solutions x of the differential equation (DmN),

liminf|x(OI = 0.
ί-*oo

PROOF. Obviously,

{ φk9 if N = 1r «,

ω^.i, if N>1,

where ι f̂c and ωk^-\ are the functions given in the third and fourth example of
Section 2. Thus, the function pk is of the type r[/c] and consequently the corollary
follows immediately from Theorem 1.

Kusano and Onose have recently obtained some results [2, Theorems 1 and
2; 3, Theorems 1 and 2] included in Theorem 2. This is exactly the case m = l

and p = φ0tll-ί or p = χQ, where the functions φ0,«-ι and XQ are given in the first
and second example of Section 2. From the above mentioned results of Kusano
and Onose only those in [2] can be applied for the equation (DίN), when the con-
dition

foo fn—N— 1

$V-Λ = o o ;

must be valid. In the opposite case, however, our Theorem 2 can applied suc-
cessfully for the differential equation (DmN). More precisely we have the follow-
ing corollary.

COROLLARY 4. Consider the differential equation (DmN) subject to the con-

ditions (i), (ii) and:

08) IfN>l, then for every y = l, 2,..., AΓ-1

f* foo /',,_/ Λw-ΛT-1

lim \ (ί - j)>-! \ ^ r,°\ </«rfj ex/sίί /« {0, oo}
ί-»oo Jlo Js A (.MJ
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and

ω

and either

or

where
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< oo

\°° ρ0(t)a+(t)dt = oo and \°° ρQ(i)a-(f)dt < oo

ΓpoίOfl+ίOΛ pQ(i)a-(i)dt = oo,

PoW =

Jfo Js Kw)

Then for all bounded nonoscillatory solutions x of the differential equation

PROOF. It is obvious, since the function

Po =

if Λ Γ = 1

If N>ί

is of the type r[0].
The following corollaries 5, 6 and 7 follow from Theorem 3.

COROLLARY 5. Consider the differential equation Φι,π-ι),

subject to the conditions (i), (ii) and:

(α) l°°- r̂ = °° and

J /"(ίj

GO
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(y) For some <5 > 0,

Γt+δ Λoo
l iminf\ s"~2a+(s)ds > 0 and \ tn~2a-(t)dt < oo

ί-*αo Jί J

or

Γt+δ foo
l iminf\ s"-2α-(s)ds > 0 and \ ίn-2a+(t)dt < oo.

ί-*QO Jί J

// fne function σ is differentiable with bounded derivative on [ί0, oo),

then for all bounded nonoscillatory solutions x of the differential equation

limx(ί) = 0 = \im(r(t)x(t))' .
ί->00 f-KX>

PROOF. It follows immediately from Theorem 3 applied for the function

P>

which is of the type r[l].

COROLLARY 6. Consider the differential equation (DIN) with N<n — 1,

(DίN) [r(Ox(^>(0]w + α(ί)F(x[σ(0]) = fe(0, where σ = σ,

subject to the conditions (i), (ii) and:

(.)

(β) ^Pl(t)\b(t)\dt < oo

and for some δ>0 either

Γt+δ foo
l iminf\ p^a+φds > 0 and \ p^a^^dt < oo

f-KJO Jί J

Γt+δ Γao
l iminf\ p1(s)a~(s)ds > 0 and \ p^Oa+ίOdί < oo,

ί-*oo Jf J

where

= f .a-^-y <0)^a ̂
Jίo ^w/
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// the function σ is differentiable with bounded derivative on [ί0> °o),
then for all bounded nonoscillatory solutions x of the differential equation

(D1N),

limx(ί) = 0 = limx'(ί)
f->oo f->oθ

PROOF. As it is remarked in the proof of Corollary 2, the function p^
is of the type r[l], and so the corollary follows from Theorem 3.

COROLLARY 7. Consider the differential equation (D1N), N<n-l, subject
to the conditions (i), (ii) and:

(β) If N> 1, then for every j '=1,2,..., N -1

Ct foo (u—.t \n-N-2
l im\ (t-s)'-Λ (u 7\ - rfurfί βx/Λ* /« {0, 00}
f->oo Jίo Js ^(WJ

ω

and for some δ>Q either

Γt+δ (*oo
l iminf\ pί(s)a+(s)ds > 0 and \ ρl(t)a^(t)dt < oo

ί-»oo Jί J

fί+ί foo
liminΠ p1(s)a~(s)ds > 0 and \ p^Oa^Odί < oo,

r-»oo Jί J

$00 r o _ / Λn-3
,̂ — *. // Λ Γ - 1

5ί TOO (u — f \n-N-2
(ί-s)N-2\ (u *?\ - duds, if N>1.

to Js r(u) J

If the function a is differentiable with bounded derivative on [f0> oo)>
then for all bounded nonoscillatory solutions x of the differential equation

limx(ί) = 0 = limx'(ί)
f-»oo f-»oo
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PROOF. It is obvious, since the function

ψί9 if TV = 1

is of the type r[l].

Pi = .
co 1 > N_ l 5 if N > 1
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