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§ 1. Introduction

We are concerned with the following semilinear heat equation with time-lag:

(1.1)

where r is a positive constant. A. Inoue-T. Miyakawa-K. Yoshida [3] studied
the initial boundary value problem of the above equation (1.1) in a domain

Ω of R3 for some typical /(A, μ). In this paper we assume that /(A, μ) is a non-

negative continuous function and consider the initial value problem of (1.1) in
the whole of Rd; the initial condition for (1.1) is given by

(1.2) ιι(f, x) = a(t, x), - r < t < 0,

where α(ί, x) is a given function on [ — r, 0] x/ld. If we put

//(/, *, J>) = (4πtΓd/2 exp ( -

then the equation (1.1) with the initial condition (1.2) is transformed into the
integral equation

ί tι(f, x) = //fα(0, x) + Γ dsHt_sf(u(s - r, . ), κ(s, . ))(x), t > 0,
(1.3) Jo

U(ί, x) = Λ(/, x), - r < ί <0.

In this paper, when we speak of a solution of (1.1) with the initial condition (1.2),

we always mean that it is a solution of (1.3). By a positive solution we mean

a solution which is strictly positive for t > 0. We assume the following conditions :

(f.l) /(λ, μ) is a non-negative continuous function defined on Λ+x Λt = [0, oo) x

[0, oo) and nondecreasing in λ for each fixed μ.

(f.2)' For each positive number M, there exists a positive constant KM such
that

ii) -/(A, μ2)l <: κMlμι - ^1, -0 < A, μx, μ2 ̂  M.
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(a.l) 0(ί, x) is a non-negative bounded continuous function on [-r, Q]xRd

and α(0, x) is not identically zero.

Under these conditions the equation (1.1) with the initial condition (1.2) has a

unique positive (local) solution, which is denoted by w(f, x) or w(ί, x; α,/; r)

when we want to stress the initial value a, the nonlinear term / and the time-lag

r. We say that a positive (global) solution u(t9 x) o/(l.l) grows up to infinity

(as f-χx)) if for any positive number M and any compact set K in Rd there

exists a positive number Tsuch that u(t, x)>M for any xeK and t>T.
Our problem is to find a sufficient condition for any positive global solution

of (1.1) (if it exists) to grow up to infinity as f->oo. When there is no time-lag,
H. Fujita [1] and K. Hayakawa [2] investigated the blowing up problem. Re-
cently K. Kobayashi-T. Sirao-H. Tanaka [6] gave a sufficient condition for the

growing up of positive solutions of (1.1) with/(A, μ) =/(μ) (without time-lag).

The purpose of this paper is to extend the results of [6] to the case with time-lag.
Our main results are stated as follows. Put fδ(λ)= inf f(ξ,η), <5>0

λ£ξ,η£δ

and fΔ(λ)=f(λ, λ). Assume that f(λ, μ)>0 for A>0 and μ>0. Then,
under some additional conditions on /, the divergence of the integral

$ δ
fδ(λ)λ~2~(2/d)dλ for some <5>0 implies the growing up of positive global

o
Γδ

solutions of (1.1), if they exist, while the convergence of \ fΔ(λ)λ~2~(2/d)dλ
Jo

implies that there exists a positive solution of (1.1) converging to 0 uniformly
in x as f->oo. Similar results can be obtained in the case when f(λ, 1) = 0 for
0<Λ.<1 and/(Λ., μ)>0 for 0<A, μ<l. Finally, it will be remarked that some

semilinear heat equations with time-lag can be described in terms of branching
processes in a way similar to the case without time-lag.

The auther wishes to thank Professor H. Tanaka for his helpful suggestions
and advice.

§2. Preliminaries

In this section we give some preliminary results, among which Theorem 2
will play an important role in the next section. First we state an elementary
comparison lemma.

LEMMA!. Let afa x), ί = l, 2, be bounded continuous functions on
[ — r, 0] xRd and ft(λ9 μ), ΐ = l, 2, continuous functions on RxR. We assume

that for eachM>Qthere exists a constant κ = κMsuch that \fάλ,μl) — f£λ9μ2)\£

K\Vi-V>2\> ϊ = l» 2, for \λ\9 IμJ, |μ2|<M, and that at least one of f^λ, μ) and
f2(λ, μ) is nondecreasing in λfor each fixed μ. Moreover, we assume thatfl>f2

and aί>a2. Then, we have
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u(t, x; aί9 Λ; r) > u(t, x; a2,f2; r)

for any />0 belonging to a time interval in which the solutions exist.

PROOF. We consider the case when fι(λ, μ) is nondecreasing in λ. We
put Mf(ί, x) = u(t, x; a i, /f; r), / = !, 2, and prove, for each integer w>0, that
uί(t,x)>u2(t, x) for any ίe((w — l)r, nr] and xeRd. Since the validity of the in-
equality for n = 0 is a part of the assumptions of the theorem, we assume that the
inequality holds for n and prove that it holds also for n + 1 . If we put g f(f , x, μ) =
fi(Ui(t-r, x), μ), ι = l, 2, then «,•(*, x) satisfies duJdt — Λui + g^ x, M;), nr<
ί<(w + l)r, and u^nr, x)>u2(nr, x), ^(f, x, μ)>g2(t, x, μ) for nr<f<(n + l)r.
Therefore, by a well known comparison theorem in partial differential equations
we have u±(t9 x)>u2(t, x) for nr<ί<(n + l)r, as was to be proved. The case
when f2(λ, μ) is nondecreasing in λ can be treated similarly.

In the sequel, we assume that / is a non-negative continuous function on
R+ xR+ satisfying the conditions (f.l) and (f.2)', and that a is a non-negative
bounded continuous function on [ — r, 0]x/ϊd satisfying (a.l). The following
assertions 1°, 2° and 3° can be proved in the same way as in the corresponding
lemmas of [6].
1° If any positive solution u(t9 x; Λ,/; r) of (1.1) for any time lag r>0 either
blows up in finite time or satisfies

. α , ; = 00,
f-»oo

then any positive solution of

^ = Δu + εf(u(l - r9 x), u(t9 x))

has the same property for any ε>0 and r>0.
2° For any positive t there exist positive constants α and β such that w(ί, x;
a,f; r)>αexp( — β\x\2) (provided the solution exists up to i).
3° We consider a class of monotone radial functions :

^ = {a E C(Rd): a(x) > 0, φ 0; a(x) > a(y) for |x| < |j,|} .

If f(λ9 μ) is also nondecreasing in μ for each fixed λ and if α(ί, x) e ja^ for any
ίe[— r, 0], then u(t, x; a,f; r)ej/ for ί>0 (provided the solution exists up

to i).

Making use of these preliminary results Γ, 2°, 3°, we can prove the following
theorems; the proof is much the same as that of Theorems 3.3, 3.4 in [6] and so
is omitted.

THEOREM 2. Assume that f and J satisfy (f.l) and (f.2)' and also that the
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following conditions are satisfied:

(i) /(λ, j ι)>0 for λ>0,μ>0.
(ii) /(A, μ) is nondecreasing in μfor each fixed λ andf(λ, 0) =/(0, μ) = 0.

(iii) lim inf > 0.
( A 4 0 , μ 4 0 ) / ( / , μ)

Further, we assume that for any time-lag r>0 any positive solution u(t, x) of

(2.1) <^L = Au + J(u(t - r, x), u(ί, x))

either blows up in finite time or satisfies

(2.2) lim sup || w(ί,.) I I 00 = °o.
r-»oo

Then any positive global solution o/(l.l), if it exists, grows up to infinity for
any time-lag r>0.

THEOREM 2'. Let f be a non-negative continuous function defined on
[0, l]x[0, 1] such that f(λ9 l) = 0/or 0<A<1 and f(λ, μ)>0 for 0<λ,μ<l.
Assume that f(λ, μ) is nondecreasing in λ for each fixed μ and satisfies (f.2)'
with M = l and that J(λ, μ) is a continuous function on R+xR+ satisfying
(f.l), (f.2)', /(A, 0) = /(0, ju) = 0 and also nondecreasing in μ for each fixed λ.
Further, we assume that

and that for any time-lag r>Q any positive solution u(t, x) of(2Λ) either blows
up infinite time or satisfies (2.2). Then any positive solution o/(l.l) dominated
by 1 converges to 1 uniformly on each compact set in Rd as ί-»oo.

§ 3. The growing up problem

3.1. A sufficient condition for growing up

Before stating our theorem we introduce several conditions concerning/.
We put/,(A)= inf /({, η) for λ<δ.

(f.l) f(λ9μ) is a non-negative continuous function defined on R+xR+ and
nondecreasing in λ for each fixed μ.

(f.2) f(λ, μ) is a locally Lipschitz continuous function on R+ xR+.
(f.3) f(λ, μ) > 0 for λ > 0, μ > Ό.

(f.4) (δfδ(λ)/λ2^dλ = oo for some δ > 0.
Jo
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(f.5) There exist positive constants c and δ such that

ΛOM2) > cλi+ifάλj for 0 < A! < A2, A A < c, λtλ2 < c.

Denote by IF the class of all functions / on R+ xR+ satisfying (f.l)~
(f.5).

THEOREMS. ///(A, μ) belongs to &, then any positive global solution
0/ (1.1), if it exists, grows up to infinity as ί-»oo.

To simplify the proof, we define a subclass «# of "̂. Namely we denote
by & the class of all functions on R+ x R + satisfying (f.l), (f.2), (f.3) and the
following conditions (f.4)*, (f.5)*, (f.6): Put L(A) = /(A, A).

(f.4)* Γ fΔ(λ)/λ2+Jdλ = oo for some δ > 0.
Jo

(f.5)* There exists a positive constant c such that

(a) MλM > cλyϊfΔ(λJ for 0 < A! < A2, A t < c,

(b) /d^i^) > CAH//AO for o < A 2 < Λ < c .

(f.6) /(A, μ) is nondecreasing in μ for each fixed λ.
We claim that
(3. 1) for each /(A, μ) in J5" there exists /(A, μ) in & such that

liminf /(A, μ)//(A, μ) >0.
(λ,μlO)

In fact, applying Leίnma 3.6 of [6] to fδ(λ) we can find a nondecreasing locally
Lipschitz continuous function Jδ(λ) satisfying (i) //O) = 0, /3(λ)>0 (A>0),

(ii) \ fδ(λ)/λ2+2/ddλ=co9 (iiϊ) there exists a positive constant c such that
Jo-f

, 0 < A! < A2, A! < c,

> cAi^/^(Al)) o < A2 < λ, < c,

and (iv) liminf/<5(A)//ί(A)>0. Then, /(Aj μ)=Λ(AΛμ) has the desired properties.
Λ I O

By virtue of (3.1) and Theorem 2, it is enough to prove Theorem 3 replacing
•F by ̂ . By 2° and Lemma 1 in §2, it is also enough to treat the case when
α( , .) satisfies α(0, x) = αexp(-/?|x|2), 0<α<c, /?>0, where c is the constant
appearing in (f.5)*. So we assume that /e ,̂ α(0, x) = α exp(- j8|x|2) and define
un(t, x), n>0, as follows:

ί Hfα(0, x) = α(l + 4βt)-«2exp { - β\x\2/(l + 4βt)}9 t > 0,
Uo(t, x) =

l f l( ί , x), - r < ί < 0 .
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Hta(09 x) + Γ dsHt.J(un.,(s - r, . ), ̂ (s, - )), t> 0,
11.0, X) = j°

fl(f, x), - r < ί < 0, (n > 1).

Let u(t, x) be the solution of (1.1). Then by (f.l) and (f.6) we have

u(ί, x) > un(ί, x), n > 0,

provided that w(., .) exists up to t. To simplify the notation we put y = l + -y

and

0(0 = α(l

We note that the assumption (f.4)* implies φ(0-* °° as f-> oo . The following lemma
is a modification of Lemma 2.2 of [6] adapted to the present situation, and funda-
mentally the proof is also similar. But, since the proof is somewhat complicated,
we give it in full.

LEMMA 4. Let f(λ, μ) belong to & and a(t, x) be a bounded continuous
function such that α(0, x) = αexp( — j8|x|2), 0<α<c, /?>0. Then we have for
any positive integer n and t>nr

(3.2) u,,(ί, x) > (1 + 40nr)-'/2{l + Bn(t, x)}u0(ί - »r, x),

where

Bn(t, x) = Cnφ(t -

"
4βnrΓd'2(l + y

PROOF. We prove this lemma by induction.
Step 1. We consider the case n = l. First we note that for si>r

(3.3)

{ u0(s -r,x)> (1 + 4βrrd/2 u0(s - r, x) .

Since /(A, μ) is nondecreasing in λ and μ, we have

(3.4) «,(ί, x) > «0(t, x) + dsί/,_sMl + 4βr)-d/2u0(s - r,
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Applying (f.5)* with

A! = θ(s — r) < c,

Aa = (1 + 4/Jr)-"/2exp{ - jS|x|2/(l + 4β(s - r))} < 1,

we have

(3.5) /J((l

η(ί + 4β(s - r))}L(θ(s - r)).

In order to estimate the integrand in the right hand side of (3.4), we write

//,_sexp { - (1 + j)β\ - 12/(1 + 4β(s - r))}

= {1 + 4β'(t - S)}-"/'exp{ - β'\x\2l(ί + 4β'(t - s))},

Since for r<s<ί

.. 4β(s -

4j8(s - r))(l + 4β(t

β' ^^ βd + y)
1 +4/ϊ'(ί- j) ~ 1 +4j8 (/-/•)'

we have

(3.6) H,_ fexp{ - (1 + y)^| . |2/(1 + 4β(s - r))}

> (1 + y)-'ί/2{(l + 4β(s - /•))(! + 4β(ί - r))

x exp {-/?( !+ 7) U 1 2 /(l+4jS(ί -/•))}

= (1 + 7)-<"2M0(' - /-, *) exp { - βy\x\2l(l + 4β(t - r))}/0(ί - r).

Therefore, noting u0(t, x)>(l+4βr)~d/2u0(t-r, x) and the definition of φ,
we have from (3.4), (3.5) and (3.6)
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ί, X)

^ (1 + 4βrΓd/2u0(t - r, x)\

x e x p { - / J y | x | 2 / ( l + 4β(t-

= (1 + 4j3r)-"/2u0(ί - r, x) {1 + B,(f, x)}, ί > r.

Step 2. Next, assuming that (3.2) holds for n we prove that (3.2) holds also for
n + 1. Write

(3.7) MΛ + t(ί, x) = u0(ί, x) + {' dsHt-J(un(s - r, .), uπ(s,. )) (x).
JO

From (3.3) we have, for s > (n + l)r,

ί MO(S - nr, x) > (1 + 4)8r)-d/2M0(s - (n + l)r, x),
(3.8)

I MO(S - (n + l)r, x) > (1 + 4βrrd/2u0(s - (n + l)r, x).

First we shall estimate f(un(s — r, x), wn(5, x)) from below. Since Bn(t, x) is non-

decreasing in ί, the use of induction hypothesis and (3.8) implies that for si>(n + l)r

(3.9) min {un(s - r, x), un(s, x)}

> (1 + 4βnr)-d/2{l 4- Bn(s - r, x)} (1 + 4βr)~d/2u0(s - (n + 1) r, x)

where

B r ts - r,

x exp [-/? |χ |2/{l+ 4^(5 -(n + l)r)}].

Since /(A, μ) is nondecreasing in λ and μ, we have from (3.8) for s>(n-f l)r

/(MΛ(S - r, x), IIB(S, x)) ^/(A^, A X A 2 ) =L(AiA2).

We now apply (f.5)* to /J(A1A2). In case A j < A2 we have from (a) of (f.5)*

>

= c (1 + 4j?w)-*d/2{l + Bn(s - r, jc)

x exp [ - β y \ x \ 2 / { l
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while in case λί>λ2

+ Bn(s - r,

x exp [ - β(l + y) |*| 2 / { l + 4β(s - (n + l)r)}-\fΔ(θ(s - (a + I)/-))

Hence we have for s>(n + l)r

(3.10) f(un(s - r, x), un(s, x))

> c(l + 4βnr)-<ίW2Bn(s - r, x)?(l + 4β

x exp [ - β(l + J ) \ x \ 2 l { l + 4β(s - (n

x exp ( - β"\x\*)φ(s - (n + Or)'*""^"/.^ - (n + l)r)) ,

where β"=β(l + y + +yn+ί)/{l+4β(s-(n + l)r)}. Next, in order to estimate
the integrand in the right hand side of (3.7), we notice that for (n + l)r<s<ί

{1 + 4β"(t - s)}-"/2

> J l + 40(1 + y + ••• + y"+1) (t-(n+ l ) r ) Γ d / 2

- I 1 + 4β(i - (n + l)r) f

x J l + 4 f f ( Λ - ( « + l ) r ) I '/2

\l+4β(t -(«+l)r)J

> n + v + ... + r+i)-a/2 J l + 4 / K 5 - O i + l ) r ) l « / '> u + r + + y ) \l+4β(t_(n + 1)r) I .

~
/?(! + y 4- - + y"+1)

1 + 4)3" (ί - J) ~ 1 4- 4)?(ί - (n + l)r) '

Then we have for (π + l)r<s^ί

(3.11) /Γ,_.exp(-/!Ί. l 2 )

« (1 + 4/ϊ"«- ί))-"/2 exp { - Γ^I2/(1 + 4)3"« -

Therefore, from (3.7), (3.10) and (3.11) we have for ί>(n + l)r
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(3.12) «,+ 1(/, x) - uQ(t, x)

i i

'*'
1 + 4/K* - (« +

f ' g(, - (, + l)rr+...^fAΘ(s - (n '.+ IV))
J(»+i)r 0(j - (n

Since

- (n

inserting the explicit representation of Cn into the right hand side of (3.12), we
finally obtain

un+l(t9 x) > (1 + 4β(n + l)r)-d/2{l + BH+i(t, x)}u0(t - (n + l)r, x),

and so the lemma is proved.

Now we proceed to the proof of Theorem 3. We may assume that / belongs

to & and α(0, x) = αexp(-/?|x|2), 0<α<c, /?>0. By Lemma 4 we have for n > 1
and t>nr,

(3.13) u(t, x) > (1 + 4βnrΓd/2Bn(t, x)u0(t - nr, x)

4β(t - nr)Γd/2Bn(t, x)

where

x exp{ - 0(1 + y + •".+ yrt)|x|2/(l 4- 4/?(ί - nr))},
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#3 = Yϊα + 4βkrΓ(d/2)vn-k~l,
k=0

#4 = "Π (1 + 7 + - + y*)
fc=0

We notice that

(3.14) D! > α(l + 4β(t - nr)Fd/2

Since

c(i + 4βr)-(1+y)d/2φ(t - nr) exp { - /?(! + r)|x|2/(l + 4jJ(ί - nr))}

Ξ Φ(ί, X, «) > 1

for x belonging to a compact set provided t — nr is large enough,

(3.15) D2 > Φ(t, x, n)i+i+'"+iH'1 > Φ(t, x, n)^'1.

Since Σ?=o7~fc!og(l+4j?/cr)<oo, we have

(3.16) D3 = exp I - yn~l 4"Σ 7~k log (1 + 4βkr)\
( 2 f c = o j

> exp(- Λy"'1),

where A1=(ί//2)Σ^=0y- fclog(l+4jS/cr). Further, since

fc=o

> (y

we have

(3.17)

where y0 = (7-l)Λl, ^2 = (l+7^/2)Σ?=o7"fe<oo and A3 =
l)y~k<oo. If we put

A = c(l + 4^

then from (3.13)^(3.17) we have

u(t9x) > α(y - l) d/ 2{l + 4β(t -

x ^φ(/ - ΛΓ) exp { - jS(l + y ) \ x \ 2 / ( l + 4β(ί -

and hence
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u(t, x) > α(y - l) d/ 2{l + 4β(t - nr)}-«2A(p(t - nr)

x exp { - β(l + y ) \ x \ 2 / ( l + 4β(t - w)

for t>nr provided n is sufficiently large so that y-(«+υdy 1 -"/2> _1 holds. For

any compact set K in Rd we can find a positive t0 such that

--φ(t - ΛΓ) exp [ - 0(1 + ?)M 2/{1 + 4j5(ί - /IT)}] > 2

for any x e K and f > f 0 + nr. Since for any positive M there exists a positive

integer N such that for any n > N and ί0 ̂  *ι ̂  *o + r

- ί(l + 4βtlΓ
d/2

we have

w(f, x) > M

for any xeK, n>ΛΓ and /o + ̂ ^^^^o + C^ + l)^ This completes the proof
of Theorem 3.

THEOREM 3'. Let f be a Lipschitz continuous function on [0, 1] x [0, 1]
such that /(A, 1) = 0 for 0<A<1 and f(λ, μ)>0 for 0< λ, μ<l. ///(A, μ) is
nondecreasing in λ for each fixed μ and satisfies the conditions (f.4) and (f.5),
then any positive solution u(t, x), dominated by 1, of the equation (1.1) converges
to I uniformly on each compact set in Rd as f->oo.

This is an immediate consequence of Theorem 3 and Theorem 2'.

3.2. A sufficient condition for non-growing up

THEOREM 5. Assume that f(λ, μ) satisfies the conditions (f.l), (f.2), (f.6)
and the following conditions:

(LI) (δfΔ(λ)lλ2+Jdλ < oo for some δ >0.
J o

(f.8) /dWM is nondecreasing in λ > 0.

Then, for any time-lag r there exists a positive solution u(t, x) o/(l.l) converging
to 0 uniformly in x as t-+ao.

Assume that the initial value α(ί, x) is equal to α(x) = αexp( — β\x\2) for any
We consider the following equation
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_ fΔ(bθ(t)v>(t))
dt θ(t)

w(0) = 1 ,

where 0(f) = sup#fα(x) = α(l +4jβf)~d/2 and
xeR*

sup Ht_ra(x)/Hta(x), sup a(x)/Hta(x)}

Then, as in Lemma 5.2 of [6] we can prove that u(t9 x; α, /; r)<w(t)Hta(x).
The rest of the proof is much the same as that of Theorem 5.1 of [6], and so

is omitted.

§4. Remarks to associated branching models

Some semilinear heat equations with time-lag can be described by branching
processes in the frame of N. Ikeda-M. Nagasawa-S. Watanabe [4]. For simplicity
we consider the equation

(4.1) - - = Au + um(ί - /% *)!*»(/, x) - «(/, x) ,

where m and n are non-negative integers such that m + n>2. Let S be the direct
sum JRd4-[— r, 0)xΛ d which is to be the basic state space of the branching
process described below. At time ί = 0, a single particle commences a Brownian
motion {X(ί)} on Rd, starting from the origin and continuing for an exponential
holding time ζ (branching time) independent of {X(t)} with P(ζ>i)~e~t. At
time C, the particle splits in m +n new particles, n particles among which continue
along independent Brownian paths on Rd starting from X(ζ) until new branching
time; the other m particles are swept out to the place ( — r, X(ζ))e [— r, 0)xRd

at time ζ and, after obeying to the deterministic process {( — r + ί — C, X(ζ))}
for ζ < f < ζ + r, at time ζ + r they land on Rd at the place X(ζ) from which they
again commence independent Brownian motions on Rd until new branching
times. Each of these particles, in turn, is subject to the same branching rule as
above. Let α(s, x) be a continuous function on [— r, 0]x/td such that 0<

a(s9 x)<l. If, at time ί, k(t) particles X $),..., Xk(t)(i) are in Rd and £(t)

particles (p^ί), ¥&)),..., (ρ£w(t), r/w(0) are in [-r,0)x«d, then

Jt(ί)
= E{ Π

satisfies the equation
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(4.2) u(t, x) = e~1Hta(Q9 x)+(t e~sHs{um(t - s - r, - )un(t - s,

Next, if we put v(t, x) = l-u(t, x), then v(t, x) satisfies (1.1) with f(λ,μ) =
-(l-λ)m(l-μ)Λ + l-μ, for which the assumption of Theorem 2' are satisfied
with f(λ, μ)= min(λί+2/d, μ1+2/d ). It is easy to see that /satisfies the assump-
tion of Theorem 3.

The branching model associated with the equation

(4.3) ~~ = Δu + um(t - r, x)un(t9 x)

can also be obtained by introducing "age" as in M. Nagasawa [7], T. Sirao [8]
and K. Kobayashi [5].
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