On the Semilinear Heat Equations With Time-lag

Kusuo Kobayashi

(Received January 14, 1977)

§1. Introduction

We are concerned with the following semilinear heat equation with time-lag:

$$
\begin{equation*}
\frac{\partial}{\partial t} u(t, x)=\Delta u(t, x)+f(u(t-r, x), u(t, x)) \tag{1.1}
\end{equation*}
$$

where r is a positive constant. A. Inoue-T. Miyakawa-K. Yoshida [3] studied the initial boundary value problem of the above equation (1.1) in a domain $\boldsymbol{\Omega}$ of \boldsymbol{R}^{3} for some typical $f(\lambda, \mu)$. In this paper we assume that $f(\lambda, \mu)$ is a nonnegative continuous function and consider the initial value problem of (1.1) in the whole of \boldsymbol{R}^{d}; the initial condition for (1.1) is given by

$$
\begin{equation*}
u(t, x)=a(t, x), \quad-r \leq t \leq 0 \tag{1.2}
\end{equation*}
$$

where $a(t, x)$ is a given function on $[-r, 0] \times \boldsymbol{R}^{d}$. If we put

$$
\begin{aligned}
H(t, x, y) & =(4 \pi t)^{-d / 2} \exp \left(-\frac{|x-y|^{2}}{4 t}\right), \\
H_{t} a(x) & =\int_{R^{d}} H(t, x, y) a(y) d y
\end{aligned}
$$

then the equation (1.1) with the initial condition (1.2) is transformed into the integral equation

$$
\left\{\begin{array}{l}
u(t, x)=H_{t} a(0, x)+\int_{0}^{t} d s H_{t-s} f(u(s-r, \cdot), u(s, \cdot))(x), \quad t>0 \tag{1.3}\\
u(t, x)=a(t, x), \quad-r \leq t \leq 0
\end{array}\right.
$$

In this paper, when we speak of a solution of (1.1) with the initial condition (1.2), we always mean that it is a solution of (1.3). By a positive solution we mean a solution which is strictly positive for $t>0$. We assume the following conditions:
(f.1) $f(\lambda, \mu)$ is a non-negative continuous function defined on $\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}=[0, \infty) \times$ $[0, \infty)$ and nondecreasing in λ for each fixed μ.
(f.2)' For each positive number M, there exists a positive constant κ_{M} such that

$$
\left|f\left(\lambda, \mu_{1}\right)-f\left(\lambda, \mu_{2}\right)\right| \leq \kappa_{M}\left|\mu_{1}-\mu_{2}\right|, \quad 0 \leq \lambda, \mu_{1}, \mu_{2} \leq M .
$$

(a.1) $a(t, x)$ is a non-negative bounded continuous function on $[-r, 0] \times \boldsymbol{R}^{d}$ and $a(0, x)$ is not identically zero.

Under these conditions the equation (1.1) with the initial condition (1.2) has a unique positive (local) solution, which is denoted by $u(t, x)$ or $u(t, x ; a, f ; r)$ when we want to stress the initial value a, the nonlinear term f and the time-lag r. We say that a positive (global) solution $u(t, x)$ of (1.1) grows up to infinity (as $t \rightarrow \infty$) if for any positive number M and any compact set \boldsymbol{K} in \boldsymbol{R}^{d} there exists a positive number T such that $u(t, x) \geq M$ for any $x \in K$ and $t \geq T$.

Our problem is to find a sufficient condition for any positive global solution of (1.1) (if it exists) to grow up to infinity as $t \rightarrow \infty$. When there is no time-lag, H. Fujita [1] and K. Hayakawa [2] investigated the blowing up problem. Recently K. Kobayashi-T. Sirao-H. Tanaka [6] gave a sufficient condition for the growing up of positive solutions of (1.1) with $f(\lambda, \mu)=f(\mu)$ (without time-lag). The purpose of this paper is to extend the results of [6] to the case with time-lag.

Our main results are stated as follows. Put $f_{\delta}(\lambda)=\inf _{\lambda \leq \xi, \eta \leq \delta} f(\xi, \eta), \delta>0$ and $f_{4}(\lambda)=f(\lambda, \lambda)$. Assume that $f(\lambda, \mu)>0$ for $\lambda>0$ and $\mu>0$. Then, under some additional conditions on f, the divergence of the integral $\int_{0}^{\delta} f_{\delta}(\lambda) \lambda^{-2-(2 / d)} d \lambda$ for some $\delta>0$ implies the growing up of positive global solutions of (1.1), if they exist, while the convergence of $\int_{0}^{\delta} f_{4}(\lambda) \lambda^{-2-(2 / d)} d \lambda$ implies that there exists a positive solution of (1.1) converging to 0 uniformly in x as $t \rightarrow \infty$. Similar results can be obtained in the case when $f(\lambda, 1)=0$ for $0 \leq \lambda \leq 1$ and $f(\lambda, \mu)>0$ for $0<\lambda, \mu<1$. Finally, it will be remarked that some semilinear heat equations with time-lag can be described in terms of branching processes in a way similar to the case without time-lag.

The auther wishes to thank Professor H. Tanaka for his helpful suggestions and advice.

§2. Preliminaries

In this section we give some preliminary results, among which Theorem 2 will play an important role in the next section. First we state an elementary comparison lemma.

Lemma 1. Let $a_{i}(t, x), i=1,2$, be bounded continuous functions on $[-\dot{r}, 0] \times \boldsymbol{R}^{d}$ and $f_{i}(\lambda, \mu), i=1,2$, continuous functions on $\boldsymbol{R} \times \boldsymbol{R}$. We assume that for each $M>0$ there exists a constant $\kappa=\kappa_{M}$ such that $\left|f_{i}\left(\lambda, \mu_{1}\right)-f_{i}\left(\lambda, \mu_{2}\right)\right| \leq$ $\kappa\left|\mu_{1}-\mu_{2}\right|, i=1,2$, for $|\lambda|,\left|\mu_{1}\right|,\left|\mu_{2}\right| \leq M$, and that at least one of $f_{1}(\lambda, \mu)$ and $f_{2}(\lambda, \mu)$ is nondecreasing in λ for each fixed μ. Moreover, we assume that $f_{1} \geq f_{2}$ and $a_{1} \geq a_{2}$. Then, we have

$$
u\left(t, x ; a_{1}, f_{1} ; r\right) \geq u\left(t, x ; a_{2}, f_{2} ; r\right)
$$

for any $t \geq 0$ belonging to a time interval in which the solutions exist.
Proof. We consider the case when $f_{1}(\lambda, \mu)$ is nondecreasing in λ. We put $u_{i}(t, x)=u\left(t, x ; a_{i}, f_{i} ; r\right), i=1,2$, and prove, for each integer $n \geq 0$, that $u_{1}(t, x) \geq u_{2}(t, x)$ for any $t \in((n-1) r, n r]$ and $x \in \boldsymbol{R}^{d}$. Since the validity of the inequality for $n=0$ is a part of the assumptions of the theorem, we assume that the inequality holds for n and prove that it holds also for $n+1$. If we put $g_{i}(t, x, \mu)=$ $f_{i}\left(u_{i}(t-r, x), \mu\right), i=1,2$, then $u_{i}(t, x)$ satisfies $\partial u_{i} / \partial t=\Delta u_{i}+g_{i}\left(t, x, u_{i}\right), \quad n r \leq$ $t \leq(n+1) r$, and $u_{1}(n r, x) \geq u_{2}(n r, x), g_{1}(t, x, \mu) \geq g_{2}(t, x, \mu)$ for $n r \leq t \leq(n+1) r$. Therefore, by a well known comparison theorem in partial differential equations we have $u_{1}(t, x) \geq u_{2}(t, x)$ for $n r \leq t \leq(n+1) r$, as was to be proved. The case when $f_{2}(\lambda, \mu)$ is nondecreasing in λ can be treated similarly.

In the sequel, we assume that f is a non-negative continuous function on $\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}$satisfying the conditions (f.1) and (f.2)', and that a is a non-negative bounded continuous function on $[-r, 0] \times \boldsymbol{R}^{d}$ satisfying (a.1). The following assertions $1^{\circ}, 2^{\circ}$ and 3° can be proved in the same way as in the corresponding lemmas of [6].
1° If any positive solution $u(t, x ; a, f ; r)$ of (1.1) for any time lag $r>0$ either blows up in finite time or satisfies

$$
\underset{t \rightarrow \infty}{\limsup }\|u(t, \cdot ; a, f ; r)\|_{\infty}=\infty
$$

then any positive solution of

$$
\frac{\partial u}{\partial t}=\Delta u+\varepsilon f(u(t-r, x), u(t, x))
$$

has the same property for any $\varepsilon>0$ and $r>0$.
2° For any positive t there exist positive constants α and β such that $u(t, x$; $a, f ; r) \geq \alpha \exp \left(-\beta|x|^{2}\right)$ (provided the solution exists up to t).
3° We consider a class of monotone radial functions:

$$
\mathscr{A}=\left\{a \in C\left(\boldsymbol{R}^{d}\right): a(x) \geq 0, \not \equiv 0 ; a(x) \geq a(y) \quad \text { for } \quad|x| \leq|y|\right\} .
$$

If $f(\lambda, \mu)$ is also nondecreasing in μ for each fixed λ and if $a(t, x) \in \mathscr{A}$ for any $t \in[-r, 0]$, then $u(t, x ; a, f ; r) \in \mathscr{A}$ for $t \geq 0$ (provided the solution exists up to t).

Making use of these preliminary results $1^{\circ}, 2^{\circ}, 3^{\circ}$, we can prove the following theorems; the proof is much the same as that of Theorems 3.3, 3.4 in [6] and so is omitted.

Theorem 2. Assume that f and f satisfy (f.1) and (f.2)' and also that the
following conditions are satisfied:
(i) $f(\lambda, \mu)>0$ for $\lambda>0, \mu>0$.
(ii) $\tilde{f}(\lambda, \mu)$ is nondecreasing in μ for each fixed λ and $\tilde{f}(\lambda, 0)=\tilde{f}(0, \mu)=0$.
(iii) $\lim _{(\lambda+0, \mu+0)} \inf \frac{f(\lambda, \mu)}{\vec{f}(\lambda, \mu)}>0$.

Further, we assume that for any time-lag $r>0$ any positive solution $\tilde{u}(t, x)$ of

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta u+f(u(t-r, x), u(t, x)) \tag{2.1}
\end{equation*}
$$

either blows up in finite time or satisfies

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\|\tilde{u}(t, \cdot)\|_{\infty}=\infty \tag{2.2}
\end{equation*}
$$

Then any positive global solution of (1.1), if it exists, grows up to infinity for any time-lag $r>0$.

Theorem 2'. Let f be a non-negative continuous function defined on $[0,1] \times[0,1]$ such that $f(\lambda, 1)=0$ for $0 \leq \lambda \leq 1$ and $f(\lambda, \mu)>0$ for $0<\lambda, \mu<1$. Assume that $f(\lambda, \mu)$ is nondecreasing in λ for each fixed μ and satisfies (f.2)' with $M=1$ and that $f(\lambda, \mu)$ is a continuous function on $\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}$satisfying (f.1), (f.2)', $\tilde{f}(\lambda, 0)=f(0, \mu)=0$ and also nondecreasing in μ for each fixed λ. Further, we assume that

$$
\liminf _{(\lambda \downarrow 0, \mu \downarrow 0)} \frac{f(\lambda, \mu)}{f(\lambda, \mu)}>0
$$

and that for any time-lag $r>0$ any positive solution $\tilde{u}(t, x)$ of (2.1) either blows up in finite time or satisfies (2.2). Then any positive solution of (1.1) dominated by 1 converges to 1 uniformly on each compact set in \boldsymbol{R}^{d} as $t \rightarrow \infty$.

§3. The growing up problem

3.1. A sufficient condition for growing up

Before stating our theorem we introduce several conditions concerning f. We put $f_{\delta}(\lambda)=\inf _{\lambda \leq \xi, \eta \leq \delta} f(\xi, \eta)$ for $\lambda \leq \delta$.
(f.1) $f(\lambda, \mu)$ is a non-negative continuous function defined on $\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}$and nondecreasing in λ for each fixed μ.
(f.2) $f(\lambda, \mu)$ is a locally Lipschitz continuous function on $\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}$.
(f.3) $f(\lambda, \mu)>0$ for $\lambda>0, \mu>0$.
(f.4) $\int_{0}^{\delta} f_{\delta}(\lambda) / \lambda^{2+\frac{2}{d}} d \lambda=\infty$ for some $\delta>0$.
(f.5) There exist positive constants c and δ such that

$$
f_{\delta}\left(\lambda_{1} \lambda_{2}\right) \geq c \lambda_{2}^{1+\frac{2}{d}} f_{\delta}\left(\lambda_{1}\right) \quad \text { for } \quad 0<\lambda_{1} \leq \lambda_{2}, \lambda_{1}<c, \lambda_{1} \lambda_{2}<c
$$

Denote by \mathscr{F} the class of all functions f on $\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}$satisfying (f.1) \sim (f.5).

Theorem 3. If $f(\lambda, \mu)$ belongs to \mathscr{F}, then any positive global solution of (1.1), if it exists, grows up to infinity as $t \rightarrow \infty$.

To simplify the proof, we define a subclass $\tilde{\mathscr{F}}$ of \mathscr{F}. Namely we denote by $\widetilde{\mathscr{F}}$ the class of all functions on $\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}$satisfying (f.1), (f.2), (f.3) and the following conditions (f.4)*, (f.5)*, (f.6): Put $f_{\Delta}(\lambda)=f(\lambda, \lambda)$.

$$
\begin{equation*}
\int_{0}^{\delta} f_{4}(\lambda) / \lambda^{2}+\frac{2}{d} d \lambda=\infty \quad \text { for some } \quad \delta>0 \tag{f.4}
\end{equation*}
$$

(f.5)* There exists a positive constant c such that
(a) $f_{\Delta}\left(\lambda_{1} \lambda_{2}\right) \geq c \lambda_{2}^{1}+\frac{2}{d} f_{\Delta}\left(\lambda_{1}\right)$ for $0<\lambda_{1} \leq \lambda_{2}, \lambda_{1}<c$,
(b) $f_{4}\left(\lambda_{1} \lambda_{2}\right) \geq c \lambda_{2}^{2}+\frac{2}{d} f_{4}\left(\lambda_{1}\right)$ for $0<\lambda_{2} \leq \lambda_{1}<c$.
(f.6) $f(\lambda, \mu)$ is nondecreasing in μ for each fixed λ.

We claim that

(3.1) for each $f(\lambda, \mu)$ in \mathscr{F} there exists $\tilde{f}(\lambda, \mu)$ in $\tilde{\mathscr{F}}$ such that

$$
\liminf _{(\lambda, \mu \downarrow 0)} f(\lambda, \mu) \mid f(\lambda, \mu)>0 .
$$

In fact, applying Lemma 3.6 of [6] to $f_{\delta}(\lambda)$ we can find a nondecreasing locally Lipschitz continuous function $\tilde{f}_{\delta}(\lambda)$ satisfying (i) $\tilde{f}_{\delta}(0)=0, \tilde{f}_{\delta}(\lambda)>0(\lambda>0)$, (ii) $\int_{0+} \tilde{f}_{\delta}(\lambda) / \lambda^{2+2 / d} d \lambda=\infty$, (iii) there exists a positive constant c such that

$$
\begin{array}{ll}
\tilde{f}_{\delta}\left(\lambda_{1} \lambda_{2}\right) \geq c \lambda_{2}^{1+2 / d} \tilde{f}_{\delta}\left(\lambda_{1}\right), & 0<\lambda_{1} \leq \lambda_{2}, \lambda_{1}<c \\
\tilde{f}_{\delta}\left(\lambda_{1} \lambda_{2}\right) \geq c \lambda_{2}^{2+2 / d} \tilde{f}_{\delta}\left(\lambda_{1}\right), & 0<\lambda_{2} \leq \lambda_{1}<c
\end{array}
$$

and (iv) $\liminf _{\lambda \downarrow 0} f_{\delta}(\lambda) \mid \tilde{f}_{\delta}(\lambda)>0$. Then, $\tilde{f}(\lambda, \mu)=\tilde{f}_{\delta}(\lambda \wedge \mu)$ has the desired properties.
By virtue of (3.1) and Theorem 2, it is enough to prove Theorem 3 replacing \mathscr{F} by $\widetilde{\mathscr{F}}$. By 2° and Lemma 1 in $\S 2$, it is also enough to treat the case when $a(\cdot,$.$) satisfies a(0, x)=\alpha \exp \left(-\beta|x|^{2}\right), 0<\alpha<c, \beta>0$, where c is the constant appearing in (f.5)*. So we assume that $f \in \widetilde{\mathscr{F}}, a(0, x)=\alpha \exp \left(-\beta|x|^{2}\right)$ and define $u_{n}(t, x), n \geq 0$, as follows:

$$
u_{0}(t, x)=\left\{\begin{array}{l}
H_{t} a(0, x)=\alpha(1+4 \beta t)^{-d / 2} \exp \left\{-\beta|x|^{2} /(1+4 \beta t)\right\}, \quad t>0 \\
a(t, x), \quad-r \leq t \leq 0
\end{array}\right.
$$

$$
u_{n}(t, x)=\left\{\begin{array}{l}
H_{t} a(0, x)+\int_{0}^{t} d s H_{t-s} f\left(u_{n-1}(s-r, \cdot), u_{n-1}(s, \cdot)\right), \quad t>0 \\
a(t, x), \quad-r \leq t \leq 0, \quad(n \geq 1)
\end{array}\right.
$$

Let $u(t, x)$ be the solution of (1.1). Then by (f.1) and (f.6) we have

$$
u(t, x) \geq u_{n}(t, x), \quad n \geq 0
$$

provided that $u(\cdot,$.$) exists up to t$. To simplify the notation we put $\gamma=1+\frac{2}{d}$ and

$$
\begin{aligned}
\theta(t) & =\alpha(1+4 \beta t)^{-d / 2} \\
\varphi(t) & =\int_{0}^{t} \frac{f_{\Delta}(\theta(s))}{\theta(s)} d s=\frac{\alpha^{2 / d}}{2 \beta d} \int_{\theta(t)}^{\alpha} \frac{f_{\Delta}(\lambda)}{\lambda^{2+2 / d}} d \lambda .
\end{aligned}
$$

We note that the assumption (f.4)* implies $\varphi(t) \rightarrow \infty$ as $t \rightarrow \infty$. The following lemma is a modification of Lemma 2.2 of [6] adapted to the present situation, and fundamentally the proof is also similar. But, since the proof is somewhat complicated, we give it in full.

Lemma 4. Let $f(\lambda, \mu)$ belong to $\tilde{\mathscr{F}}$ and $a(t, x)$ be a bounded continuous function such that $a(0, x)=\alpha \exp \left(-\beta|x|^{2}\right), 0<\alpha<c, \beta>0$. Then we have for any positive integer n and $t \geq n r$

$$
\begin{equation*}
u_{n}(t, x) \geq(1+4 \beta n r)^{-d / 2}\left\{1+B_{n}(t, x)\right\} u_{0}(t-n r, x), \tag{3.2}
\end{equation*}
$$

where

$$
\begin{gathered}
B_{n}(t, x)=C_{n} \varphi(t-n r)^{1+\gamma+\cdots+\gamma^{n-1}} \exp \left\{-\frac{\beta\left(\gamma+\cdots+\gamma^{n}\right)}{1+4 \beta(t-n r)}|x|^{2}\right\}, \quad n \geq 1, \\
C_{n}=\frac{\left\{c(1+4 \beta r)^{-(1+\gamma) d / 2}\right\}^{1+\gamma+\cdots+\gamma^{n-1}}}{(1+4 \beta n r)^{-d / 2}\left(1+\gamma+\cdots+\gamma^{n}\right)^{d / 2}} \\
\quad \times \prod_{k=0}^{n-1}\left\{\frac{(1+4 \beta k r)^{-d / 2}}{\left(1+\gamma+\cdots+\gamma^{k}\right)^{1+\gamma d / 2}}\right\}^{\gamma^{n-k-1}}, n \geq 1 .
\end{gathered}
$$

Proof. We prove this lemma by induction.
Step 1. We consider the case $n=1$. First we note that for $s \geq r$

$$
\left\{\begin{align*}
u_{0}(s, x) & =\alpha(1+4 \beta s)^{-d / 2} \exp \left\{-\beta|x|^{2} /(1+4 \beta s)\right\} \tag{3.3}\\
& \geq(1+4 \beta r)^{-d / 2} u_{0}(s-r, x) \\
u_{0}(s-r, x) & \geq(1+4 \beta r)^{-d / 2} u_{0}(s-r, x)
\end{align*}\right.
$$

Since $f(\lambda, \mu)$ is nondecreasing in λ and μ, we have

$$
\begin{equation*}
u_{1}(t, x) \geq u_{0}(t, x)+\int_{r}^{t} d s H_{t-s} f_{\Delta}\left((1+4 \beta r)^{-d / 2} u_{0}(s-r, \cdot)\right)(x) . \tag{3.4}
\end{equation*}
$$

Applying (f.5)* with

$$
\begin{aligned}
& \lambda_{1}=\theta(s-r)<c, \\
& \lambda_{2}=(1+4 \beta r)^{-d / 2} \exp \left\{-\beta|x|^{2} /(1+4 \beta(s-r))\right\} \leq 1,
\end{aligned}
$$

we have

$$
\begin{align*}
& f_{\Delta}\left((1+4 \beta r)^{-d / 2} u_{0}(s-r, x)\right)=f_{\Delta}\left(\lambda_{1} \lambda_{2}\right) \tag{3.5}\\
& \geq \min \left\{c \lambda_{2}^{\gamma} f_{4}\left(\lambda_{1}\right), c \lambda_{2}^{1+\gamma} f_{\Delta}\left(\lambda_{1}\right)\right\}=c \lambda_{2}^{1+\gamma} f_{\Delta}\left(\lambda_{1}\right) \\
& =c(1+4 \beta r)^{-(1+\gamma) d / 2} \exp \left\{-(1+\gamma) \beta|x|^{2} /(1+4 \beta(s-r))\right\} f_{\Delta}(\theta(s-r))
\end{align*}
$$

In order to estimate the integrand in the right hand side of (3.4), we write

$$
\begin{aligned}
H_{t-s} & \exp \left\{-(1+\gamma) \beta|\cdot|^{2} /(1+4 \beta(s-r))\right\} \\
& =\left\{1+4 \beta^{\prime}(t-s)\right\}^{-d / 2} \exp \left\{-\beta^{\prime}|x|^{2} /\left(1+4 \beta^{\prime}(t-s)\right)\right\}, \\
\beta^{\prime} & =(1+\gamma) \beta /\{1+4 \beta(s-r)\} .
\end{aligned}
$$

Since for $r \leq s \leq t$

$$
\begin{aligned}
\left\{1+4 \beta^{\prime}(t-s)\right\}^{-d / 2} & =\left\{\frac{1+4 \beta(1+\gamma)(t-r)-4 \beta \gamma(s-r)}{1+4 \beta(t-r)}\right\}^{-d / 2} \\
& \times\left\{\frac{1+4 \beta(s-r)}{1+4 \beta(t-r)}\right\}^{d / 2} \\
& \geq(1+\gamma)^{-d / 2}\left\{(1+4 \beta(s-r))(1+4 \beta(t-r))^{-1}\right\}^{d / 2}, \\
\frac{\beta^{\prime}}{1+4 \beta^{\prime}(t-s)} & \leq \frac{\beta(1+\gamma)}{1+4 \beta(t-r)},
\end{aligned}
$$

we have

$$
\begin{align*}
& H_{t-s} \exp \left\{-(1+\gamma) \beta|\cdot|^{2} /(1+4 \beta(s-r))\right\} \tag{3.6}\\
& \geq(1+\gamma)^{-d / 2}\left\{(1+4 \beta(s-r))(1+4 \beta(t-r))^{-1}\right\}{ }^{d / 2} \\
& \quad \quad \times \exp \left\{-\beta(1+\gamma)|x|^{2} /(1+4 \beta(t-r))\right\} \\
& =(1+\gamma)^{-d / 2} u_{0}(t-r, x) \exp \left\{-\beta \gamma|x|^{2} /(1+4 \beta(t-r))\right\} / \theta(s-r) .
\end{align*}
$$

Therefore, noting $u_{0}(t, x) \geq(1+4 \beta r)^{-d / 2} u_{0}(t-r, x)$ and the definition of φ, we have from (3.4), (3.5) and (3.6)

$$
\begin{aligned}
& u_{1}(t, x) \\
& \begin{array}{l}
\geq(1+4 \beta r)^{-d / 2} u_{0}(t-r, x)\left[1+c(1+4 \beta r)^{-\gamma d / 2}(1+\gamma)^{-d / 2}\right. \\
\left.\quad \times \exp \left\{-\beta \gamma|x|^{2} /(1+4 \beta(t-r))\right\} \int_{r}^{t} \frac{f_{4}(\theta(s-r))}{\theta(s-r)} d s\right] \\
=(1+4 \beta r)^{-d / 2} u_{0}(t-r, x)\left\{1+B_{1}(t, x)\right\}, \quad t \geq r .
\end{array}
\end{aligned}
$$

Step 2. Next, assuming that (3.2) holds for n we prove that (3.2) holds also for $n+1$. Write

$$
\begin{equation*}
u_{n+1}(t, x)=u_{0}(t, x)+\int_{0}^{t} d s H_{t-s} f\left(u_{n}(s-r, \cdot), u_{n}(s, \cdot)\right)(x) . \tag{3.7}
\end{equation*}
$$

From (3.3) we have, for $s \geq(n+1) r$,

$$
\left\{\begin{array}{l}
u_{0}(s-n r, x) \geq(1+4 \beta r)^{-d / 2} u_{0}(s-(n+1) r, x) \tag{3.8}\\
u_{0}(s-(n+1) r, x) \geq(1+4 \beta r)^{-d / 2} u_{0}(s-(n+1) r, x) .
\end{array}\right.
$$

First we shall estimate $f\left(u_{n}(s-r, x), u_{n}(s, x)\right)$ from below. Since $B_{n}(t, x)$ is nondecreasing in t, the use of induction hypothesis and (3.8) implies that for $s \geq(n+1) r$
(3.9) $\min \left\{u_{n}(s-r, x), u_{n}(s, x)\right\}$

$$
\begin{aligned}
& \geq(1+4 \beta n r)^{-d / 2}\left\{1+B_{n}(s-r, x)\right\}(1+4 \beta r)^{-d / 2} u_{0}(s-(n+1) r, x) \\
& =\lambda_{1} \lambda_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \lambda_{1}=\theta(s-(n+1) r), \quad(<c), \\
& \lambda_{2}=(1+4 \beta n r)^{-d / 2}\{1+\left.B_{n}(s-r, x)\right\}(1+4 \beta r)^{-d / 2} \\
& \times \exp \left[-\beta|x|^{2} /\{1+4 \beta(s-(n+1) r)\}\right] .
\end{aligned}
$$

Since $f(\lambda, \mu)$ is nondecreasing in λ and μ, we have from (3.8) for $s \geq(n+1) r$

$$
f\left(u_{n}(s-r, x), u_{n}(s, x)\right) \geq f\left(\lambda_{1} \lambda_{2}, \lambda_{1} \lambda_{2}\right)=f_{4}\left(\lambda_{1} \lambda_{2}\right) .
$$

We now apply (f.5)* to $f_{4}\left(\lambda_{1} \lambda_{2}\right)$. In case $\lambda_{1}<\lambda_{2}$ we have from (a) of (f.5)*

$$
\begin{aligned}
& f_{\Delta}\left(\lambda_{1} \lambda_{2}\right) \geq c \lambda_{2}^{\gamma} f_{\Delta}\left(\lambda_{1}\right) \\
& =c(1+4 \beta n r)^{-\gamma d / 2}\left\{1+B_{n}(s-r, x)\right\}^{\gamma}(1+4 \beta r)^{-\gamma d / 2} \\
& \quad \times \exp \left[-\beta \gamma|x|^{2} /\{1+4 \beta(s-(n+1) r)\}\right] f_{\Delta}(\theta(s-(n+1) r),
\end{aligned}
$$

while in case $\lambda_{1} \geq \lambda_{2}$

$$
\begin{aligned}
& f_{\Delta}\left(\lambda_{1} \lambda_{2}\right) \geq c \lambda_{2}^{1+\gamma} f_{\Delta}\left(\lambda_{1}\right) \\
= & c(1+4 \beta n r)^{-(1+\gamma) d / 2}\left\{1+B_{n}(s-r, x)\right\}^{(1+\gamma)}(1+4 \beta r)^{-(1+\gamma) d / 2} \\
& \times \exp \left[-\beta(1+\gamma)|x|^{2} /\{1+4 \beta(s-(n+1) r)\}\right] f_{\Delta}(\theta(s-(n+1) r)) .
\end{aligned}
$$

Hence we have for $s \geq(n+1) r$
(3.10) $f\left(u_{n}(s-r, x), u_{n}(s, x)\right)$

$$
\begin{aligned}
\geq & c(1+ \\
& 4 \beta n r)^{-(1+\gamma) d / 2} B_{n}(s-r, x)^{\gamma}(1+4 \beta r)^{-(1+\gamma) d / 2} \\
= & c(1+4 \beta n r)^{-(1+\gamma) d / 2}(1+4 \beta r)^{-(1+\gamma) d / 2} C_{n}^{\gamma} \\
& \quad \times \exp \left(-\beta(1+\gamma)|x|^{2} /\{1+4 \beta(s-(n+1) r)\}\right] f_{\Delta}\left(\theta\left(\left.s\right|^{2}\right) \varphi(s-(n+1) r)\right) \\
& (n+1) r)^{\gamma+\cdots+\gamma^{n}} f_{\Delta}(\theta(s-(n+1) r)),
\end{aligned}
$$

where $\beta^{\prime \prime}=\beta\left(1+\gamma+\cdots+\gamma^{n+1}\right) /\{1+4 \beta(s-(n+1) r)\}$. Next, in order to estimate the integrand in the right hand side of (3.7), we notice that for $(n+1) r \leq s \leq t$

$$
\begin{aligned}
& \left\{1+4 \beta^{\prime \prime}(t-s)\right\}^{-d / 2} \\
& \geq\left\{\frac{1+4 \beta\left(1+\gamma+\cdots+\gamma^{n+1}\right)(t-(n+1) r)}{1+4 \beta(t-(n+1) r)}\right\}^{-d / 2} \\
& \qquad \quad \times\left\{\frac{1+4 \beta(s-(n+1) r)}{1+4 \beta(t-(n+1) r)}\right\}^{d / 2} \\
& \geq\left(1+\gamma+\cdots+\gamma^{n+1}\right)^{-d / 2}\left\{\frac{1+4 \beta(s-(n+1) r)}{1+4 \beta(t-(n+1) r)}\right\}^{d / 2}, \\
& \frac{\beta^{\prime \prime}}{1+4 \beta^{\prime \prime}(t-s)} \leq \frac{\beta\left(1+\gamma+\cdots+\gamma^{n+1}\right)}{1+4 \beta(t-(n+1) r)} .
\end{aligned}
$$

Then we have for $(n+1) r \leq s \leq t$

$$
\begin{align*}
& H_{t-s} \exp \left(-\beta^{\prime \prime}|\cdot|^{2}\right) \tag{3.11}\\
& =\left(1+4 \beta^{\prime \prime}(t-s)\right)^{-d / 2} \exp \left\{-\beta^{\prime \prime}|x|^{2} /\left(1+4 \beta^{\prime \prime}(t-s)\right)\right\} \\
& \geq \frac{\left(1+\gamma+\cdots+\gamma^{n+1}\right)^{-d / 2}}{\theta(s-(n+1) r)} \\
& \quad \times \exp \left\{-\frac{\beta\left(\gamma+\cdots+\gamma^{n+1}\right)}{1+4 \beta(t-(n+1) r)}|x|^{2}\right\} u_{0}(t-(n+1) r, x) .
\end{align*}
$$

Therefore, from (3.7), (3.10) and (3.11) we have for $t \geq(n+1) r$

$$
\begin{align*}
& u_{n+1}(t, x)-u_{0}(t, x) \tag{3.12}\\
& \geq c(1+4 \beta n r)^{-(1+\gamma) d / 2}(1+4 \beta r)^{-(1+\gamma) d / 2} \\
& \quad \times C_{n}^{\gamma}\left(1+\gamma+\cdots+\gamma^{n+1}\right)^{-d / 2} \\
& \quad \times \exp \left\{-\frac{\beta\left(\gamma+\cdots+\gamma^{n+1}\right)}{1+4 \beta(t-(n+1) r)}|x|^{2}\right\} u_{0}(t-(n+1) r, x) \\
& \quad \times \int_{(n+1) r}^{t} \varphi(s-(n+1) r)^{\gamma+\cdots+\gamma^{n}} \frac{f_{\Delta}(\theta(s-(n+1) r))}{\theta(s-(n+1) r)} d s .
\end{align*}
$$

Since

$$
\begin{aligned}
& \int_{(n+1) r}^{t} \varphi(s-(n+1) r)^{\gamma+\cdots+\gamma^{n}} \frac{f_{\Delta}(\theta(s-(n+1) r))}{\theta(s-(n+1) r)} d s \\
& =\left(1+\gamma+\cdots+\gamma^{n}\right)^{-1} \varphi(t-(n+1) r)^{1+\gamma+\cdots+\gamma^{n}}, \\
& u_{0}(t, x) \geq\{1+4 \beta(n+1) r\}^{-d / 2} u_{0}(t-(n+1) r, x), \\
& \quad t \geq(n+1) r,
\end{aligned}
$$

inserting the explicit representation of C_{n} into the right hand side of (3.12), we finally obtain

$$
\begin{aligned}
u_{n+1}(t, x) \geq(1+4 \beta(n+1) r)^{-d / 2}\left\{1+B_{n+1}(t, x)\right\} u_{0}(t-(& n+1) r, x), \\
& t \geq(n+1) r,
\end{aligned}
$$

and so the lemma is proved.
Now we proceed to the proof of Theorem 3. We may assume that f belongs to $\tilde{\mathscr{F}}$ and $a(0, x)=\alpha \exp \left(-\beta|x|^{2}\right), 0<\alpha<c, \beta>0$. By Lemma 4 we have for $n \geq 1$ and $t \geq n r$,

$$
\begin{align*}
& u(t, x) \geq(1+4 \beta n r)^{-d / 2} B_{n}(t, x) u_{0}(t-n r, x) \tag{3.13}\\
&= \alpha(1+4 \beta n r)^{-d / 2}(1+4 \beta(t-n r))^{-d / 2} B_{n}(t, x) \\
& \quad \times \exp \left\{-\beta|x|^{2} /(1+4 \beta(t-n r))\right\} \\
&= D_{1} D_{2} D_{3} D_{4},
\end{align*}
$$

where

$$
\begin{aligned}
& D_{1}=\alpha(1+4 \beta(t-n r))^{-d / 2}\left(1+\gamma+\cdots+\gamma^{n}\right)^{-d / 2} \\
& D_{2}=\left\{c(1+4 \beta r)^{-(1+\gamma) d / 2} \varphi(t-n r)\right\}^{1+\gamma+\cdots+\gamma^{n-1}} \\
& \\
& \quad \times \exp \left\{-\beta\left(1+\gamma+\cdots+\gamma^{n}\right)|x|^{2} /(1+4 \beta(t-n r))\right\},
\end{aligned}
$$

$$
\begin{aligned}
& D_{3}=\prod_{k=0}^{n-1}(1+4 \beta k r)^{-(d / 2) \gamma^{n-k-1}}, \\
& D_{4}=\prod_{k=0}^{n-1}\left(1+\gamma+\cdots+\gamma^{k}\right)^{(1+\gamma d / 2) \gamma^{n-k-1}} .
\end{aligned}
$$

We notice that

$$
\begin{equation*}
D_{1} \geq \alpha(1+4 \beta(t-n r))^{-d / 2} \gamma^{-(n+1) d / 2}(\gamma-1)^{d / 2} . \tag{3.14}
\end{equation*}
$$

Since

$$
\begin{gathered}
c(1+4 \beta r)^{-(1+\gamma) d / 2} \varphi(t-n r) \exp \left\{-\beta(1+\gamma)|x|^{2} /(1+4 \beta(t-n r))\right\} \\
\equiv \Phi(t, x, n) \geq 1
\end{gathered}
$$

for x belonging to a compact set provided $t-n r$ is large enough,

$$
\begin{equation*}
D_{2} \geq \Phi(t, x, n)^{1+\gamma+\cdots+\gamma^{n-1}} \geq \Phi(t, x, n)^{\gamma^{n-1}} \tag{3.15}
\end{equation*}
$$

Since $\sum_{k=0}^{\infty} \gamma^{-k} \log (1+4 \beta k r)<\infty$, we have

$$
\begin{align*}
D_{3} & =\exp \left\{-\gamma^{n-1} \frac{d^{n}}{2} \sum_{k=0}^{n-1} \gamma^{-k} \log (1+4 \beta k r)\right\} \tag{3.16}\\
& >\exp \left(-A_{1} \gamma^{n-1}\right),
\end{align*}
$$

where $A_{1}=(d / 2) \sum_{k=0}^{\infty} \gamma^{-k} \log (1+4 \beta k r)$. Further, since

$$
\begin{aligned}
& \prod_{k=0}^{n-1}\left(1+\gamma+\cdots+\gamma^{k}\right)^{-(1+\gamma d / 2) \gamma^{-k}} \\
& \\
& \quad \geq(\gamma-1)^{(1+\gamma d / 2) \sum_{k=0}^{n-1} \gamma^{-k}} \gamma^{-(1+\gamma d / 2) \sum_{k=0}^{n-1}(k+1) \gamma^{-k}},
\end{aligned}
$$

we have

$$
\begin{equation*}
D_{4} \geq\left(\gamma \gamma_{0}^{A} \gamma^{-A_{3}}\right)^{\gamma^{n-1}}, \tag{3.17}
\end{equation*}
$$

where $\gamma_{0}=(\gamma-1) \wedge 1, A_{2}=(1+\gamma d / 2) \sum_{k=0}^{\infty} \gamma^{-k}<\infty$ and $A_{3}=(1+\gamma d / 2) \sum_{k=0}^{\infty}(k+$ 1) $\gamma^{-k}<\infty$. If we put

$$
A=c(1+4 \beta r)^{-(1+\gamma) d / 2} e^{-A_{1}} \gamma_{0}^{A_{2}} \gamma^{-A_{3}},
$$

then from (3.13) $\sim(3.17)$ we have

$$
\begin{aligned}
u(t, x) \geq & \alpha(\gamma-1)^{d / 2}\{1+4 \beta(t-n r)\}^{-d / 2}\left[\gamma^{-(n+1) d \gamma^{1-n / 2}}\right. \\
& \left.\times A \varphi(t-n r) \exp \left\{-\beta(1+\gamma)|x|^{2} /(1+4 \beta(t-n r))\right\}\right]^{\gamma^{n-1}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& u(t, x) \geq \alpha(\gamma-1)^{d / 2}\{1+4 \beta(t-n r)\}^{-d / 2}\left[\frac{1}{2} A \varphi(t-n r)\right. \\
&\left.\times \exp \left\{-\beta(1+\gamma)|x|^{2} /(1+4 \beta(t-n r))\right\}\right]^{y-1}
\end{aligned}
$$

for $t \geq n r$ provided n is sufficiently large so that $\gamma^{-(n+1) d \gamma^{1-n} / 2} \geq \frac{1}{2}$ holds. For any compact set \boldsymbol{K} in \boldsymbol{R}^{d} we can find a positive t_{0} such that

$$
\frac{A}{2} \varphi(t-n r) \exp \left[-\beta(1+\gamma)|x|^{2} /\{1+4 \beta(t-n r)\}\right] \geq 2
$$

for any $x \in \boldsymbol{K}$ and $t \geq t_{0}+n r$. Since for any positive M there exists a positive integer N such that for any $n \geq N$ and $t_{0} \leq t_{1} \leq t_{0}+r$

$$
\alpha(\gamma-1)^{d / 2} 2^{\gamma n-t}\left(1+4 \beta t_{1}\right)^{-d / 2} \geq M
$$

we have

$$
u(t, x) \geq M
$$

for any $x \in \boldsymbol{K}, n \geq N$ and $t_{0}+n r \leq t \leq t_{0}+(n+1) r$. This completes the proof of Theorem 3.

Theorem 3'. Let f be a Lipschitz continuous function on $[0,1] \times[0,1]$ such that $f(\lambda, 1)=0$ for $0 \leq \lambda \leq 1$ and $f(\lambda, \mu)>0$ for $0<\lambda, \mu<1$. If $f(\lambda, \mu)$ is nondecreasing in λ for each fixed μ and satisfies the conditions (f.4) and (f.5), then any positive solution $u(t, x)$, dominated by 1 , of the equation (1.1) converges to 1 uniformly on each compact set in \boldsymbol{R}^{d} as $t \rightarrow \infty$.

This is an immediate consequence of Theorem 3 and Theorem 2^{\prime}.

3.2. A sufficient condition for non-growing up

Theorem 5. Assume that $f(\lambda, \mu)$ satisfies the conditions (f.1), (f.2), (f.6) and the following conditions:

$$
\begin{align*}
& \int_{0}^{\delta} f_{\Delta}(\lambda) / \lambda^{2}+\frac{2}{d} d \lambda<\infty \text { for some } \quad \delta>0 . \tag{f.7}\\
& f_{\Delta}(\lambda) / \lambda \text { is nondecreasing in } \lambda>0 . \tag{f.8}
\end{align*}
$$

Then, for any time-lag r there exists a positive solution $u(t, x)$ of (1.1) converging to 0 uniformly in x as $t \rightarrow \infty$.

Assume that the initial value $a(t, x)$ is equal to $a(x)=\alpha \exp \left(-\beta|x|^{2}\right)$ for any $-r \leq t \leq 0$. We consider the following equation

$$
\left\{\begin{array}{l}
\frac{d w}{d t}=\frac{f_{\Delta}(b \theta(t) w(t))}{\theta(t)} \\
w(0)=1
\end{array}\right.
$$

where $\theta(t)=\sup _{x \in \mathbf{R}^{d}} H_{t} a(x)=\alpha(1+4 \beta t)^{-d / 2}$ and

$$
\begin{aligned}
b & =\max \left\{\sup _{t \geq r, x \in R^{d}} H_{t-r} a(x) / H_{t} a(x), \sup _{0 \leq t \leq r, x \in R^{d}} a(x) / H_{t} a(x)\right\} \\
& =(1+4 \beta r)^{d / 2}>1 .
\end{aligned}
$$

Then, as in Lemma 5.2 of [6] we can prove that $u(t, x ; a, f ; r) \leq w(t) H_{t} a(x)$. The rest of the proof is much the same as that of Theorem 5.1 of [6], and so is omitted.

§4. Remarks to associated branching models

Some semilinear heat equations with time-lag can be described by branching processes in the frame of N. Ikeda-M. Nagasawa-S. Watanabe [4]. For simplicity we consider the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta u+u^{m}(t-r, x) u^{n}(t, x)-u(t, x), \tag{4.1}
\end{equation*}
$$

where m and n are non-negative integers such that $m+n \geq 2$. Let S be the direct sum $\boldsymbol{R}^{d}+[-r, 0) \times \boldsymbol{R}^{d}$ which is to be the basic state space of the branching process described below. At time $t=0$, a single particle commences a Brownian motion $\{\mathrm{X}(t)\}$ on \boldsymbol{R}^{d}, starting from the origin and continuing for an exponential holding time ζ (branching time) independent of $\{X(t)\}$ with $P(\zeta>t)=e^{-t}$. At time ζ, the particle splits in $m+n$ new particles, n particles among which continue along independent Brownian paths on \boldsymbol{R}^{d} starting from $X(\zeta)$ until new branching time; the other m particles are swept out to the place $(-r, X(\zeta)) \in[-r, 0) \times \boldsymbol{R}^{d}$ at time ζ and, after obeying to the deterministic process $\{(-r+t-\zeta, X(\zeta))\}$ for $\zeta \leq t<\zeta+r$, at time $\zeta+r$ they land on \boldsymbol{R}^{d} at the place $X(\zeta)$ from which they again commence independent Brownian motions on \boldsymbol{R}^{d} until new branching times. Each of these particles, in turn, is subject to the same branching rule as above. Let $a(s, x)$ be a continuous function on $[-r, 0] \times \boldsymbol{R}^{d}$ such that $0 \leq$ $a(s, x) \leq 1$. If, at time $t, k(t)$ particles $X_{1}(t), \ldots, X_{k(t)}(t)$ are in \boldsymbol{R}^{d} and $\ell(t)$ particles $\left(\rho_{1}(t), Y_{1}(t)\right), \ldots,\left(\rho_{\ell(t)}(t), Y_{\ell(t)}(t)\right)$ are in $[-r, 0) \times \boldsymbol{R}^{d}$, then

$$
u(t, x)=E\left\{\prod_{i=1}^{k(t)} a\left(0, x+X_{i}(t)\right) \prod_{j=1}^{\ell(t)} a\left(\rho_{j}(t), x+Y_{j}(t)\right)\right\}
$$

satisfies the equation

$$
\begin{equation*}
u(t, x)=e^{-t} H_{t} a(0, x)+\int_{0}^{t} e^{-s} H_{s}\left\{u^{m}(t-s-r, \cdot) u^{n}(t-s, \cdot)\right\} d s \tag{4.2}
\end{equation*}
$$

Next, if we put $v(t, x)=1-u(t, x)$, then $v(t, x)$ satisfies (1.1) with $f(\lambda, \mu)=$ $-(1-\lambda)^{m}(1-\mu)^{n}+1-\mu$, for which the assumption of Theorem 2^{\prime} are satisfied with $f(\lambda, \mu)=\min \left(\lambda^{1+2 / d}, \mu^{1+2 / d}\right)$. It is easy to see that f satisfies the assumption of Theorem 3.

The branching model associated with the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta u+u^{m}(t-r, x) u^{n}(t, x) \tag{4.3}
\end{equation*}
$$

can also be obtained by introducing "age" as in M. Nagasawa [7], T. Sirao [8] and K. Kobayashi [5].

References

[1] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, Sect. I, 13 (1966), 109-124.
[2] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad., 49 (1973), 503-505.
[3] A. Inoue, T. Miyakawa and K. Yoshida, Some properties of solutions for semilinear heat equations with time-lag, to appear in J. Differential Equations.
[4] N. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes, I, II, III, J. Math. Kyoto Univ., 8 (1968), 233-278, 365-410, 9 (1969), 95-160.
[5] K. Kobayashi, Some remarks to the construction of branching Markov processes with age and sign, Hiroshima Math. J., 3 (1973), 439-449.
[6] K. Kobayashi, T. Sirao and H. Tanaka, On the growing up problem for semilinear heat equations, to appear in J. Math. Soc. Japan.
[7] M. Nagasawa, Construction of branching Markov processes with age and sign, Kōdai Math. Semi. Rep., 20 (1968), 469-508.
[8] T. Sirao, On signed branching Markov processes with age, Nagoya Math. J., 32 (1968), 155-225.

Department of Mathematics,
Faculty of Science, Hiroshima University*)

[^0]
[^0]: *) The present address of the author is as follows: Department of Mathematics, Toyama University, Gofuku, Toyama, Japan.

