Eigenfunctions of the Laplacian on a Real Hyperboloid of One Sheet

Kenji HIRAOKA, Shuichi MATSUMOTO and Kiyosato Окамото (Received May 20, 1977)

Introduction

In this paper we deal with an analogue of the Helgason conjecture [3] on the case of a real hyperboloid of one sheet. Contrary to the case of symmetric spaces any C^{∞} eigenfunction of the Casimir operator on our space is a "Poisson transform" of some C^{∞} function on the sphere. Our method is quite different from those of [2], [3], [5] etc. (cf. Remark 2). The authors are very grateful to Professor G. Schiffmann for helpful discussions.

§1. Notation and Preliminaries

Let X denote the real hyperboloid of one sheet in \mathbb{R}^{p+1} $(p \ge 2)$ defined by $x_1^2 + \cdots + x_p^2 - x_{p+1}^2 = 1$. Then the Lorentz group $G = SO_0(p, 1)$ acts canonically on X so that X is identified with the homogeneous space G/H_0 , where

$$H_0 = \left\{ \begin{bmatrix} 1 & 0 \cdots \cdots & 0 \\ 0 & & \\ \vdots & * \\ 0 & & \end{bmatrix} \in G \right\}.$$

Put

$$H = \left\{ \begin{bmatrix} \pm 1 & 0 \cdots \cdots 0 \\ 0 & \\ \vdots & * \\ 0 & \end{bmatrix} \in G \right\}.$$

Then any function f in $C^{\infty}(G/H)$ is identified with a C^{∞} function f on X such that $f(x)=f(-x)(x \in X)$. We regard $C^{\infty}(G/H)$ as a subspace consisting of all f in $C^{\infty}(G)$ such that $f(gh)=f(g)(g \in G, h \in H)$.

We denote by g the Lie algebra of G. Then g is identified with the set of all matrices (a_{ij}) $(1 \le i, j \le p+1)$ such that $a_{ii}=0$ $(1 \le i \le p+1)$, $a_{ij}=-a_{ji}$ $(1 \le i \le j \le p)$ and $a_{p+1,j}=a_{j,p+1}$ $(1 \le j \le p)$. We define subalgebras \mathfrak{k} , \mathfrak{m} , \mathfrak{a} and \mathfrak{n} as follows. Let E_{ij} be the matrix such that the (i, j) component is equal to 1 and the other components are all equal to 0. We put $X_{ij}=E_{ij}-E_{ji}$ $(1 \le i \le j \le p)$ and $Y_i=E_{i,p+1}+E_{p+1,i}$ $(1 \le i \le p)$. Let \mathfrak{k} , \mathfrak{a} and \mathfrak{n} be the subalgebras spanned

by X_{ij} $(1 \le i, j \le p)$, Y_1 and $X_{1,i} + Y_i$ $(2 \le i \le p)$, respectively. Let m be the centralizer of a in \mathfrak{k} . We denote by K, M, A and N the analytic subgroups of G corresponding to \mathfrak{k} , m, a and n, respectively. Then we have G = KAH. It follows that any f in $C^{\infty}(G/H)$ is uniquely determined by its value on KA.

Put P=MAN. Then P is a minimal parabolic subgroup of G. For any real number t we put $a_t = \exp tY_1$. We fix a complex number s once for all and consider the character ξ_s of P defined by $\xi_s(ma_tn) = e^{(2s+p-1)t/2}$ $(m \in M, a_t \in A, n \in N)$. Let L_s be the associated line bundle over G/P and $C^{\infty}(G/P, L_s)$ the space of all C^{∞} sections of L_s . Then $C^{\infty}(G/P, L_s)$ is canonically identified with the set of all ϕ in $C^{\infty}(G)$ such that $\phi(gma_tn) = e^{-(2s+p-1)t/2}\phi(g)$ $(g \in G, m \in M, a_t \in A, n \in N)$. On the other hand $C^{\infty}(K/M)$ is canonically identified with the set of all ϕ in $C^{\infty}(K)$ such that $\phi(km) = \phi(k)$ $(k \in K, m \in M)$. The Iwasawa decomposition G = KAN gives us the isomorphism

$$C^{\infty}(G/P, L_s) \ni \phi \longrightarrow \phi|_K \in C^{\infty}(K/M).$$

For any g in G, f in $C^{\infty}(G/H)$ and ϕ in $C^{\infty}(G/P, L_s)$, we define $(\pi(g)f)(x) = f(g^{-1}x)$ and $(\pi_s(g)\phi)(x) = \phi(g^{-1}x)$ $(x \in G)$. Then π and π_s are representations of G on $C^{\infty}(G/H)$ and $C^{\infty}(G/P, L_s)$. Let $d\pi$ and $d\pi_s$ be the infinitesimal representations of g defined by π and π_s , respectively. We denote by the same notation the representations of the universal enveloping algebra of g which are uniquely determined by $d\pi$ and $d\pi_s$, respectively.

§2. The Casimir Operator

Let Ω be the Casimir operator of g. Then

$$\Omega = \frac{1}{2(p-1)} \left(-\sum_{1 \le i < j \le p} X_{ij}^2 + \sum_{1 \le i \le p} Y_i^2 \right),$$

where X_{ij}^2 and Y_i^2 denote the squares in the universal enveloping algebra of g. We denote by Ω_K the Casimir operator of \mathfrak{k} defined by the bilinear form $(2(p-1))^{-1}B(X, Y) (X, Y \in \mathfrak{k})$, where B is the Killing form of g. Then we have the following

LEMMA 1. 1) For any f in
$$C^{\infty}(G/H)$$
,
 $(d\pi(\Omega)f)(ka_t)$

$$= \frac{1}{2(p-1)} \left\{ \frac{\partial^2}{\partial t^2} + (p-1) \operatorname{th} t \frac{\partial}{\partial t} + \frac{d\pi(\Omega_K)}{\operatorname{ch}^2 t} \right\} f(ka_t)$$
 $(k \in K, a_t \in A).$

2) For any ϕ in $C^{\infty}(G/P, L_s)$,

$$d\pi_{\mathcal{S}}(\Omega)\phi = \frac{1}{2(p-1)}\left(s - \frac{p-1}{2}\right)\left(s + \frac{p-1}{2}\right)\phi.$$

The proof is the same as in [5] so that we omit the proof.

§3. The Intertwining Operator \mathcal{P}_{S}

For any $x = {}^{t}(x_1, ..., x_{p+1})$ and $y = {}^{t}(y_1, ..., y_{p+1})$ in \mathbb{R}^{p+1} , we put $\langle x, y \rangle = x_1 y_1 + \cdots + x_p y_p - x_{p+1} y_{p+1}$. For any ϕ in $C^{\infty}(G/P, L_s)$ we define

$$(\mathbf{I}_{s}\phi)(g) = \int_{K} |\langle g^{-1}ke_{1}, e_{2} \rangle|^{(2s-p+1)/2}\phi(k)dk \qquad (g \in G),$$

where dk is the normalized Haar measure on K, $e_1 = {}^{t}(1, 0, ..., 0, 1)$ and $e_2 = {}^{t}(1, 0, ..., 0)$. The integral converges and defines a holomorphic function of s when $\operatorname{Re} s > (p-3)/2$. It can be extended meromorphically to the whole complex plane which has poles of order one at $s - (p-1)/2 \in \{-1, -3, -5, ...\}$. We put $\mathscr{P}_s = \frac{1}{\Gamma((2s-p+3)/4)} I_s$. Then \mathscr{P}_s is defined for all complex number s and it is easy to see that \mathscr{P}_s is an intertwining operator of $C^{\infty}(G/P, L_s)$ into $C^{\infty}(G/H)$. Moreover one has the following lemma.

Lemma 2.

$$\mathscr{P}_{s} \circ d\pi_{s}(\Omega) = d\pi(\Omega) \circ \mathscr{P}_{s}.$$

We put $\mathscr{H}_s = \{f \in C^{\infty}(G/H); d\pi_s(\Omega)f = (2(p-1))^{-1}(s+(p-1)/2)(s-(p-1)/2)f\}$. Then we obtain

COROLLARY. \mathcal{P}_s maps $C^{\infty}(G/P, L_s)$ into \mathcal{H}_s .

Notice that K/M is canonically isomorphic to S^{p-1} . We denote by Λ the set of all integers or all non negative integers in case p=2 or $p \ge 3$, respectively. Then the zonal spherical function ω_m with height $m(m \in \Lambda)$ is given by

$$\omega_{m}(\exp(\theta_{p-1}X_{p-1,p})\exp(\theta_{p-2}X_{p-2,p-1})\cdots\exp(\theta_{1}X_{12})),$$

$$=\begin{cases}
F(m+p-2, -m, (p-1)/2, (1-\cos\theta_{1})/2) & (p \ge 3), \\
e^{im\theta_{1}} & (p=2).
\end{cases}$$

In the rest of this paper we assume that $p \ge 3$. In the case p=2 the proof is much easier. We denote by Λ_+ or Λ_- the set of all m in Λ which are even or odd, respectively. Let τ be the left regular representation of K on $C^{\infty}(K/M)$. For any m in Λ we denote by Γ_m the subspace of $C^{\infty}(K/M)$ which is spanned by the elements $\tau(k)\omega_m$ $(k \in K)$. Let τ_m be the restriction of τ to Γ_m . Then, as is wellknown, $\{(\tau_m, \Gamma_m)\}_m \in \Lambda$ exhausts up to equivalence the set of all irreducible repre-

sentations (of K) of class one with respect to M.

For any ϕ in $C^{\infty}(K/M)$ we put

$$\phi_m(k) = d_m \int_K \overline{\chi_m(k_1)} \phi(k_1^{-1}k) dk_1 \qquad (k \in K),$$

where χ_m and d_m denote the character and the degree of τ_m , respectively. Let \mathscr{H}_m be the space of vectors in $C^{\infty}(G/H)$ which transform according to τ_m . We denote $\mathscr{H}_{s,m} = \mathscr{H}_s \cap \mathscr{H}_m$. For any f in \mathscr{H}_s we put

$$f_m(g) = d_m \int_K \overline{\chi_m(k)} f(k^{-1}g) dk \qquad (g \in G).$$

Then it is obvious that $f_m \in \mathscr{H}_{s,m}$ and that f=0 if and only if $f_m=0$ for all m in Λ .

LEMMA 3. 1) For any ϕ in $C^{\infty}(K/M)$ the expansion $\phi(k) = \sum_{m \in A} \phi_m(k)$ converges absolutely and uniformly on K.

2) For any f in \mathscr{H}_s the expansion $f(ka_t) = \sum_{m \in \Lambda} f_m(ka_t)$ converges absolutely and uniformly on K.

This lemma is proved by the usual routine.

When Res is sufficiently large, the following lemma is an immediate consequence of the fact that \mathcal{P}_s is an intertwining operator. By the analytic continuation we obtain

LEMMA 4. For any ϕ in $C^{\infty}(K/M)$,

$$(\mathscr{P}_{s}\phi)_{m} = \mathscr{P}_{s}\phi_{m} \qquad (m \in \Lambda).$$

COROLLARY. For any ϕ in $C^{\infty}(K/M)$,

$$(\mathscr{P}_{s}\phi)(ka_{t}) = \sum_{m \in A} (\mathscr{P}_{s}\phi_{m})(ka_{t})$$

converges absolutely and uniformly on K.

PROPOSITION 1. For any ϕ in Γ_m $(m \in \Lambda)$,

$$(\mathscr{P}_{s}\phi)(ka_{t}) = (\mathscr{P}_{s}\omega_{m})(a_{t})\phi(k) \qquad (k \in K, a_{t} \in A).$$

PROOF. For any ϕ in Γ_m we put

$$\phi_{\mathbf{M}}(k) = \int_{\mathbf{M}} \phi(mk) dm \qquad (k \in K),$$

where dm is the normalized Haar measure on M. Then clearly we have $\phi_M = \phi(e)\omega_m$.

Eigenfunctions of the Laplacian on a Real Hyperboloid

$$\begin{aligned} (\mathscr{P}_{s}\phi)(a_{t}) &= \frac{1}{\Gamma((2s-p+3)/4)} \int_{K} | < ke_{1}, a_{t}e_{2} > |^{(2s-p+1)/2}\phi(k) \, dk \\ &= \frac{1}{\Gamma((2s-p+3)/4)} \int_{K} | < mke_{1}, a_{t}e_{2} > |^{(2s-p+1)/2}\phi(mk) \, dk \\ &= \frac{1}{\Gamma((2s-p+3)/4)} \int_{K} | < ke_{1}, a_{t}e_{2} > |^{(2s-p+1)/2}\phi(mk) \, dk \\ &= \frac{1}{\Gamma((2s-p+3)/4)} \int_{K} | < ke_{1}, a_{t}e_{2} > |^{(2s-p+1)/2}\phi_{M}(k) \, dk \\ &= \frac{1}{\Gamma((2s-p+3)/4)} \int_{K} | < ke_{1}, a_{t}e_{2} > |^{(2s-p+1)/2}\phi(e)\omega_{m}(k) \, dk \\ &= (\mathscr{P}_{s}\omega_{m})(a_{t})\phi(e). \end{aligned}$$

Since \mathcal{P}_s is an intertwining operator, we have

$$(\mathscr{P}_{s}\phi)(ka_{t}) = (\mathscr{P}_{s}\omega_{m})(a_{t})\phi(k).$$

§4. K-finite Eigenfunctions

In this section we study the space $\mathscr{H}_{s,m}$ $(m \in \Lambda)$ by means of the separation variables. Fix any f in $\mathscr{H}_{s,m}$. Then by definition

$$d\pi(\Omega)f = \frac{1}{2(p-1)}\left(s - \frac{p-1}{2}\right)\left(s + \frac{p-1}{2}\right)f.$$

On the other hand, from Lemma 1 we have

$$(d\pi(\Omega)f)(ka_t) = \frac{1}{2(p-1)} \left\{ \frac{\partial^2}{\partial t^2} + (p-1) \operatorname{th} t \frac{\partial}{\partial t} + \frac{d\tau(\Omega_K)}{\operatorname{ch}^2 t} \right\} f(ka_t).$$

Since $d\tau_m(\Omega_K) = m(m+p-2)I$, from the above formulas we get

$$\begin{cases} \frac{\partial^2}{\partial t^2} + (p-1) \operatorname{th} t \frac{\partial}{\partial t} + \frac{m(m+p-2)}{\operatorname{ch}^2 t} \\ - \left(s - \frac{p-1}{2}\right) \left(s + \frac{p-1}{2}\right) \right\} f(ka_t) = 0. \end{cases}$$

Now we define $F_f(k, t) = f(ka_t)$ and $F_f^{\pm}(k, t) = 1/2\{f(kk_0a_t) \pm f(ka_t)\}$, where $k_0 = \text{Diag}(-1, -1, 1, ..., 1)$. For any t in **R** let V_t^{\pm} denote the subspace of \mathscr{H}_m which is spanned by $F_f^{\pm}(\cdot, t)(f \in \mathscr{H}_{s,m})$. Then it is easy to see that V_t^{\pm} is an invariant subspace of \mathscr{H}_m . Let M' be the normalizer of A in K. Then $M' = M \cup k_0 M$. We denote by σ_{\pm} the representation of M' which is trivial on M such that $\sigma_{\pm}(k_0) = \pm I$. On the other hand it is clear that V_t^{\pm} is contained in the

induced representation from M' to K generated by σ_{\pm} . It follows from the Frobenius reciprocity law that $V_t^{\pm} \neq \{0\}$ if and only if the restriction of τ_m to M' contains σ_{\pm} (which is equivalent to saying that $\tau_m(k_0)\omega_m = \pm \omega_m$). Since $\tau_m(k_0)\omega_m = (-1)^m \omega_m$, $V_t^{\pm} \neq \{0\}$ if and only if $(-1)^m = \pm 1$. For any f in $\mathscr{H}_{s,m}$ and k in K, we define $F_f^k(t) = f(ka_t)$.

Let us consider an ordinary differential equation

(1)
$$\left\{ \frac{d^2}{dt^2} + (p-1) \operatorname{th} t \frac{d}{dt} + \frac{m(m+p-2)}{\operatorname{ch}^2 t} - \left(s - \frac{p-1}{2}\right) \left(s + \frac{p-1}{2}\right) \right\} F(t) = 0$$

under the condition

(2)
$$F(-t) = (-1)^m F(t)$$
.

Then in the above we have proved that $F_f^k(t)$ satisfies the equation (1) under the condition (2). We put $x = th^2 t$. Fix any solution F(t) of the differential equation (1) and we put

$$u(x) = (1 - x)^{-(2s+p-1)/4} F(x).$$

Then u satisfies the hypergeometric equation;

$$x(1-x)\frac{d^2u}{dx^2} + \{c - (a+b+1)x\}\frac{du}{dx} - abu = 0,$$

where a=s/2-m/2-p/4+3/4, b=s/2+m/2+p/4-1/4 and c=1/2. Thus we conclude that $F_f^k(t)$ coincides, up to constant, with $F_{s,m}(t)$, where

$$F_{s,m}(t) = \begin{cases} \operatorname{ch} t^{-(2s+p-1)/2} F\left(\frac{s}{2} - \frac{m}{2} - \frac{p}{4} + \frac{3}{4}, \frac{s}{2} + \frac{m}{2} \right. \\ \left. + \frac{p}{4} - \frac{1}{4}, \frac{1}{2}, \operatorname{th}^{2} t\right) & (m \in \Lambda_{+}), \\ \operatorname{ch} t^{-(2s+p-1)/2} \operatorname{th} t F\left(\frac{s}{2} - \frac{m}{2} - \frac{p}{4} + \frac{5}{4}, \frac{s}{2} + \frac{m}{2} \right. \\ \left. + \frac{p}{4} + \frac{1}{4}, \frac{2}{3}, \operatorname{th}^{2} t\right) & (m \in \Lambda_{-}). \end{cases}$$

It follows that $F_f(k, t) = \phi(k) F_{s,m}(t)$ for some ϕ in \mathcal{H}_m . Thus we proved the following

PROPOSITION 2. $\mathscr{H}_{s,m}$ is an irreducible K-module which is equivalent to τ_m .

Fix any *m* in Λ . Then by the corollary to Lemma 2, $\mathscr{P}_s \omega_m \in \mathscr{H}_{s,m}$. Hence there exists a constant $C_{s,m}$ such that $(\mathscr{P}_s \omega_m)(a_t) = C_{s,m} F_{s,m}(t)$, where the constant $C_{s,m}$ is given as follows:

$$= \frac{-2^{p-2}\Gamma(p/2)\Gamma((p-1)/2)\Gamma((p-2)/2)\Gamma((2s-p+5)/4)}{\pi(p-3)!\Gamma((2s-2m-p+3)/4)\Gamma((2s+2m+p-1)/4)}$$

$$(m \in \Lambda_{-}).$$

Now we assume the following

(A)
$$s + \frac{p}{2} + \frac{1}{2} \notin 2\mathbb{Z}$$
 and $s - \frac{p}{2} + \frac{1}{2} \notin 2\mathbb{Z}$.

PROPOSITION 3. Under the assumption (A), \mathcal{P}_s gives a K-isomorphism of Γ_m onto $\mathcal{H}_{s,m}$.

PROOF. In view of Proposition 2 we have only to prove the injectiveness. For any ϕ in Γ_m Proposition 1 implies that

$$(\mathscr{P}_{s}\phi)(ka_{t}) = (\mathscr{P}_{s}\omega_{m})(a_{t})\phi(k) = C_{s,m}F_{s,m}(t)\phi(k).$$

Since $F_{s,m}(t) \neq 0$, \mathscr{P}_s is injective if and only if $C_{s,m} \neq 0$. Using the above formulas for $C_{s,m}$, it is easy to check that $C_{s,m} \neq 0$ under the assumption (A).

PROPOSITION 4. Let s satisfy the assumption (A). Then there exists a polynomial P_s such that $|C_{s,m}|^{-1} \leq P_s(m)$ for all m in Λ .

PROOF. For any m in Λ_+ we know that

$$C_{s,m} = C_p \frac{\Gamma((2s-p+5)/4)}{\Gamma((2s-2m-p+5)/4)\Gamma((2s+2m+p+1)/4)},$$

where

$$C_{P} = \frac{2^{p-3}\Gamma(p/2)\Gamma((p-1)/2)\Gamma((p-2)/2)}{\pi(p-3)!}$$

On the other hand

Kenji HIRAOKA, Shuichi MATSUMOTO and Kiyosato OKAMOTO

$$\Gamma\left(\frac{s}{2} - \frac{m}{2} - \frac{p}{4} + \frac{5}{4}\right)\Gamma\left(\frac{s}{2} + \frac{m}{2} + \frac{p}{4} + \frac{1}{4}\right)$$
$$= \frac{(-1)^{m/2}\pi\Gamma((2s + 2m + p + 1)/4)}{\sin\pi(2s - p + 5)/4\Gamma((-2s + 2m + p - 1)/4)}$$

We put $Q_s(x) = \prod_{1 \le j \le q} (s/2 + x/2 + p/4 + 1/4 - j)$, where q is the smallest positive integer such that $q > \operatorname{Re} s + 1/2$. Then it is easy to prove that there exists a positive constant γ_s such that $|C_{s,m}|^{-1}|Q_s(m)|^{-1} \le \gamma_s$ for all m in Λ_+ . For Λ_- we get a similar polynomial Q'_s and a constant γ'_s . The proposition is now obvious.

§5. Proof of the main theorem

First we need one more lemma.

LEMMA 5. Fix any f in \mathcal{H}_s . Then for any polynomial P, $\Sigma P(m) f_m(ka_t)$ and $\Sigma P(m) \{ (d/dt) f_m(ka_t) \}$ converge absolutely and uniformly on K.

PROOF. Let f be in \mathcal{H}_s . Then, since

$$\Omega_{K} + \left(\frac{p-2}{2}\right)^{2} = \left\{m(m+p-2) + \left(\frac{p-2}{2}\right)^{2}\right\}I$$
$$= \left(m + \frac{p-2}{2}\right)^{2}I$$

on Γ_m , for any positive integer n we have

$$d_m \int_K \overline{\chi_m(k)} \left[\left\{ \Omega_K + \left(\frac{p-2}{2} \right)^2 \right\}^n f \right] (k^{-1}g) dk$$
$$= \left(m + \frac{p-2}{2} \right)^{2n} f_m(g) .$$

On the other hand for any polynomial P there exists a positive number *n* such that $|P(m)| \le (m+(p-2)/2)^{2n}$. Applying $[\Omega_K + ((p-2)/2)^2]^n$ to Lemma 3, we conclude that $\Sigma P(m) f_m(ka_t)$ converges absolutely and uniformly on K. If we replace $f(ka_t)$ by $(d/dt) f(ka_t)$, the proof is complete.

THEOREM. Under the assumption (A), the map \mathcal{P}_s is a linear isomorphism of $C^{\infty}(G/P, L_s)$ onto \mathcal{H}_s .

PROOF. In view of the corollary to Lemma 2 it is sufficient to prove that \mathscr{P}_s is bijective. For any f in \mathscr{H}_s , from Lemma 3 we have $f(ka_t) = \sum f_m(ka_t)$. The right hand side converges absolutely and uniformly on K. By Propositions

1 and 3, for any m in Λ there exists a unique ϕ_m in Γ_m such that

$$f_m(ka_t) = (\mathscr{P}_s \phi_m)(ka_t)$$
$$= (\mathscr{P}_s \omega_m)(a_t) \phi_m(k)$$

For any polynomial we have

$$\sum_{m \in A} |\mathbf{P}(m)\phi_{m}(k)|$$

$$= \sum_{m \in A_{+}} |\mathbf{P}(m)\phi_{m}(k)| + \sum_{m \in A_{-}} |\mathbf{P}(m)\phi_{m}(k)|$$

$$\leq \sum_{m \in A_{+}} |\mathbf{P}(m)| |(\mathscr{P}_{s}\omega_{m})(a_{0})|^{-1} |f_{m}(k)|$$

$$+ \sum_{m \in A_{-}} |\mathbf{P}(m)| \left| \left[\frac{d}{dt} (\mathscr{P}_{s}\omega_{m})(a_{t}) \right|_{t=0} \right] \right|^{-1} \left| \frac{d}{dt} f_{m}(k) \right|$$

It follows from Proposition 4 and Lemma 5 that there exists a polynomial Q such that

$$\sum_{m\in\Lambda} |\mathsf{P}(m)\phi_m(k)| \leq \sum_{m\in\Lambda_+} |\mathsf{Q}(m)| |f_m(k)| + \sum_{m\in\Lambda_-} |\mathsf{Q}(m)| \left| \frac{d}{dt} f_m(k) \right|.$$

Hence from Lemma 5 $\sum_{m \in \Lambda} P(m)\phi_m(k)$ converges absolutely and uniformly on K. Using [6], we see that $\sum \phi_m(k)$ defines a C^{∞} function on K/M which we denote by $\phi(k)$. It is now obvious that $\mathscr{P}_s \phi = f$, which shows that \mathscr{P}_s is surjective. Suppose $\mathscr{P}_s \phi = 0$ for some ϕ in $C^{\infty}(G/P, L_s)$. According to Lemma 3, we expand $\phi(k) = \sum \phi_m(k)$. Then by the corollary to Lemma 4 $0 = \mathscr{P}_s \phi = \sum \mathscr{P}_s \phi_m$. Hence by Lemma 3 $\mathscr{P}_s \phi_m = 0$ for all m in Λ . It follows from Proposition 3 that $\phi_m = 0$ for all m in Λ . Thus $\phi = 0$, which completes the proof of the theorem.

REMARK 1. The real hyperboloid of one sheet is an affine symmetric space [1]. For the general affine symmetric spaces one can easily formulate an analogue of the Helgason conjecture [3]. However our case is, essentially, the only case that any C^{∞} eigenfunction can be obtained as an image of a C^{∞} section of L_s .

REMARK 2. Our result can be proved by the method similar to that in [5] (see [4]).

References

- M. Berger, Les espaces symétriques non compacts, Ann. Sci. École Norm. Sup., 74 (1957), 85–177.
- S. Helgason, Eigenspaces of the laplacian; Integral representations and irreducibility, J. Functional Analysis, 17 (1974), 328–353.

- [3] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, to appear.
- [4] S. Matsumoto, Boundary value problems on a real hyperboloid of one sheet, to appear.
- [5] K. Minemura, Eigenfunctions of the laplacian on a real hyperbolic space, J. Math. Soc. Japan, 27 (1975), 82-105.
- [6] M. Sugiura, Fourier series of smooth functions on compact Lie groups, Osaka J. Math., 8 (1971), 33-47.

Department of Mathematics, Faculty of Science, Hiroshima University