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Introduction

Let N={X, 7, K, r} be an infinite network which is connected and locally

finite and which has no self-loop (cf. [5]) and let A and B be mutually disjoint

nonempty finite subsets of X. Denote by QA>B the set of all cuts between A

and B and put Q(A?B = {Q^QA,B\ Q is a finite set}. Let W be a non-negative
function on Y and consider the following two min-cut problems on N:

(I) Find M*(W',QA9B) = mf{ΣW(y) 9QεQAtB}.
Q

(II) Find M*(W; QMB) = inf {ΣW(y); βe<?<ft}.

Then M*(W-9QAiB)<Z:M*(W; Q(^B) and the equality does not hold in general.

In order to give a sufficient condition for the equality, we shall consider the

following min-cut problem on N relative to a nonempty finite subset F of X and

the ideal boundary oo of N:

(III) Find M*(^;<?F>00) = inf{Σ^ω;ee<? f>00},
Q

where QFtao is the set of all cuts between F and oo.

We shall prove that M*(W\ QA,B) = M*(W; Q(

A^B) holds if M*(W',QF)J

= 0 for all nonempty finite subsets F of X. By the aid of this result, we shall

generalize in §2 the elegant theorem in finite network theory which states that

max-flow equals min-cut (cf. [2]) to an infinite network.

Throughout this paper, let p and q be positive numbers such that l / p + l / q

= 1 and l<p<oo. For notation and terminology, we mainly follow [5].

§ 1. Min-cut problems

Let L(y) be the set of all real functions on Y. For w e L(7), its energy Hq(w)

of order q is defined by

yeY

For the later use, let us put
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L+(Y) = {weL(Y); w(y) ^ 0 on Y} ,

L\(Y) = {WeL+(Y);Σ
yeY

w6L+(7); //,(w) < 00} .

Let us recall the definition of cuts. Let A and B be mutually disjoint non-
empty finite subsets of X. We say that a subset Q of Y is a cut between A and
B if there exist mutually disjoint subsets Q(A) and Q(B) of X such that Ac:Q(A),
B c Q(B\ X = ρθ4) u ρ(β) and the set

Q(A) © 2(5) = {y e 7; -*00. n ρ(A) Φ 0 and e(j) n.β(B> * 0}

is equal to Q, where e()0 = {xeX; &(X ^^O} and 0 denotes the empty set.
We say that a subset β of Y is a cut between a nonempty finite subset F of

X and the ideal boundary oo of N if there exist mutually disjoint nonempty subsets
ρ(F) and Q(oo) of X such that Fez ρ(F), X = ρ(F) U Q(oo), ρ(F) is a finite set and

DEFINITION. We say that \VeL+(Y) satisfies condition (oo) if M*(W\
QF,^} — ̂  for all nonempty finite subsets F of X.

First we shall prove

THEOREM 1. Let WeL+(Y). Then W satisfies condition (oo) if and only
if there exists an exhaustion [<Xn9 Yn>} of N such that

(E) limΣ^ω = 0 with Zn=Ύn-Ύn-ι (70 = 0) .
»-*oo Zn

PROOF. First we assume that there exists an exhaustion {<Xn, Yn>} of
TV such that the relation (E) holds. Let F be a nonempty finite subset of X. For
each n such that Fc:Xn_l9 there exists Qn^Qp,^ suc^ ^at Qn<=.Zn. It follows
that

0 g M*(W\ QF>J ^ lim Σ W(y) = 0 .
n->oo Zn

Next we assume that ^satisfies condition (oo). Take a finite subnetwork <X1 ?

7t > of N. Since M*(PF; QXlιao) = Q by our assumption, we can find d e ̂ 1<00

such that Σ W(y)<2~i. We define a subset X\ of ^ as follows: xeX\ if and
Qi

only if there exists a path from Xί to {x} which does not intersect Qί (cf. [4] for
the definition of a path). Set X2 = X 1 ( ] X \ and let Y2 = {yeY',e(y)^X2}.
Then yιc:72 and <X2, ^2> is a finite subnetwork of N. Let 61 = 61(^1)
θδι(oo) and put Q'i(Xi) = X2 and Q'l(vo) = X-X2. It is clear that Q\ =Q\(Xι)
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θβΊ(°°)e(?*, .oό We show that QΊcQ^ Let yeQ\ and e(y) = {a, b} with
aeX2 and beX-X2. Since X2cQ1(X1), it suffices to show that freβ^oo).
Suppose that beβ^XJ. In case aeXl9 we see easily that beX\, which is a
contradiction. In case aeX\, there exists a path P from Xl to {a} which does
not intersect β,. Let P be the path from X\ to {ft} which is generated by P
and {y}. Since yφQί9 we see that P does not intersect Ql9 and hence beX\
aX2. This is again a contradiction. Therefore βΊcβj . Let us define finite
subnetworks <X3, 73> and <X4, 74> of J V b y

Y. = {j; e 7; X(jc, j;) ^ 0 for some x
(*)

X, = {x e X; K(x, j) φ 0 for some ^ e 7J

for ί = 3, 4. We have β\ = Y3 - Y2 and Σ ^M < 2" 1 . By repeating this process,
QΊ

we obtain a sequence {<^fΛ, Yn>} of finite subnetworks of N such that y3π_2

cy3.-ι. Q;-Ϊ3.-Ϊ3.-ι 6(?χ3n.a.co, Σ ^ω<2- and the relation (*) holds for
Q" _ _

f = 3n, 3n + l (n = l, 2,...). Consider a subsequence {<^w, Yn> ] o f ' {.<Xn,
Yn>} defined by ̂ .̂ .̂̂ F .̂̂ y .̂̂  X2n = X3n, Ϋ2n=Y3n for n = l,
2,... . It is easily seen that {<Xn, Yn>] is an exhaustion of N such that Z2π

= •̂ 211- Ϋ2n-ι = Qn and Σ W(y)<2^n. Thus the relation (E) holds.
%2n

COROLLARY. // WeL\(Y), then W satisfies condition (oo).

THEOREM 2. Assume that W(y)>Q on Y. Then W satisfies condition (oo)
if and only if there exists a nonempty finite subset F of X such that M*(W\ QF^)
= 0.

PROOF. It suffices to show the "if" part. Let F' be a nonempty finite sub-
set of X. Take a finite subnetwork < X', Y'> of N such that F U F' c X' and let
ε0 = min{ϊ^(^); y e 7'}. For any ε such that 0<ε<ε0, there exists QεQFt00

such that ΣW(y)<ε. Let β = β(F)θβ(oo). Then F c'X' c β(F), so that

βe<?F%00 and M*(W; ^>00)<fi. Thus M*(P^; ^>00)=0 and Pf satisfies
condition (oo).

We have

LEMMA 1. Assume that N^is of parabolic type of order p. If WεL+(Y\
r), then W satisfies condition (oo).

PROOF. Define FeL(7) by . .V(y) = W(yyi<*-*>\ Then
<oo. Qn account of Corollary 2 of Theorem 4.1 in [5], we have

. = M*(yr.1 <?F>00)=0 for all nonempty finite subsets F. of X.
Now we shall prove
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THEOREMS. // WeL+(Y) satisfies condition (oo), then M*(W\QA>B)

PROOF. We have only to show that M*(W\ Q^B)^M*(W 9 QAtB). There
exists Q εQA B such that M*(W\ QAB)=Σ W(y) by Lemma 10 in [4]. For any

Q
ε>0, there exists QeQAtOD such that ΣW(y)<ε, since M*(W <?^>00) = 0. Let

Q = Q(A)QQ(E) and Q = Q(A)QQ(π) and define Q(A) and Q(B) by

Q(A) = Q(A) Π QG4) and 5(B) = g(B) U Q(oo) .

Then Q = Q(A)QQ(B)GQ(

A

f

t

)

B and 3c=ρuζ). It follows that

0 r

By the arbitrariness of ε, we conclude that M*(W
By this theorem and the corollary of Theorem 1, we obtain

COROLLARY 1. // WεL\(Y\ then M*(ff QAiB) = M*(W', <?<ft).
By this theorem and Lemma 1, we obtain

COROLLARY 2. Assume that N is of parabolic type of order p. If W
eLJ(7; r), then M*(W, QA,B) = M*(

REMARK 1. Condition (oo) is not necessary for our equality. If WE
L+(Y) and if ΣW(y)=°o for every QeQAtB such that QφQ(

A

f

t

}

B, then M*(W\

B). In particular, if inf {W(y)\ y e 7}>0, then M*(W',

§ 2. Max-flow problems

We say that w e L(7) is a flow from A to B of strength /(w) if

Σ K(x, y)w(y) = 0 for all x e X - v4 - B,

/(w) = - Σ Σ K(X, y)w(y) = Σ Σ «(χ, 30*00.
X6/4 yey xeB yeK

Denote by F(>4, β) the set of all flows from A to B and by G(A, B) the set of all
weF(A9 B) such that {ye 7; wOO^O} is a finite subset of 7. Let Fq(A9 B) be
the closure of G(A9 B) in Lq(Y; r). For any w e Fβ(A, β), there exists a sequence
{wj in G(A, B) such that #β(w-wπ)-»0 as n->oo. It follows that w eF(A, B)
and /(wn)->/(w) as n-*oo.



Minimal Cut Problems on an Infinite Network 601

REMARK 2. The spaces of flows on an infinite network have been analyzed
by H. Flanders [1] and A. H. Zemanian [6],

Let WeL+(Y) and consider the following max-flow problem:

(IV) Find M(W\ F(A9 J5)) = sup {/(w); w ε F(A, B) and |w| ^ Won Y} .

We define M(W\ G(A, B)) and M(W Fq(A, B)) similarly. Then M(W\
G(A9 B)) ^ M(W; Fq(A, B)) ^ M(W\ F(A9 B)).

We proved in [4]

THEOREM 4. M(W\ G(A, BJ) = M*(W QAtB) .
It was also shown in [4] that M(W\ F2(A9 B)) = M*(W', <?^i) does not hold

in general.
We shall prove the following duality theorem.

THEOREMS. // WeL+(Y) satisfies condition (oo), then M(W;F(A9B))

PROOF. By Theorems 3 and 4, it suffices to prove M(W\ F(A, B))^
Q(Ά\ On account of Theorem 1, we can find an exhaustion {<Xn, Yn>}
of N such that A U BaX^ and the relation (E) holds. Let w e F(A9 B) such that
M)0|gFFOO on Yand let Q = Q(A)ΘQ(B)eQ(

A

f

t

)

B. Since Q is a finite set, there
is n0 such that Qa Yn for all n^n0. Notice that

(Q(A) U Xn) θ (Q(B) n (X - *„)) c Zn u (Q Π (Y- Yn)) = Zn

for all n^n0. Define functions w, un and vn on X by

w = 0 on Q(A\ u = 1 on Q(B) ,

MW = u on XΛ, wπ = 0 on X - Xn9

v = u-u on X.

Then ί;n = 0 on Q(A) U Xn and ι?π= 1 on β(B) n (X-Xn). We have by Lemma 3.1

in [3]

/(w) = Σ "„(*) Σ ^U, ^)w W = Σ wOO Σ
xeX yeY yeK yeX

and by the above observation

l/(κO ~ Σ w(y) Σ K(x,y)u(x)\ = I Σ w(y) Σ K(x,y)υΛ(x)\
yeY xeX yeY xeX

^ Σ I w(y) I I ΣK(x, y)v.(x) \ g g

for all n^n0. It follows from the relation (E) that
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/(w) = Σw(y) ΣK(x,y)u(x) ^ Σ I w ' O O I I Σ K(x, y)u(x)\
yeY xeX yeY xeX

g Σ W(y).

Thus we have M(W; F(A, B))£M*(W; Q^B).

COROLLARY 1. // WeL\(Y), then M(W; F(A, B)) = M*(W; QA-B).

COROLLARY 2. Assume that N is of parabolic type of order p. If W
eLJ(y r), then M(W; F(A, B)) = M(W; Fq(A, B))=M(W; G(A, B))=M*(W;

<?&>•

REMARK 3. In view of Corollary 1 of Theorem 4.1 in [5], we see that
Corollary 2 of Theorem 5 is an improvement of Theorem 7 in [4].

We can not omit in Theorem 5 the condition that W satisfies condition (oo).
This is shown by

EXAMPLE 1. Denote by Z the set of all integers and let

X = {xn;neZ}9 Y={yn',nεZ}9

K(*n> yn) = 1 and K(xn -!,)>„)=-1 for n e Z,

K(x, y) = 0 for any other pair (x, y),

r = l on 7.

Then N = {X, 7, K, r} is an infinite network. Let us take :4 = {x0} and B = {xl}
and define We L(7) by W= 1 on 7. Then W does not satisfy condition (oo). We

have M*(W', QA,B} = M*(W', <#i) = M(»F; Fq(A9 B))=l<2 = M(W, F(A, B)).

EXAMPLE2. Let Z+ = {πeZ; n>0}, X = {xn\ neZ} and Y={yn;neZ}
U{/ π ;neZ + } . Define K by

K(xn> yn) = 1 and K(xn.ί9 yn) = -1 for neZ,

*(*„, )O = 1 and K(x-n9y'm)= -1 for neZ+,

K(x9 y) = 0 for any other pair (x, y).

Assume that reLί(7) and r(y)>0 on 7. Then N = {X9 7, K9 r} is an infinite
network which is totally hyperbolic (cf. [5]). Let us take A = {x0} and B = {xl}
and define WeL(Y) by W(yl)=W(y'n)=0 for all ιieZ+ and W(yn) = \ for all
n e Z such that n^l. Then Wdoes not satisfy condition (oo) and PΓeL£(7; r).
We have M*(fF;<k^ = 0<l=Λf*(FF^^

10).
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