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Introduction

Let N={X, Y, K, r} be an infinite network which is connected and locally
finite and which has no self-loop (cf. [5]) and let A and B be mutually disjoint
nonempty finite subsets of X. Denote by Q, p the set of all cuts between A
and B and put QY3 ={0€Q,p; Q is a finite set}. Let W be a non-negative
function on Y and consider the following two min-cut problems on N:

(D) Find M*(W;QA,B)=inf{%:W(y);QeQA,B}'
an Find M*(W;Q‘A’,E)=inf{§W(y);Q€Q(Af,}z .

Then M*(W; Q, ) SM*(W; QY}) and the equality does not hold in general.
In order to give a sufficient condition for the equality, we shall consider the
following min-cut problem on N relative to a nonempty finite subset F of X and
the ideal boundary o of N:

(111 Find M*(W; Q) = inf{g‘.W(y); 0€Qrw}>

where Qr,,, is the set of all cuts between F and co.

We shall prove that M*(W; Q,5)=M*(W; Q{}) holds if M*(W; Qo)
=0 for all nonempty finite subsets F of X. By the aid of this result, we shall
generalize in §2 the elegant theorem in finite network theory which states that
max-flow equals min-cut (cf. [2]) to an infinite network.

Throughout this paper, let p and g be positive numbers such that 1/p+1/q
=1 and 1<p<o. For notation and terminology, we mainly follow [5].

§1. Min-cut problems

Let L(Y) be the set of all real functions on Y. For we L(Y), its energy H (w)
of order q is defined by

H,(w) =3 r(y)lw(y)|e.

yeY

For the later use, let us put
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L*(Y) = {weL(Y); w(y) 2 O on Y},
Li(Y) = {we L*(Y); yZY w(y) < oo},
L(Y;r) ={weL(Y); H(w) < 0},

Li(Y; r) = {we L*(Y); H(w) < 0}.

Let us recall the definition of cuts. Let A and B be mutually disjoint. non-
empty finite subsets of X. We say that a subset Q of Yis a cut between A and
B if there exist mutually disjoint subsets Q(A) and Q(B) of X such that 4 <= Q(A),
B<Q(B), X =Q(A) U Q(B) and the set '

Q(A) © Q(B) = {ye Y; e(y) N Q(A4) # @ and e(y) n Q(B) # B}

is equal to Q, where e(y)={xe X; K(x, y)#0} and @ denotes the empty set.

We say that a subset Q of Y is a cut between a nonempty finite subset F of
X and the ideal boundary oo of N if there exist mutually disjoint nonempty subsets
Q(F) and Q(0) of X such that F< Q(F), X=Q(F) U Q(c0), Q(F) is a finite set and
Q=0(F)©Q(x).

DEFINITION. We say that WeL*(Y) satisfies condition (oc0) if M*(W;
Qr..)=0 for all nonempty finite subsets F of X.
First we shall prove

THEOREM 1. Let We L*(Y). Then W satisfies condition (o) if and only
if there exists an exhaustion {<X,, Y,>} of N such that
(E) ll___,m ZW()’) =0 With Zn = Yn - Yn—l (YO = 0)
n—-o© Z,
Proor. First we assume that there exists an exhaustion {<X,, Y,>} of
N such that the relation (E) holds. Let F be a nonempty finite subset of X. For

each n such that Fc X, _, there exists Q,€ Qp ., such that Q,=Z,. It follows
that

0= M*W; Qr.) £ lim 3 W(y) =0.

Next we assume that W satisfies condition (c0). Take a. finite subnetwork <X,
Y, > of N. Since M¥(W; Qy,,,) =0 by our assumption, we can find Q, € Qy, o,
such that 3 W(y)<2~!. We define a subset X’| of X as follows: x € X if and

only if thel%l exists a path from X, to {x} which does not intersect Q, (cf. [4] for
the definition of a path). Set X,=X,UX) and let Y,={yeY; e(y)=X,}.
Then Y,cVY, and <X,, Y,> is a finite subnetwork of N. Let Q,=0Q,(X))
©Q;() and put Q1 (X,)=X, and Q(0)=X—X,. Itisclear that Q) =01(X,)
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©01(0)eQy, . - We-show that Q' <=Q,. Let yeQ} and e(y)={a, b} with
aeX, and be X—X,. Since X,<=Q,(X,), it suffices to show that be Q,(o0).
Suppose that be Q,(X,;). In case ae X,, we see easily that be X}, which is a
contradiction. In case a € X', there exists a path P from X, to {a} which does
not intersect Q,. Let P be the path from X, to {b} which is generated by P
and {y}. Since y¢Q,, we see that P does not intersect Q,, and hence be X
< X,. This is again a contradiction. Therefore Q| =Q,. Let us define finite
subnetworks <X3, Y;> and <X,, Y,> of N by

Y; ={yeY; K(x, y) # 0 for some xe X;_,},
()
X;={xeX; K(x, y) # 0 for some ye Y;}

fori=3,4. Wehave Q,=Y;—Y,and Y W(y)<2~1. By repeating this process,
Q'
we obtain a sequence {<X,, Y,>} of finite subnetworks of N such that Y;,_,
<Y1, Q1 =Y3,— V3,1 €Qx,. .00 2 W(¥)<27" and the relation () holds for
Qn

i=3n,3n+1(n=1,2,...). Consider a subsequence {<X,, Y,>} of  {<X,,
Yn>} defined by ‘YZn—1=X3n—1a ?271-1=Y3n—1’ X2n=X3m Y2n=Y3n for n=1,
2,.... It is easily seen that {<X,, Y,>} is an exhaustion of N such that Z,,
=Y,,-Y,,-,=0Q, and ZZ W(y)<27". Thus the relation (E) holds.

2n

CoRrOLLARY. If We L{(Y), then W satisfies condition (o0).

THEOREM 2. Assume that W(y)>0 on Y. Then W satisfies condition (o0)
if and only if there exists a nonempty finite subset F of X such that MX(W ; Qf, ;)
=0.

Proor. It suffices to show the “‘if”” part. Let F’ be a nonempty finite sub-
set of X. Take a finite subnetwork <X’, Y'> of N such that FU F'< X’ and let
go=min {W(y); ye Y'}. For any e such that 0<e<g,, there exists Qe Qy ,
such that Y W(y)<e. Let Q=Q(F)©Q(w). Then F'cX'cQ(F), so that
0eQp anQd M*(W; Qp )<t Thus M¥(W; Qp. ,)=0 and W satisfies
condition (0).

We have

LemmA 1. Assume that N-is of parabolic type of order p. If WeL}(Y;
r), then W satisfies condition (o).

Proor. Define VeL(Y)- by V(y)=W(y)!/®=1. Then H,(V)=H/(W)
‘< 00.. - On account of Corollary 2 of Theorem 4.1 in [5], we have M*(W; Q. ,,)
=M*(VP~1; Qf,.,) =0 for all nonempty finite subsets F of X.

Now we shall prove
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THEOREM 3. If WeL*(Y) satisfies condition (o), then M*(W; Q)
=M*(W; Q%)

ProoF. We have only to show that M*(W; QY p)<M*(W;Q,p). There
exists 0 €Q 4 p such that M*(W; Q4 g)=> W(y) by Lemma 10 in [4]. For any

Q

&>0, there exists Q€ Q, ,, such that Y W(y)<e, since M¥(W;Q,,)=0. Let
A A A Q — —
0=0(4)©Q(B) and 0=0Q(4)©Q(0) and define Q(4) and Q(B) by

0(A) = 0(4) n Q(A) and Q(B)=Q(B) U Q(0).
Then 0=0(A)O0(B)e QY% and §<=Qu Q. Tt follows that

0= M¥W; QY% — M*(W; Q5 < %W(y) - %W(y)
< §W(y) <e

By the arbitrariness of ¢ we conclude that M*(W; Q , 5)=M*(W; Q{)).
By this theorem and the corollary of Theorem 1, we obtain

COROLLARY 1. If We L{(Y), then M*(W; Q4. 5)=M*(W; QY)).
By this theorem and Lemma 1, we obtain

COROLLARY 2. Assume that N is of parabolic type of order p. If W
€ L}(Y; 1), then M*(W; Q. p)=M*(W; QY)).

RemARk 1. Condition (o0) is not necessary for our equality. If We
L*(Y) and if 3 W(y)=o0 for every QeQ,p such that Q¢QY ), then M*(W;
]
Qup)=M*W;Q%%). In particular, if inf{W(y); yeY}>0, then M*(W;
Qu0)=M*(W; Q).

§2. Max-flow problems
We say that we L(Y) is a flow from A to B of strength I(w) if

ZY K(x, yyw(y) =0 forall xeX — A - B,
ye

Iw)= -3 % K(x, yyw(y) =3 X K(x, y)w(y).

xed yeY xeB yeY
Denote by F(A, B) the set of all flows from 4 to B and by G(A4, B) the set of all
we F(A4, B) such that {ye Y; w(y)#0} is a finite subset of Y. Let F (A4, B) be
the closure of G(4, B) in L,(Y;r). For any we F (A4, B), there exists a sequence
{w,} in G(4, B) such that H,(w—w,)—0 as n—oo. It follows that we F(4, B)
and I(w,)—~I(w) as n— 0.
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REMARK 2. The spaces of flows on an infinite network have been analyzed
by H. Flanders [1] and A. H. Zemanian [6].
Let We L*(Y) and consider the following max-flow problem:

(IV)  Find M(W; F(A, B)) =sup{I(w); we F(A4, B) and |w| £ Won Y}.

We define M(W; G(4, B)) and M(W; F(A, B)) similarly. Then M(W;
G(4, B)) £ M(W; F (4, B)) < M(W; F(4, B)).
We proved in [4]

THEOREM 4. M(W; G(A, B))=M*(W; Q,5).

It was also shown in [4] that M(W; F,(A, B))=M*(W; QY%) does not hold
in general.

We shall prove the following duality theorem.

THEOREM 5. If We L*(Y) satisfies condition (o0), then M(W; F(A, B))
=M*(W;Q4,p)

Proor. By Theorems 3 and 4, it suffices to prove M(W; F(A, B))S M*(W;
QY%%). On account of Theorem 1, we can find an exhaustion {<X,, Y,>}
of N such that A U Bc X, and the relation (E) holds. Let we F(A, B) such that

Iw(»)|SW(y) on Yand let 0=0(4)©Q(B)e QY. Since Q is a finite set, there
is ny such that Q< Y, for all n=n,. Notice that

QDU X)o@BN(X-X)=Z,u@n(Y-T)=2Z,

for all n=n,. Define functions u, u, and v, on X by
u=0 on Q(A), u=1 on Q(B),
u,=u on X,u,=0 on X-X,
v,=u—u, on X.

Then v,=0 on Q(4)U X, and v,=1 on Q(B)n (X —X,). We have by Lemma 3.1
in [3]

Iw) = 3 u,(x) 2 K(x, y)w(y) = 2 w(y) X K(x, y)u,(x)
xeX yeY yeY yeX
and by the above observation
[Hw) — X w(y) X K(x, pu(x)| = | X w(y) 2 K(x, p)v,(x)]
yeY xeX yeY xeX
S Iw)I ZK(x, p)v,(x)| £ X W(y).
yeY xeX Z,

for all n=n,. It follows from the relation (E) that
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I(w)= X w(y) X K(x, p)u(x) £ 3 [w)|| X K(x, y)u(x)]
yeY xeX yeY xeX
< % w(y).

Thus we have M(W; F(4, B))SM*(W; Q).
COROLLARY 1. If We Li(Y), then M(W; F(A, B))=M*(W; Q4 ).

COROLLARY 2. Assume that N is of parabolic type of order p. ‘If W
eL}(Y;r), then M(W; F(A, B))=M(W; F(A, B)=M(W; G(A, B))=M*(W;
QD).

ReMARK 3. In view of Corollary 1 of Theorem 4.1 in [5], we see that
Corollary 2 of Theorem 5 is an improvement of Theorem 7 in [4].

We can not omit in Theorem 5 the condition that W satisfies condition (c0).
This is shown by

ExaMPLE 1. Denote by Z the set of all integers and let
X ={x,;neZ}, Y={y,;nel},
K(xp yo) =1 and K(x,-.,y,) = —1 for neZ,
K(x, y) = 0 for any other pair (x, y),
r=1 on Y.

Then N={X, Y, K, r} is an infinite network. Let us take A={x,} and B={x,}
and define We L(Y) by W=1o0n Y. Then W does not satisfy condition (c0). We
have M¥(W; Q 5)=M*(W; Q{3)=M(W; F (A, B)=1<2=M(W; F(A, B)).

ExaMPLE 2. Let Z*={neZ; n>0}, X={x,; neZ} and Y={y,;neZ}
U{y,; neZ*}. Define K by

K(x,, y») =1 and K(x,.,,y,) = —1 for neZ,
K(x,, y»)=1 and K(x_, y,)=—1 for neZt,
K(x, y) =0 for any other pair (x, ).

Assume that re L{(Y) and r(y)>0 on Y. Then N={X, Y, K, r} is an infinite
network which is totally hyperbolic (cf. [S]). Let us take A={x,} and B={x,}
and define We L(Y) by W(y,)=W(y,)=0 for all neZ* and W(y,)=1 for all
neZ such that n#1. Then W does not satisfy condition (c0) and We L}(Y; r).
We have M*(W;Q,5)=0<1=M*(W; Q{3)=M(W; F(A, B)=M(W; F(A,
B)).
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