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Introduction

H. Cartan [2] systematically applied the method of Hilbert space to the study
of capacity and balayage in the classical potential theory. His idea was generalized
to the axiomatic theory of Dirichlet spaces by A. Beurling and J. Deny [1].
Balayages and capacities in Dirichlet spaces are studied in [1], [4], [5], [6] and
[7] to some extent. In the present paper, we proceed to study inner and outer
balayages and capacities in Dirichlet spaces. We shall show that characteriza-
tions of these notions are obtained as consequences of a certain duality theorem
(Theorem 3.1). As an application, we shall show that the inner balayage and the
outer balayage coincide for K-analytic sets.

§1. Cones and T-cones in a Hilbert space

In this section, let H be a real Hilbert space with norm | . || and scalar product
(-5 ). Aconein H is a set S in H such that 120 and xeS imply AxeS. A
set S in H will be called a T-cone (T stands for ‘“‘truncated”) if A=1 and xeS
imply AxeS. Given a set S in H, we put

SO ={yeH;(x,y) =0 for all xeS},
S4={yeH;(x,y)=1 for all xeS}.
Then the following properties are easily verified:

(1.1) SO is a non-empty closed convex cone containing 0; S4 is a closed con-
vex T-cone.

(1.2) S,cS, implies S¢ >S9 and S¢>54.

(1.3) S°=H if and only if either S=¢ or S={0}; S4=H if and only if S=g.

(1.4) S°=S° and S4=84, where S denotes the closure of S in H.

(1.5) If S is closed convex, then S4=g if and only if S 5 0.

Lemma 1.1. (a) If S#g, then S°0 is the smallest closed convex cone con-
taining S.
(b) If S440 (equivalently S4#@), then S44 is the smallest closed convex
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T-cone containing S.

Proor. Both statements are proved by the separation theorem. Since (a)
may be well-known, we give here a proof of (b). If S=g, then S44=g. Suppose
S#¢@. First we observe that S44 is a closed convex T-cone containing S. Let
S’ be the smallest closed convex T-cone containing S. By assumption we have
S'$0. Letx,&S’. Since S'is a T-cone, [0, xo] N S'=¢. Hence, by the separa-
tion theorem (see e. g., [8]), there is y € H such that

sup (x, y) < 1nf (x, ).

xe[0,x0]

Since the left hand side is non-negative, we may assume that mf f(x, y)=1. Then

y€(8)4<=S4 and (x4, y)<1. Hence x,&S44. Thus S"“CS' so that S44=¢’,
This proves (b).

LemMma 1.2. (a) Let {S,},c4 be a family of sets in H and put S= U ,,S,.
Then S°= n,.,S? and S4=n ,.,S4.

(b) Let {S,}4csa be a lower directed family of closed convex cones in H.
Then ( n aeASa)o =Uu aeASg'

(c) Let {S,},cq be a lower directed family of closed convex T-cones in H
and N ,e4S,#8. Then (N 4e4S)?= U 4esSi-

Proor. (a) is easily obtained from the definition.
(b) If S,=¢ for some o, then (N ,4S)°= U,.So=H. If S,#@ for all
o€ A, then the equality follows from Lemma 1.1, (a), since S2°=S, and U S¢

aeA

is a convex cone.

(¢) If 0eS, for all ae A, then (N ,4S)2= U Sd=g. If 0&S, for some
feA, then put Ag={a€eA; a=p}. Then S""—S for o€A, by Lemma 1.1,
(b). Hence we obtain the required equality by Lemma 1.1, (b) since U ,., SZ

= \U S$4 is a convex T-cone and N ,.,S,#0.
acdo

Now, let S be a non-empty closed convex set in H. Given x € H, the projec-
tion x,=P¢(x) of x onto S is the unique element x, €S such that ||x—x,| =
min |x—y||. In particular, Py(0) is the unique element minimizing the norm in

€S

y
S. Incase S is a closed convex cone, x,=Pg(x) is characterized by the following
two relations:

(x —xg,X0)=0 and (x—xg, ¥) =0 for any yeS.
LemMA 1.3. (a) Let S be a non-empty closed convex cone in H. Then

Py(x) = Pyo4+,(0)  for any xeH.
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(b) Let S be a non-empty closed convex set such that 0¢S. Then
P5a(0) = |[Ps(0)[|~2P(0),
so that
IPsa(0)l = [IPs(0)[I~*.

Proor. (a) Since S is a convex cone, (Py(x), y)=(x, y) for all yeS.
Hence Pg(x) € S°+x. Since Pg(x)eS and Pgo, ,(0)—x € SO, (Pyg(x), x) <(Pg(x),
Pgo,.(0)). Hence,

[Ps(x)[[2 = (Ps(x), x) < [Ps(x)[| Pso+ (Ol ,
so that ||Py(x)||<||Pso+x(0)]|. By the uniqueness of Pg.,(0), we have Pg(x)

=Pso.+4(0).
(b) Since Pg(0) € S and Pg4(0) € S4, we have

1 = (P«(0), Ps*(0)) = [IP5(0)]| [IPs*(O)]] -

On the other hand, (Pg(0), y)=||Pg(0)||? for all y €S, so that ||Pg(0)|~2P(0) e S4.
Since

IPs(0)[|~2Ps(0)]| = [IPs(0)I=* < [IPsa(O)],
it follows from the uniqueness of Pg4(0) that ||Pg(0)||~2P4(0) = Pg4(0).

The next lemma is well-known.

LeMMA 1.4. Let {S,},c4 be a family of non-empty closed convex sets in H
and let x € H.

(a-1) If {S,} is lower directed and S= N ,.,S,#@, then Ps (x)-Ps(x) in
H.

(@a-2) If {S,} is lower directed and N ,.4S,=®, then ||Pg (x)|—co.

(b) If {S,} is upper directed and S= U ,.4S,, then Pg (x)—Pg(x) in H.

§2. Basic facts on Dirichlet spaces

From now on, we consider a real Dirichlet space 2 =2(X; £) in the sense
of Beurling-Deny [1]. Here, X is a locally compact, g-compact Hausdorff space
and ¢ is a positive Radon measure on X. The norm and scalar product in 2 are
again denoted by | - | and (., .), respectively.

Recall that u e 2 is called a pure potential if there exists a unique non-
negative Radon measure u on X such that

, ¢) = {gd
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for any ¢ € € N 2, where. % is the space of all continuous functions with compact
support in X. Such u is denoted by U, in the present paper and y is called the
associated measure of u. Let &£ be the set of all pure potentials in 2. We know
the following properties ([1], [5], [6]):

(2.1) £ is a non-empty closed convex cone in 2.

(22) 2istotalin 2,i.e.,, Z—2 is dense in 2.

(23) If u=U, and v=U, belong to 2 and u=<v (i.e., u(x)<v(x) &-a.e.

in X), then [lu]l ||| and Sd,uégdv.

2.4) If u, ve 2, then min(u, v)e 2.
(2.5) IfU,e2 and 0=Sv=yp, then U, € 2 exists.

By [1, Lemma 2], we easily see

LemMma 2.1. If S is a non-empty closed convex set in 2 such that S+
{ue 2; u=0}=S, then P4¢(0) e 2.

The capacity of an open set w is defined as follows ([1], [5], [6]): put
Vo1 ={ue?:ux)21%&a.e  on o}
and

inf fu|? ify,,#9,
UeY w, 1
Clw) = )
+ o0 ifyv,,=60.

Note that ¥~ ; is a closed convex set (in fact a T-cone) and
C(@) = ||Py,, ,O)I?

if v, #6. The outer and inner capacities are defined in the usual way: for a set
EcX,

C¢(E) = inf {C(w); w: open o E},
CYE) = sup{Ce(K); K: compact < E}.

We know ([5]) that Borel sets are capacitable, i.e., C¢(E)=C!(E) if E is a Borel
set. Remark that if C¢(E)=0, then u(E)=0 for any u with U,e 2 (see [6,
p. 169-170]).

LeMMA 2.2. (2) Ce(\J E) < S Ce(E,) ([5, Théoréme 47).
n=1 . n=1

(b) If B, are Borel sets, then for any set E, C(En \j B)< f CY(ENB,)
n=1 n=1
(¢f. [2, p. 253]).
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() CHE,UE;)SCUE,)+C(E,).

A property is said to hold quasi-everywhere (q.e.) (resp. nearly everywhere
(n.e.)) on a set if the outer capacity (resp. inner capacity) of the exceptional
set is 0.  Quasi-continuity of functions is defined with respect to this capacity.
We know. ([1], [5], [6]) that to each u € 2, there exists a function u*, which is
called a refinement of u, such that u*(x)=u(x) ¢-a.e. on X, u* is quasi-continuous
and (u, U ”)=Su*du for all U,e 2. We can choose u* to be Borel measurable,

which we shall always assume in the present paper. Note that two refinements
of u coincide q.e. on X. It follows that the properties ‘“‘u*(x)=c q.e. on E”
and “‘u*(x)=c n.e. on E” do not depend on the choice of refinements (cf. Lemma
2.2).

§3. A duality theorem
For a compact set K in X, let
Py={U,e2?;supppc K} and Py, ={U,ePy; u(K)21}.

Py is a closed convex cone and Pk, is a closed convex T-cone. The closedness
of 2y, follows from the existence of ¢ € € N 2 such that ¢=1 on K and $=0
on X. Given a set E in X, put

L= PL =
‘WE - UK:c_ompac(CE'@K’ 9}5,1 - UK:compactCE‘@K,l
and

e — i — i
g’E = nw:open:E gw’ '@eE 1 niu:open:sE 9:»,1{

’

Then 2§, 2% are closed convex cones and 2% ,, 2% , are closed convex T-cones.

Obviously 2L < ¢ and 2% | < 2% ,. The mappings E— 2%, etc., are all mono-

tone increasing. It is easy to see that if U,e 2§ (in particular, if U, e 2} or
§.1 or 2% ), then suppuc E. We shall consider the classes

Wi={ue2D;0(uw)c E} and #'§¢= N,.opense?hs

where o(u) denotes the spectrum of u (see [1, §6]). These are closed linear sub-
spaces of 2. Obviously, 2Lc#°% and Pg<#'g. The theorem of spectral
synthesis (see [1, Theorem 8] or [6, p. 108]) implies

LeMMA 3.1. 2L is total in W'k
Next, we consider the classes
U, ={ue 2;u*(x) Z0n.e.on E},

Uk, ={ueD;u*(x)Z1n.e.onE},
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Uy ={ueP;u*(x)20q.e.on E},
Ug,={ueP;u*(x)21q.e.on E}.

% and %§ are convex cones in 2 and %, , and %%, are convex T-cones in
2 (cf. Lemma 2.2). Obviously #i>%§ and %% ,>%%,,. The mappings
E—a£, etc., are all monotone decreasing. By [5, Théoréme 7], we see

LemmA 3.2. g and «%,, are closed.
Now, we show

LemMMA 3.3. Functions bounded from below in %% (resp. %%,,) are dense
in %% (resp. #%,y)-

Proor. Given ue#g (resp. #%,,), let u,=sup(u, —n), n=1,2,....
Then u, e %% (resp. %%,,) and |ju,|| < |lull. Since
(U, U,) = Su:du — Su*du =(u, U,
for any U, € 2, u,—u weakly in 2 by virtue of (2.2). Since |u,| < |u], it follows
that u,—u strongly in 2.

If w is an open set, then #g=#!=v", and % =% =7",,1, Where
¥ ,={ueD; u(x)=0 &a.e. on w}. We have '

ProposiTION 3.1. £= Ugpiopensi? v and %1 = Uguopensi? w,1 -

The proof of this proposition is similar to [5, Lemme]. Note that in showing
Ug< UV, (resp. %%,,< UY¥ ,, 1), we may consider only functions bounded from
below in #§ (resp. %, ,) by virtue of the above lemma.

PROPOSITION 3.2. %% = Nk.compactce@k and %%, 1 = N g.compacicE¥k,1 -

Proor. Obviously, #Lc n#g and %L cnN¥%,,. Let ue n«g (resp.
Nnag ;) and put E'={xe€ E; u*(x) <0} (resp. {x € E; u*(x)<1}). For any com-
pact set K< E’, C¢(K)=0. Hence C/(E')=0, so that u e %% (resp. % ;).

CoROLLARY 1. %% and %%, , are closed.

CoROLLARY 2. If %% #8, then C%(E)=|Pyg (0)|*> and if %% ,+#6,
then C(E)=|Pyt (0)|2; if %%, 1=8, then C%(E)=oc0 and if ¥}, =9, then
C/(E)= co.

This corollary follows from Lemma 1.4, Propositions 3.1 and 3.2 and the
definitions of C¢ and C'.

Now we are ready to prove our duality theorem.

THEOREM 3.1. For any subset E in X,
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(28)° = s, (P5)° = Uk; (P5,)* = U,y , (PE)" = Uk, .
Proor. First we prove
(2)° =u; and (Pg,,)* = Ug,,

for compact set K. If ue#g (resp. #%,,) and U, e Py (resp. P ,), then
u,U) = Su*dﬂ . qu*dy =0 (resp. = 1).

Hence % < (Pk)° (resp. %%, 1 <=(Pk,1)Y).
Next, suppose u € (2x)° (resp. (2g,.)*) and put

F = {xeK; u*(x) <0} (resp.={xeK; u*(x)<1}).

Since F is a Borel set, C¢(F)=C!(F). Suppose C¢(F)>0. Then we find a com-
pact set K’ F such that C¢(K’)>0. Put v=Pg,g, (0). By Lemma 2.1, we see
that ve 2. Let v=U,. By Corollary 2 to Proposition 3.2, |v||2=C¢(K’)>0.
Hence v#0. Now we shall show that suppvcK’. Let €% N2 and supp ¢
NK’'=g. Then v+tpeXg y, sothat ||v]| <|lv+t¢| for any real ¢t. It follows

that (v, ¢)=0, or §¢dv=0. Hence supp veK’. Therefore, ve £y (resp. v/
wK') € %), and so

0= (u,v)= Sx' u*dy <0,
(resp. 1 < (u, v/v(K")) = Sx' u*dv/v(K') < 1).

This is a contradiction. Therefore C¢(F)=0, which means u € g (resp. #%,,).
Hence (2x)° c#§ (resp. (P ) ¥, 1)

For any subset E, by virtue of Lemma 1.2 (a) and (b), Propositions 3.1 and
3.2, we have

(28)° = ag, (2)° = Uk, (P, )" = Uk, .
If 2% ,+#9, then by Lemma 1.2 (c), Proposition 3.1 and the above fact, we have
(g’i‘,l)“ =Ug, .

If 2% ,=4¢, then by Lemma 1.3 (b) and the above fact and the definition of outer
capacity, C¢(E)=0. Hence (2§ ,)4=%%1=2.

CoroLLARY (cf. [6, Lemme 4]). (#'L)t={ue2; u*(x)=0 n.e. on E},
where L denotes the orthogonal complement.

Proor. By Lemma 3.1 and the above theorem, we have
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#p)*r= (2P0 = (PP)° =N (— })

={ue2;u*(x)=0 ne.on E}.

§4. Inner and outer balayages and applications

For u € 2 and Ec X, the inner and outer balayages of u to E are defined by
cub=Pyi(u) and uf =P,e(u),

respectively. If u=U,, then the associated measures of uy and ug are denoted
by ub and pug respectively. By Lemma 1.3 (a) and Theorem 3.1, we immediately
have the following characterizations of balayages.

THEOREM 4.1. For ue 2, ul; (resp. ug) is the unique element which attains
the minimum norm in

u+ % ={ve2;v* 2u*n.e onk}
(resp. u + %5 ={ve2;v* Zu*q.e.on E}).

Now, we obtain the following properties of balayages, which are well-known
in the classical case (see [2]).

THEOREM 4.2. Letue€ 2 and EcX. Then

(1) ub=su and ugLu,

) WH*(x) =u*(x) n.e. on E, (ug)*(x) = u*(x) q. e. on E,

(3) suppuicE, suppugcE,

@ (aups(an, (ans{san.

ProOF. (1) is proved in the same way as the proof of [6, p. 164, théoreme

du balayage]. Then (2) follows from the above theorem. (3) is trivial and (4)
is a consequence of (2.3).

PROPOSITION 4.1. For ue 2, ui,=Py-L(u) and u®="Pg-2(u).

ProoF. By (2) of the above theorem and the corollary to Theorem 3.1, we
see thatu —ui € (L)L, Since #°% is a linear space, it follows that ukb=Pgy-L(u).
By Lemma 1.4 (a-1), we see that ug=Ilimui, and Py-2(u)=lm Py.i (u), where
limits are taken with respect ta the directed set, of open sets w containing E.
Hence ug="Pg-2(u).

COROLLARY. The mappings u—u’ and u->u§ are additive on 2.

PRrROOF. Since #'L, # ¢ are linear spaces, Py-L, Py-< are linear maps. -
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ProposiTiON 4.2. If ‘U,e 2% (resp. 2g) and 0=Zv=p, then U,e 2%
(resp. 2%).

Proor. Letu=U,, v=U, and w=u=v. Then v, we 2 by (2.5). -Hence
by the above corollary, u=up=vg+wk. Since vp<v, wgsw and v+w=uy,
it follows that v=vi € 2%. The proof for 2¢ is similar.’

THEOREM 4.3. For u,ve 2 and EcX, the following assertions (a;), (b)),
(cy), (d)) (resp. (a,), (b,), (c,), (d,)) are mutually equivalent:

(a) u*=<v*n.e onk, (@,) u*=<v*q.e onE,

(b) , U)=(@ U, (b) ,U)=@ Uy
for all U,,éwﬁ, - forall U,e 2g,

(c) Bu*du s Sv*du (c.) Su*du s Sv*du
for d_ll U,e2i, ‘ for all U,,'e Ps,

(d;) u*=v*p-a.eonX (d,) u*=v*pu-a.e.onX
‘or all U, e 2%, for all U, e 2.

Proor. The equivalence of (a;)) and (b;) (resp. (a,) and (b,)) is nothing
but Theorem 3.1. The equivalence of (b;) and (c;) (resp. (b,) and (c,)) is obvious,
The implication (d;)=(c;) (resp. (d,)=>(c,)) is also trivial. . We shall show. (c;)
=(d,) (resp. (c.)=(d,)). Put E'={xe X;u*(x)>v*(x)} and suppose there is
U,€ 2% (resp. 2#5) such that u(E')>0. Put p'=pu|p. By the above proposi-

tion, U, € 2} (resp. 2§). On the other hand, Su*du"} Sv*dp’,' which contradicts
(c;) (resp. (c.)).

‘REMARK. We can see that (a;) ~(d;) are also equivalent to
(d) u* £ v* p-a.e. on X for any U, e 2 with suppucE.

As applications of Proposition 4.1, we have the following propositions.
ProposITION 4.3. §-is total in #°§.

PrROOF. Let ue€# §. “Since £ is total in 2, there exists a sequence {u,} in
P —2 converging.to u. Let u,=v,—w, with v,, w,e 2. -By the linearity of
Py-¢ and Proposition 4.1, we have

Pr,’;(_un) = PY,'E(Un) - Pr,‘;(Wn) = (Un)f:' - (W")E € ‘?E - 95'
Obviously Py-¢(u,)>Py-g(u)=u. Hence 2§ is total in #°¢.

COROLLARY. . (#'§)ti={ue2;,u*=04q.e. on E}.
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Proor. We can show this in the same way as the corollary to Theorem 3.1
using the above proposition and Theorem 3.1.

PROPOSITION 4.4. P NW'L = PL;, PNH'§ = P§.

PrOOF. Obviously, Zn#io>2L. If ueZn#g, then u=Pyi(u)=
P,i(u)e 2y by Proposition 4.1. Hence 2 n#'p=2;. Similarly we have
PONWg=Ps.

ProrosITION 4.5. Let T be a normalized contraction (see [1]). Ifue#’}
(resp. #°¢) and u*(x)=Tu*(x) n.e. on E (resp. q.e. on E), then u=Tu.

Proor. By the corollary to Theorem 3.1 (resp. the corollary to Proposition
4.3), u—Tue (W)t (resp. (#'¢)L). Hence (u, u—Tu)=0. It then follows that
u="Tu (cf. [6, p. 173, (c)]).

PROPOSITION 4.6. Let ue 2. In order that Py i(u)=P,i(u) (resp.
Py-e(u)=P,e(u)), it is necessary and sufficient that ue P+ (W'L)t (resp. 2
+ (7 5)4).

PROOF. Since Pyt is linear and Py-i(w)=0 if we (#'})*, the sufficiency
follows from Proposition 4.1. Now, suppose Pgi(u)=P,i(u). Then u=
Pyt (1) +P iy (0)=P,i(u)+P i -(u) e 2+ (#)*. Similarly, we see that
Py s(4)=P,¢(u) if and only if ue 2+ (#'g)*.

§5. Characterizations of inner and outer capacities

First, we give characterizations of sets of inner or outer capacity 0.

THEOREM 5.1. For a set EcX, the following assertions (1;)~(6;) (resp.
(1,)~(6,)) are equivalent:

(1) C(E) =0, (1) C(E) =0,
@) 2= {0}, Q) 25 =1{0},
B) Pi. =09, (B 25, =9,
@) #i=1{0}, @) %= {0},
) k=9, ) 3= 2,
6) @i, =2, 6) ¥%,=9.

Proor. The equivalence of (1;) and (5;) (resp. (1.) and (5,)) as well as the
equivalence of (1;) and (6;) (resp. (1,) and (6,)) is trivial. Equivalences (2,)<>(5,)
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(resp. (2,)<>(5,)) and (3,)<>(6;) (resp. (3.)<>(6,)) are consequences of Theorem 3.1
and (1.3). (2;)<>(4,) follows from Lemma 3.1 and (2,)<>(4,) follows from Propo-
sition 4.3.

Next, we give characterizations of sets whose inner or outer capacities are
infinite.

THEOREM 5.2. For a set EcX, the following assertions (i;)~(iv,) (resp.
(i.)~(iv,)) are equivalent:

(i) CYE) = o, (ip) C*(E) = oo,
(i) 2,20, (i) 2g,.20,
(iii,) @, =9, (iii,) #%,, =9,
(ivi) 2% =2k (ive) 2%.= 2%

ProOOF. (i))<>(iii;) (resp. (i,)<>(iii,)) is given by Corollary 2 to Proposition
3.2, (iiy)<>(iii;) (resp. (ii,)<>(iii,)) follows from Theorem 3.1 and (1.5). (iv;)=>(ii;)
(resp. (iv,)=>(ii,)) is clear. If we assume (ii;), then there exists a sequence {U, }
such that supp p, is compact and contained in E, pu,(X)=1and U, —0 strongly
asn—o. Let U,e 2 and suppu be compact and contained in E. Considering
U, =U,+U,, weseethat U e 2% ;. Therefore 2y = U gy Px<P% . Hence
(ii)=(v,). (ii,)=(iv,) is easily seen from (ii;)=>(iv,).

By the above two theorems we see that if Ci(E)>0 (resp. C¢(E)>0), then
PL  #0 (tesp. 2% #9) and if CY(E)<owo (resp. C(E)<o), then #i #¢
(resp. %g,;#9). When CHE)<ow (resp. CoE)<o), we call Pyi (0) (resp.
Py¢ ,(0)) the inner (resp. outer) capacitary potential of E and denote it by /§ ;
(resp. /% 1). By Lemma 1.3 (b) and Theorem 3.1, these are pure potentials.
The associated measures of /% ; and /g ; are denoted by AL , and A ,, re-
spectively. Lemma 1.3 (b), Theorem 3.1 and Corollary 2 to Proposition 3.2
yield

THEOREM 5.3. If 0 < C{(E) < o, then CI(E) = |/% 1112 = |P,. (0)]72.

ZE, 1

If 0 < C*(E) < 0, then C*(E) = ||[/§,1]> = [P, ,(0)] 2.

We obtain the following properties of inner and outer capacitary potentials
of E.

THeoreM 54. (1) /% <land /g =1.
2 (/L )*(x)=1n.e.on Eand (/g )*(x)=1q.e. on E.
(3) The supports of AL y and Ag , are contqined in E.

Proor. (1) is proved in the same way as the proof of [6, p. 162, théoréme
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d’équilibre]. ~Then (2) is trivial. (3) follows from Lemma 1.3 (b) and Theorem
3.1.

Next we give a relation between 2% , and 2% (resp. 2§, and 2g). We
put Zx,={U,e2?; u(X)21}. In Theorem 5.2 we have already seen that
Py =PL (tesp. P, =2P%) in case C{(E)=o (resp. C4E)=o0). Further-
more we have

LemMmA 5.1, If C(E)< o (resp. C4(E)< o), then
gig,l = 9%0.9’;('1 (resp. 92,1 = -@Engx'l).

Proor. If CYE)=0 (resp. C¢(E)=0), then the conclusion is clear by
Theorem 5.1. Let 0<Ci{E)<oo. Given U,e 2% ;, Theorems 3.1 and 5.4
imply

1S W 40 = [ (h0%au| < an.

Hence 2§ ,c2in Py,. Conversely let U,e 2% and p(X)=1. There exists
a sequence {U, } = such that supppu, is compact and contained in E and U,
-U, strongly as n—oo. We have (X )<11m u(X)=n. Taking a subsequence 1f

necessary, we may assume H(X)—>n as "m0, We put v,=u,/u(X). Then
U, €2%,,. Since 0¢ 2% | by Theorem 5.2, we see that # is finite. Therefore
Uyn=lim U, e 2% ,. Since n21, U,=nU,/ne 2% . Thus 2;n Py, cP%
Next let 0<C¢(E)<oo. Then we have

.@i'ngx,l= N 9 n‘o/‘,x1-— N (.?gﬂ.?x,l)
e (<o

N PLy=2Pg .
w>E
C(w)<w©

Now we obtain a result corresponding to Theorem 4.3.

THEOREM 5.5. For ue % and EcX with C{(E)<w (resp. CYE)< ),
the following assertions (a;), (b)) and (c;) (resp. (a.), (b.) and (c.)) are mutually
equivalent:

(ay) u*(x)' 21n.eonkE, (a,) u*(x)=1g.e.onkE,

(b) u*(x)=1p-a.e.onX (b,) u*(x) =1 p-a.eonX
forallU,e 2% 4, for all U, e 2¢ ,, |

() W, U)21forallU, (c) W U)=1forallU,

G‘gig,l, E'yi"l.
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ProOF. (a;)<>(c;) and (a,)<>(c,) are nothing but Theorem 3.1. Since (u,
Uu)=Su*du, (b)=>(c;) and (b,)=>(c,) are trivial. Assume (c;) (resp. (c,)). Put
E'={xe X; u*(x)<1} and suppose that there is U,€ P,y (resp. 2¢,,) such
that u(E')>0. Since 0¢ 2L, (resp. 0¢ 2§ () by Theorem 5.2, we see that
w(X) is finite. Put u’'=p(E’)"'plg. Then by Proposition 4.2 and Lemma 5.1,
we see that U, € 2§ ; (resp. 2§.,). On the other Hand, (u, U,,)=Su*du'<1,
which contradicts (c;) (resp. (c,)). Hence (c;)=>(b,) (resp. (c,)=(b,)).

§6. Balayable sets

We shall say that a set E is O-capacitable if E N w is capacitable for any open
set w, and balayable if 2L{=2¢. We shall investigate relations between these
notions. First, from Lemma 5.1 and Theorem 5.2, we obtain

ProPOSITION 6.1. A set E is balayable if and only if % | =2% .
CoROLLARY. A balayable set is capacitable.

REMARK. A capacitable set is not necessarily balayable (cf. [3, 35. 1.
Example]).

We obtain the strong sub-additivity of outer capacity by virtue of Theorems
5.3 and 5.4 (cf. [6, p. 163] for proofs). Hence the union of two capacitable sets
is again capacitable (cf. [3, p. 219]).

THEOREM 6.1. An O-capacitable set is balayable.

Proor. Let E be an O-capacitable set. By Lemma 1.1 and Theorem 3.1,
(#%)°=2% and (#%5)°=2%. Hence it is sufficient to prove #i=%g. Ob-
viously #§c#i. Let uei. We put F={xeE; u*(x)<0}. Then Ci(F)=0.
From the quasi-continuity of u*, for any ¢>0, there exists an open set w such that
C(w)<e and u*|,c is continuous. Then o' =w U {x € ®°; u*(x)<0} is an open
set. Since FUw=(Enw’)Uw, FUw is capacitable by the assumption of the
theorem. Hence, by Lemma 2.2,

C(F) S C(FUw)=C(FUw) S C(F)+ Clw) =C(w) <ce.
Thus C¢(F)=0, and hence u € %§.
CoROLLARY. Any K-analytic set is balayable.

Proor. A K-analytic set is obviously O-capacitable (cf. [3, p. 139]).
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