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§ 1. Introduction

Homogenization of diffusion processes in Rn has been investigated by Ben-
soussan, Lions and Papanicolaou [1] and Bensoussan [2]. The purpose of this
paper is to remark that some of their methods can also be adapted to a similar
problem for certain one-dimensional discontinuous Markov processes in which
the limit process yields a stable process.

Let y+, y_ and α be constants such that y+, y_ ^ 0, y+ + y~ > 0 and 1 < α < 2.
Suppose we are given a(x, y) and b(x)9 and consider the operator A^ defined by

(1.1) AJ(x) = \ (f(x + y) -f(x) -f(x)y}a(x, y)v(y) dy + b(x)f'(x)
J — ao

for smooth functions /, where

y+/y"+i,
(1.2)

We make the following assumptions for the coefficients a(x, y) and b(x).

(1.3a) a(x9 y) is a non-negative bounded C^-function on R2 with a(x, 0)>0,
and is a periodic function of x with period 1 for fixed y.

(1.3b) b(x) is a real valued periodic continuous function on R with period 1.

Under the above assumptions there exists a Markov process {^(t)} governed
by Al and having almost all sample paths in W, the space of real valued right
continuous functions on R+ = [0, oo) with left limits. W is equiped with the
Skorohod topology. Then our problem is this: Under suitable conditions on
a(x9 y) and b(x) does the process, after the scalings t-+t/ε* and x-+εx, converge
in the law sense to some process as ε I 0? So we are interested in the Markov
process with generator Aε9 ε > 0, given by

(1.4) AJ'(x) = {/(* +y) -f(x) -f'(x)y}a(
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for smooth functions. We denote by P* the probability measure on W for the

Markov process starting at x and governed by AB. Then the problem is also

stated as follows. Under what conditions on a(x, y) and b(x) does P* converge

to some probability measure PQ in Was ε J, 0?
We think of {Xλ (/), / ̂  0} as a Markov process on the one-dimensional

torus T = R/Z9 denote by tn(dx) the (unique) invariant probability measure of

the process and introduce the following conditions.

(1.5) There exist the limits: ά± = lim ;"1 \ α(z)dz, where
y-»±QO Jθ

ά(y) = \ α(x, y)m(dx).
Jo

(1.6)

Then our main result is that, under the conditions (1.3), (1.5) and (1.6), P*

converges to P g as ε 4 0 where Pg denotes the probability measure on W for the
stable process with generator given by

(1.7) LO/W = α+("{f(x + y) - f(x) - f(x)y}v(y)dy
Jo

+ α_ί° { f ( x + y) -f(x) -f'(X)y}v(y)dy.
J-oo

§ 2. Some properties of the Markov process governed by A 1

In this section we find an invariant measure m( ) of the Markov process

(X^t)} when considered on the torus T, and then seek a periodic solution of
Γ 1

— Aίu=f for a periodic / with \ fdm = 0. We introduce several spaces of
Jo

functions.

C0(R) =the space of real valued continuous functions on R vanishing at
infinity.

C§(R) =the space of functions /eC0(JR) such that/ and/' exist and be-

long to C0(Λ).
Ctl(R) =the space of real valued, bounded and uniformly continuous func-

tions on R.

B(R) =the space of real valued functions on R, bounded and Borel meas-
urable.

Similar notations for the spaces of functions on R2 are used, and the supremum

norm of a function in any one of these spaces is denoted by || || . We also write
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= d/dx.

Given v(y) as in (1.2), we consider the operaor L defined by

Lf(x) =

for smooth functions. The transition density p(t, x, y) of the stable process

governed by L is given by

(2.1a) p(ί, x, y) =/?(/, y-x)

(2.1b) p(t, x) = 4-

where c0 = - (y+ + y_)Γ(2 - α) cos(πα/2)/α(α - 1) > 0 and h = (y+ - y_) tan(πα/2)/

(y+ + y_). The associated semigroup and the Green operator are defined for

feB(R) by

= Γ f(y)p(t, y - x)<*y, &f(x) = \"e-"S'f(x)A9 1 > 0, λ> 0 .
J-oo JO

We also consider the space-time forms of these operators which will be denoted
by the corresponding German letters :

(5'fO, jc) = S'fO + /, A:), ©Λί(.y, jc) = -AfSff(j. x)dt, A>0,
Jo

If we consider {8'} on the space C0(JR2), then it is a strongly continuous semi-

group; we denote by £ the generator of this semigroup. Obviously ^(£) =5

Cg(JR2) and £f = (d + L)f for feCg(l?2). The following lemma can be easily

proved by making use of Dnp(t, x) = D"p( l,r1/βJc)r(B+1 )/α, |/)Λ/?(1, Λ:)|

x |Λ:|~ ( 2 + I I ), «^0 (similar results are also found in [8]).

LEMMA 1 . (i) For any f e B(R2), Z>(SAf exists and is given by

ZHB'f (j, *) = - ^Aίf (j + /, y)Dp(t, y-x) dtdy ,
Jo J-oo

from which it follows that

(2.2) n / M B ^ f i i gc^-c-1)/-!!/!!, ^ =r(ι -4-)Γ
\ α /J-oo

(ii) For Λ«J j? satisfying 0 < j5 < α — 1 /λe/ e e^w/^ Λ constant c2 depending only on

α and β such that

, x,) - DWtts, jc2)| ̂
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Given a(x, y) and b(x) satisfying (1.3), we consider the operator Aί defined
by (1.1) for smooth functions. The existence of the Markov process governed
by A1 is essentially known; in fact it can be constructed by a routine method.
But we sketch the construction here because we want to have some further
results such as Proposition 3.

First we construct the Markov process governed by

{/(* 4- y) -f(x) -f(x)y}ao(x, y)v(y)dy +
o

where a0(x9 y)=a(x, y)/a(x9 0) and b0(x) = b(x)/a(x, 0). We put

Λf(x) = " {f(x + y) -f(x)-f(x)y}al(x9 y)v(y)dy + b0(x)f(x),

If ue^(£) and so if u = ©λf, feC0(JR2), then Z>ιιeC0(R2) by Lemma 1
and hence ylueC0(JR2), admitting the following estimate by virtue of
(2.2):

(2.3)

°°
, y)\v(y)dy .

Thus we can define 91 on ^(fi) by 9lιι = fiu + Λu for ιιe^(fi). If λ is suffi-
ciently large, then ||/1(5A||<1 by (2.3) and hence u = <5λ(7- Λ^λ)~^ gives us
the unique solution in ^(2l) = ̂ (£) of the equation (λ-SI)u = f, f eC0(«2).
Again by (2.3) we see that 91 is the smallest closed extension of the operator
d + A restricted on Cg(R2). Then it follows that 91 has the strong negative
property, that is, f e^(9l) and f(s0 ? *o) =max f(^, x) >0 imply that 9ϊfCs0» ^o)

(S,X)6«2

<0, because d + A has the same property in Cg(R2) (for example, see [6]).
Therefore there exists a unique strongly continuous sub-Markov semigroup
{£'} on C0(R2) with generator 91. Clearly, {X*} is associated with the unique
strongly continuous sub-Markov semigroup {T*} on C0(R) in such a way that
Zt(s,x) = T*^(x) where /(;c) = f(,y+f, Λ;). The associated Markov process
X= { W> w(/), PX

9 xeR} is nothing but the one governed by A.
As in [7] we can prove that X has the strong Feller property. Denote by

P(ί, x9>) the transition function of the process X and put

O

Then for all sufficiently large λ,

(2.4) ΛΛf
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In fact this follows from the following two remarks: (a) (2.4) holds for f eC0

(R2), and (b) if {fw}J=ι is a uniformly bounded sequence of functions in
B(R2) converging pointwisely to f, then using Lemma 1 we can prove that

Λ Λ f π a n d Gλ(I-Λ(Sλ)"^n converge pointwisely to Λλf and ©A(7- A®λ)~ll
respectively, as «->oo. Putting f Ξ = l in (2.4), we obtain Λ λ l = l/λ which
means that X is conservative. If we put

g(s, x) — \ ——-%[Q)t-\(s)eλsf(y)P(t — s9 x9 dy)9 J
J-oo *

then

\°° f(y)P(t9 x9 dy) = Λλg(0, x) = (5λ(/ - yKδ^gίO, c),
J —αo

provided that λ is sufficiently large. This formula implies the strong Feller
property of X since the last member of the above is continuous in x by (ii)
of Lemma 1. {Γr} is also a strongly continuous semigroup on the space Cu

(R) we denote by A the generator of this semigroup. Then by Lemma 1 the
domain &u of A is contained in C*(R), the space of functions belonging to
CU(R) together with their first derivatives.

Now the Markov process X t governed by Aί is obtained from X={Ψ9

w(/), PX

9 xeR} by making time substitution /-»τ(f), where τ is the inverse

function of \ ds/a(w(s)9 0). Since a(x9 y) and b(x) are periodic functions of x
Jo ^

with period 1 for each fixed y9 both X andX x induce the Markov processes X

and Xί on the torus T respectively in the natural way. For example, X has
the transition function P(t9 x, ) given by P(t, x, U) = P(t9 x, U)9 U={yeR9

y + neU for some n in Z}.

LEMMA 2. P(t9 x U) is strictly positive for any />0, xeT and non-empty
open set U in T.

PROOF. We may assume that y+>0. For open sets U and V in R, we
write U-^> V when P(s9 x9 F)>0 for any s e(0, f] and xeί/. Then, U^ -t->
C/2_L_>C/3 clearly implies U^ -ί±±>U3. For U=(a9 b) and V=(c9 d)9 we write
U<V whena<b<c<d. We also write U^V when U<V and d—a <δ9 where
δ is a fixed positive constant such that a0(x9 y)> 1/2 holds for any ye( — δ9δ).
First we claim that ί/oF implies that U—l-*V for some positive /. In fact, if
/ is a non-negative C°°-function on R such that supp (/) <= the closure of V and

^ 1 on V9 then

i 0,

f(z)dz > 0,
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which implies that U— ̂ Ffor some />0 since the above convergence is uniform
in x. Next, assume thai U<V and the both lengths of U and V are less than
δ. Then we can find open intervals Ul9...9Un such that U^U^ ^aU^V,

and hence U 1Q >Uλ

 tl >••• tn >V for some positive /0, , /„. Therefore, if

U< V and if both lengths of U and V are less than δ, then U—t-+ V for some
/>0. In terms of the process on T this result can now be stated as follows:
with self-evident notation, if 0 and V are open intervals in T of lengths less than
5, then tf-U f for some />0. From £7-U F -̂ -> 0-JU ---- U y, we have
jg/ιf+(n-ι)s f/ for some ^ ̂  >Q and for any integer n^ 1. This clearly proves the

lemma.

Since X has the strong Feller property, it has the same property in the
strict sense by a theorem of Mokobodzki ([5]). This combined with Lemma 2

implies that there exist a unique invariant probability measure w0( ) of X and
positive constants c4 and c5 such that

(2.5) || T'/- m0(/)|| ^ c4*-"'||/||, / > 0, feB(T)9

where 7w0(/)=\ 7^w0 (see [9]). It then follows that m(dx) = cm0(dx)l
JT

a(x, 0) with c={\ m0(dx)la(x, 0)}~l is the unique invariant probability
JT

measure for X l 9 and we finally obtain the following proposition.

PROPOSITION 3. (i) There exists a unique invariant probability measure

(ii) If / is a periodic continuous function on R with period 1 and satisfying
Γ i foo
I fdm = Q, then u = \ Tt(f/a( , Q))dt exists, belongs to ^M(<= Cl

u (R)) and is a
Jo Jo
periodic solution of — Alu =/, or more precisely, of — a( , Q)A u =/.

§ 3. The main theorem and the proof

Given a(x, y) and b(x) satisfying (1.3), we consider the operator Aε defined
by (1.4) for each ε>0. By the preceeding section there exists a Markov process
Xe governed by Aε. Denote by P£ the probability measure on the path space
W induced by this process starting at x.

THEOREM. In addition to (1.3), we assume that (1.5) and (1.6) are satisfied.
Then, Pf converges to Pg as ε 4 0, where Pg is the probability measure on W of the
stable process governed byLQof(l.l) and starting at x.

We prove this theorem by making use of the calculus of stochastic integrals
as in [1] and [2]. For each ε>0 and xeR the path functions of the process
Xε starting at x can be constructed on a suitable probability space as a solution
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Xε(ί) of the stochastic integral equation (3.1) below. More precisely, on
a suitable probability space (Ω, "̂, P) with an increasing family {«F f} f£0 of
sub-σ-fields we can find (i) an {J5*,}-adapted Poisson random measure N(dtdy)
on R+ x R with characteristic measure dtv(y)dy, and (ii) an {.̂ -adapted right
continuous process {Xε(t)} on R with left limits, in such a way that

(3.1) *.(/) = x + ε
oJ-oo

holds with probability one, where M(dsdy) = N(dsdy) — dsv(y)dy and σ(jc,
is defined by

i n f { / > 0 : \ v(z)dz > \ a(x, z)v(z)dz} fory > 0,
Jy Jy'

(3.2) σ(x, y) =
(y (V

sup{/ < 0: \ v(z)ί/z > \ Λ(Λ:, z)v(z)rfz} for y < 0.
J —00 J—00

The condition (1.3a) implies that σ(x9y) is a periodic function in x with period
1 and |σ(;c, 7) | ^const. \ y \ . It is remarked that (Ω, ̂ , P; J^,) and N(dtdy)
may depend upon ε.

LEMMA 4. For eαc/z Λ: the family {P*, 0<εg 1} of probability measures on
the space W is tight.

PROOF. For δ>0 and n^. 1 we put

γ n

δ(Xε) = sup max sup | Xε(s) - Xε(t) \ ,

i^n

0(Xs) = inf max sup | Xε(s) - Xε(t) \ ,

where both the supremum and the infimum are taken over all partitions Δ of

[0, Λ]: 0 = / 0 <^ι< <^ = « such that δ</ ί-/ ί^1^2δ, 1^/^r . Then, by
Theorem 15.2 in [3] it is enough to prove that the following tightness criterion

is satisfied

( (a) lim sup P{ sup \Xε(t)\ > 1} » 0 for any n ^ 1,
ί-*oo 0<ε<, 1 0 £ f < n

(3.3)
I (b) lim sup P{Wn

δ(Xε) > η} = 0 for any Λ ^ 1 and fy > 0 .
δiO 0<ε^l

By (1.5) and Proposition 3 there exists a periodic solution φ(x)e&u of -A^φ
= b. We put Yε(t) = Xε(ί) + εφ(ε-iXε(t)) and then apply the transformation
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formula of stochastic integrals"0 to obtain

(3.4) Yε(t) = Xε(t) + εφ(ε~ίx)

Σ
sgr

= x
(f COD

εφ(ε~ίx) + ε \ \ σεM(dsdy)
JoJ-oo

ε
JoJ-oo

+ βf (" {vίβ-'AΓ.ίJ-) + σ.) -
JoJ-oo

- φ'(ε~lXε(s-))σε}M(dsdy) + ε

.
oJ-oo

= x
Γί ("00

\ \ ρ(ε, s, v)M(dsdy) ,
JO J-oo

where σε = σ(εr1XΛ(s — )9 ε~ly) and p(ε9l,.y). is an- {^"J -predictable process
defined by

ρ(ε, /, y) = σ^ε, /, j) -f p2(ε, /, >^),

PiCε, t, y) = εσίε

The condition (1.3a) implies that | σ(jc, y) \ ̂ const. \y\ and hence

(3.5) \p(*,'t,y)\, \Pι(*,*,y)\

Therefore we have

*) Usually the transformation formula is valid for a C2-function φ. The present case in

which φ^$u ( cQ(Λ)) can be treated by approximating φ by smooth functions if
necessary.
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P{ sup I ΛΓ.(/)| >/}
O S r g n

ίP{ sup | p(ε,s,y)M(dsdy)\>l-\x\- 2\\φ\\}
0£r£/ι JO J-oo

^ E{\\" C° p(εt s,y)M(dSdy)\}l(I - \x\ - 2\\φ\\)
JO J-oo

isi lp(ε' ̂ I'̂ ow'2

ί |p(β, ί,^)|Λv(y)<J>}Ί/(/ - |x| - 2|MI)
J|y|>l J

<> const. nl(l-\x\-2\\φ\\),

which proves (a) of (3.3). Next for θ > 0 we define

and also Zε(ί), Z*1'^), Z<2)C), Z<3)(/) similarly using p instead of p t . Take
ε0 > 0 and fix it for a while. For εSΐ ε0 we use (3. 1) to obtain

and hence

(3.6) P{ir»ί(Xε)>η} g /'{iTjίZΊ'.ί) > »/'} + JP{^χ(Z(,3j) > ι,/2}

where c5 = 4c4(2-α)-1/2(y+ + y_) 1 / 2 and

OJ\γ\>6

\y\>β

\y\N(dsdy)
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For 0<ε<ε0 we use (5.4) to obtain

2ε0\\φ\\ ,

and hence as in (3.6) we have

(3.7) />{*!(*.) > η} £ />{7Π(Z(1)) > η"} + C5η^(nθ2'^f2 ,

where η"^2-lη-2{c4δ( \y\v(y)dy + ε0 | |φ||}. Now, (A) of (3.3) follows
J\y\>θ

from (3.6) and (3.7). The proof is finished.

LEMMA 5 . For any C^-f unction f with compact support and Q^s<t we have

E{f(Xε(t)) | &s} - f(Xε(s)) = E L0f(Xε(τ))dτ | + o(l) ,

where o(l) means that the expectation of its absolute value tends to 0 with ε

uniformly in s and t on each finite interval.

PROOF. We use the same notations as in the proof of Lemma 4. For a
C°°-f unction /with compact support and for 0^5- <t we have from (3.4)

p = ρ(ε, τ, y) ,

and hence

E{f(Xε(t))\Ps}-f(Xε(s))

o(\)

Pi) -f(XM) -f'(XM)Pι}dτv(y)dy\

+ o(l) 4- the remainder term, p j = p^ε, τ, j) .

Writing the remainder term explicitly and noting that / is smooth enough, we
can see that the remainder term is also o(l) as ε J, 0. Thus we can write
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(3.8)

where

9(ξ, if) = (* if(η+y) -/(if) -./'
J-oo

Since \ gf(ξ, η)m(dξ) = Q, the function ^ defined by
Jo

, η) = (0M , 0))Λ, ^( ) = g ( , i,),
Jo

satisfies — Alφ( , η) = g( , η) for each f; by Proposition 3. Since /is a C^-func-
tion with compact support, the function ψ(ξ, η) has enough smoothness property
so that we can apply the transformation formula of stochastic integrals to
\l/(e~lXe(t), Xe(t)), and we have

(3.9)

+ ε- Vi, AΓ.(τ) + p,)

The last term of the above is equal to
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which yields 0(1) as ε | 0 after elementary calculations. Therefore, from (3.9)
we have

.Ff= 0(1), ε J O ,

which combined with (3.8) yields

&s} -f(X&(s))

(f(Xε(τ) + y) -f(Xε(τ))

Here we have used the assumption (1.5). The proof is finished.
The proof of the theorem is now completed as follows. If &s denotes the

coordinate σ-fieldsσ{w(τ): τ^} in W, then Lemma 5 states that for any C°°-
function / with compact support and for Q'^

Then, for Q^s<sί<ί<tl and a ^s-measurable bounded continuous function
Φ(u>) on W we have

(3.10)

= E* (/j -

Suppose that P£ converges to some limit Pg as ε | 0 via a subsequence ε1 >ε2 >
•••40. In (3.10) we make first ε 1 0 via this subsequence and then sl I s 9 t1 It.
Then the result yields

O/W(T))</T I ̂ s , a. s. ,

and hence Pg must be the measure of the stable process governed by L0 as was
to be proved.
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Here is an example in which (1.6) is satisfied. Assume that y+ = y_>0,
a(x9y)=a(l-x, -y} and b(x)= -6(1 -x). Then, (Γ\ *)(*) = -(T\b)(l -x)
and so (1.6) is satisfied.
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