Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems

Kenji Томоeda

(Received May 18, 1977)

1. Introduction

Let us consider the Cauchy problem for a hyperbolic system

$$
\begin{gather*}
\frac{\partial u}{\partial t}(x, t)=\sum_{j=1}^{n} A_{j}(x, t) \frac{\partial u}{\partial x_{j}}(x, t) \quad\left(0 \leqq t \leqq T,-\infty<x_{j}<\infty\right), \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad u_{0}(x) \in L_{2} \tag{1.2}
\end{gather*}
$$

where $u(x, t)$ and $u_{0}(x)$ are N-vectors and $A_{j}(x, t)(j=1,2, \ldots, n)$ are $N \times N$ matrices, and assume that this problem is well posed. For the numerical solution of this problem we consider the following difference scheme:

$$
\begin{gather*}
v(x, t+k)=S_{h}(t, h) v(x, t) \quad\left(0 \leqq t \leqq T,-\infty<x_{j}<\infty\right), \tag{1.3}\\
v(x, 0)=u_{0}(x), \quad k=\lambda h \quad(\lambda>0), \tag{1.4}
\end{gather*}
$$

where $S_{h}(t, \mu)$ is a sum of products of operators of the form $\sum_{\alpha} c_{\alpha}(x, t, \mu) T_{h}^{\alpha}$ ($\mu \geqq 0$), α is a multi-index, $c_{\alpha}(x, t, \mu)$ is an $N \times N$ matrix, T_{h} is the translation operator and h is a space mesh width.

In our previous paper [5] we treated the case where $A_{j}(x, t)(j=1,2, \ldots, n)$ are independent of t, and obtained sufficient conditions for L_{2}-stability of the scheme (1.3). In this paper we extend the results to the system (1.1) that satisfies the following conditions: Eigenvalues of $A(x, t, \xi)=\sum_{j=1}^{n} A_{j}(x, t) \xi_{j}|\xi|(\xi \neq 0)$ are all real and their multiplicities are independent of x, t and ξ; elementary divisors of $A(x, t, \xi)$ are all linear; there exists a positive constant δ such that

$$
\left|\lambda_{i}(x, t, \xi)-\lambda_{j}(x, t, \xi)\right| \geqq \delta \quad(i \neq j ; i, j=1,2, \ldots, s),
$$

where $\lambda_{i}(x, t, \xi)(i=1,2, \ldots, s)$ are all the distinct eigenvalues of $A(x, t, \xi)$.
Our proof of stability is based on the following result: The scheme (1.3) is stable if $S_{h}(t, h)$ and $S_{h}(t, 0)$ are the families of bounded linear operators in L_{2} and if there exist positive constants $c_{j}(j=0,1,2)$ and a norm $\left\|\|\cdot\|_{t}\right.$ which depends on t and is equivalent to the L_{2}-norm such that

$$
\begin{equation*}
\|u\|_{t+k} \leqq\left(1+c_{0} k\right)\|u\|_{t} \quad(t+k \leqq T) \tag{1.5}
\end{equation*}
$$

$$
\begin{align*}
& \left\|S_{h}(t, 0) u\right\|_{t} \leqq\left(1+c_{1} h\right)\|u\|_{t}, \tag{1.6}\\
& \left\|\left(S_{h}(t, h)-S_{h}(t, 0)\right) u\right\| \leqq c_{2} h\|u\| \quad \text { for all } \quad u \in L_{2}, t \in[0, T], h>0 . \tag{1.7}
\end{align*}
$$

The lemmas and theorems stated without proofs can be shown by the arguments similar to those of the corresponding ones in [5].

2. Notations and preliminaries

2.1. Notations

Let \boldsymbol{C} be the field of complex numbers and let a^{*} stand for the conjugate transpose of a matrix a. We denote by $|a|,|z|$ and $\rho(a)$ the spectral norm of an $N \times N$ matrix a, the Euclidean norm of an N-vector z and the spectral radius of a respectively. For any hermitian matrices a and b we use the notation $a \geqq b$ if $a-b$ is positive semidefinite.

We denote by R^{n} the real n-space and write it as $R_{x}^{n}, R_{\omega}^{n}, R_{x}^{n}$, etc. to specify its space variables. Unless otherwise stated, we denote by $u(x), \varphi(x)$, etc. the N-vector functions defined on R^{n}. We put $J=[0, T]$ and $I_{\infty}=[0, \infty)$.

The space $L_{p}(p \geqq 1)$ consists of all measurable functions $u(x)$ in R^{n} such that $|u(x)|^{p}$ is integrable, i.e. $\int|u(x)|^{p} d x<\infty$. The scalar product and the norm in L_{2} are denoted by (,) and $\|\cdot\|$ respectively.

We denote by $\hat{p}(\chi, t, \omega)\left(\chi \in R^{n}\right)$ the Fourier transform of $p(x, t, \omega)$ with respect to x.

Let \mathscr{S} be the space of all C^{∞} functions on R_{x}^{n} which, together with all their derivatives, decrease faster than any negative power of $|x|$ as $|x| \rightarrow \infty$. Then, for each $\varphi(x)$ in $\mathscr{S}, \hat{\varphi}(\chi)$ can be written as follows:

$$
\begin{equation*}
\hat{\varphi}(\chi)=\kappa \int e^{-i x \cdot x} \varphi(x) d x \quad \text { for all } \quad \varphi \in \mathscr{S} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa=(2 \pi)^{-n / 2}, \quad x \cdot \chi=\sum_{j=1}^{n} x_{j} \chi_{j} . \tag{2.2}
\end{equation*}
$$

For simplicity we make use of the notations

$$
\partial_{t}=\frac{\partial}{\partial t}, \quad D_{j}=\frac{\partial}{\partial x_{j}}, \quad \partial_{j}=\frac{\partial}{\partial \omega_{j}} \quad(j=1,2, \ldots, n)
$$

We denote by $\sup _{\omega \neq 0} u(x, t, \omega)$ and $\sup _{\omega \notin z} u(x, t, \omega)$ the supremum of $u(x, t, \omega)$ on $R_{\omega}^{n}-\{0\}$ for each fixed (x, t) and that on $R_{\omega}^{n}-Z$ respectively, where Z is a subset
of R_{ω}^{n}.
We say that $l(\chi, t, \omega)$ is absolutely continuous with respect to ω_{k} if it is so on any finite closed interval for each fixed χ, t and $\omega_{j}(j=1,2, \ldots, n ; j \neq k)$, and that $l(\chi, t, \omega)$ is absolutely continuous with respect to t if it is so on J for each fixed χ and ω. We say that a scalar function $c(x, t, \omega)$ satisfies the condition imposed on matrix functions, if $c(x, t, \omega) I$ does.

2.2. The difference approximations

We consider a mesh imposed on (x, t)-space with a spacing of h in each x_{j} direction ($j=1,2, \ldots, n$) and a spacing of k in the t-direction. The ratio $\lambda=$ k / h is to be kept constant as h varies. We approximate (1.1) and (1.2) by the difference scheme of the form:

$$
\begin{align*}
& v(x, t+k)=S_{h}(t, h) v(x, t) \quad(t, t+k \in J) \tag{2.3}\\
& v(x, 0)=u_{0}(x) \tag{2.4}
\end{align*}
$$

where

$$
\begin{align*}
& S_{h}(t, \mu)=\sum_{m} \prod_{j=1}^{y} C_{m_{j}}\left(x, t, \mu, T_{h}\right), \quad m=\left(m_{1}, m_{2}, \ldots, m_{v}\right), \tag{2.5}\\
& C_{m_{j}}\left(x, t, \mu, T_{h}\right)=\sum_{\alpha} c_{\alpha m_{j}}(x, t, \mu) T_{h}^{\alpha}, \quad \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \tag{2.6}\\
& T_{h}^{\alpha}=T_{1}^{\alpha_{1}} T_{2 h}^{\alpha} \ldots T_{n h}^{\alpha_{n}}, \quad T_{j h} u(x)=u\left(x_{1}, \ldots, x_{j-1}, x_{j}+h, x_{j+1}, \ldots, x_{n}\right), \tag{2.7}
\end{align*}
$$

$m_{j}\left(m_{j} \geqq 0 ; j=0,1, \ldots, v\right)$ and $\alpha_{j}(j=1,2, \ldots, n)$ are integers, $\mu \in I_{\infty}$ and $c_{\alpha m_{j}}(x, t, \mu)$'s are $N \times N$ matrices.

We approximate the partial differential operator $h D_{j}(1 \leqq j \leqq n)$ by the difference operator $\Delta_{j h}$ of the form

$$
\begin{equation*}
\Delta_{j h}=\Sigma_{l} b_{l}\left(T_{j h}^{l}-T_{j h}^{-l}\right) / 2 \tag{2.8}
\end{equation*}
$$

where the summation is over a finite set of $l(l \geqq 0)$ and b_{l} 's are real constants. We put

$$
\begin{align*}
& s_{j}(\omega)=\sum_{l} b_{l} \sin l \omega_{j} \quad(j=1,2, \ldots, n) \tag{2.9}\\
& s(\omega)=\left(s_{1}(\omega), s_{2}(\omega), \ldots, s_{n}(\omega)\right) \tag{2.10}
\end{align*}
$$

and assume that, for some positive integer $r, s_{j}(\omega)$ can be written as follows:

$$
\begin{equation*}
s_{j}(\omega)=\omega_{j}+O\left(\left|\omega_{j}\right|^{r+1}\right) \quad\left(\left|\omega_{j}\right| \leqq \pi\right) \tag{2.11}
\end{equation*}
$$

For example the following difference operators are well known:

$$
\begin{equation*}
F_{h}(t)=C_{h}+\lambda P_{h}(t) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
M_{h}(t)=I+\lambda P_{h}(t) C_{h}+\lambda^{2}\left\{\left(P_{h}(t)\right)^{2}+h Q_{h}(t)\right\} / 2, \tag{2.13}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{h}(t)=\sum_{j=1}^{n} A_{j}(x, t) \Delta_{j h}, \quad C_{h}=(1 / n) \sum_{j=1}^{n}\left(T_{j h}+T_{j h}^{-1}\right) / 2, \tag{2.14}\\
& Q_{h}(t)=\sum_{j=1}^{n}\left(\partial_{t} A_{j}(x, t)\right) \Delta_{j h}, \quad \Delta_{j h}=\left(T_{j h}-T_{j h}^{-1}\right) / 2 \quad(j=1,2, \ldots, n)
\end{align*}
$$

The schemes (2.3) with operators (2.12) and (2.13) are called Friedrichs' scheme and the modified Lax-Wendroff scheme respectively.

We say that the difference scheme (2.3) approximates (1.1) with accuracy of order $r[4,6]$ if all smooth solutions u of (1.1) satisfy

$$
\begin{equation*}
\left|u(x, t+k)-S_{h}(t, h) u(x, t)\right|=O\left(h^{r+1}\right) \quad(h \rightarrow 0) \tag{2.15}
\end{equation*}
$$

for each (x, t).
The difference scheme is said to be stable in L_{2} if there exists a constant M such that

$$
\begin{equation*}
\left\|S_{h}(v k, h) S_{h}((v-1) k, h) \cdots S_{h}(0, h) u\right\| \leqq M\|u\| \tag{2.16}
\end{equation*}
$$

for all $u \in L_{2}$ and for all $h>0$ and integers $v \geqq 0$ such that $(v+1) k \leqq T$. Since $S_{h}(t, h)$ is a family of bounded linear operators in L_{2} depending on h and t, we have to study the boundedness of products of the form $L_{h}(v k) L_{h}((v-1) k) \cdots L_{h}(0)$ of such families of operators $L_{h}(t)$.

Let \mathscr{H}_{h} be the set of all families of bounded linear operators $H_{h}(t)$ in L_{2} such that

$$
\begin{equation*}
\left\|H_{h}(t) u\right\| \leqq c(h)\|u\| \quad \text { for all } \quad u \in L_{2}, t \in J, h>0 \tag{2.17}
\end{equation*}
$$

where $c(\mu)$ is a continuous function on I_{∞}.
For $A_{h}(t), B_{h}(t) \in \mathscr{H}_{h}$ and $\alpha \in C$ let $A_{h}(t)+B_{h}(t), A_{h}(t) B_{h}(t)$ and $\alpha A_{h}(t)$ be defined by

$$
\begin{aligned}
& \left(A_{h}(t)+B_{h}(t)\right) u=A_{h}(t) u+B_{h}(t) u, \\
& \left(A_{h}(t) B_{h}(t)\right) u=A_{h}(t)\left(B_{h}(t) u\right), \quad\left(\alpha A_{h}(t)\right) u=\alpha\left(A_{h}(t) u\right) .
\end{aligned}
$$

Then \mathscr{H}_{h} forms an algebra over \boldsymbol{C} with unit element I_{h}. Since the adjoint $A_{h}^{*}(t)$ of a family $A_{h}(t)$ also belongs to \mathscr{H}_{h}, the operation $*$ is an involution in \mathscr{H}_{h} and \mathscr{H}_{h} is an algebra with involution [2].

For $A_{h}(t), B_{h}(t) \in \mathscr{H}_{h}$ we use the notation $A_{h}(t) \equiv B_{h}(t)$ if there exists a constant c such that

$$
\begin{equation*}
\left\|\left(A_{h}(t)-B_{h}(t)\right) u\right\| \leqq c h\|u\| \quad \text { for all } \quad u \in L_{2}, t \in J, h>0 \tag{2.18}
\end{equation*}
$$

Then we have the following
Theorem 2.1. Let $L_{h}(t) \in \mathscr{H}_{h}$ and suppose there exist a norm $\left\|\|\cdot\|_{t}(t \in J)\right.$ and positive constants $d_{j}(j=1,2,3)$ and c_{0} such that
(2.19) $\quad d_{1}\|u\| \leqq\|u\|_{t} \leqq d_{2}\|u\|$,
(2.20) $\quad\|u\|_{t+k} \leqq\left(1+d_{3} k\right)\|u\|_{t} \quad(t+k \in J)$,
(2.21) $\left\|L_{h}(t) u\right\|_{t} \leqq\left(1+c_{0} h\right)\|u\|_{t} \quad$ for all $\quad u \in L_{2}, t \in J$ and $h>0$.

Then there exists a constant M such that

$$
\begin{equation*}
\left\|L_{h}(v k) L_{h}((v-1) k) \cdots L_{h}(0) u\right\| \leqq M\|u\| \tag{2.22}
\end{equation*}
$$

for all $u \in L_{2}$ and for all $h>0$ and integers $v \geqq 0$ such that $(v+1) k \leqq T$.
Proof. Making use of (2.20) and (2.21), we have

$$
\begin{aligned}
\| L_{h}(v k) L_{h}(& (v-1) k) \cdots L_{h}(0) u \|_{v k} \\
& \leqq\left(1+c_{0} h\right)\left\|L_{h}((v-1) k) \cdots L_{h}(0) u\right\|_{v k} \\
& \leqq\left(1+c_{0} h\right)\left(1+d_{3} k\right)\left\|L_{h}((v-1) k) \cdots L_{h}(0) u\right\|_{(v-1) k} \\
& \leqq \cdots\left(1+c_{0} h\right)^{v+1}\left(1+d_{3} k\right)^{v}\|u\|_{0} \quad \text { for all } u \in L_{2}, h>0,
\end{aligned}
$$

and by (2.19)

$$
d_{1}\left\|L_{h}(v k) L_{h}((v-1) k) \cdots L_{h}(0) u\right\| \leqq c_{1} d_{2}\|u\| \quad \text { for all } \quad u \in L_{2}, h>0
$$

where $c_{1}=\exp \left(c_{0} T / \lambda\right) \exp \left(d_{3} T\right)$. Hence (2.22) holds with $M=c_{1} d_{2} / d_{1}$.
Corollary 2.1. For any $S_{h}(t) \in \mathscr{H}_{h}$ let $L_{h}(t)$ be a family such that $L_{h}(t)$ $\equiv S_{h}(t)$ and which satisfies the assumption of the theorem. Then there exists a constant M such that

$$
\begin{equation*}
\left\|S_{h}(v k) S_{h}((v-1) k) \cdots S_{h}(0) u\right\| \leqq M\|u\| \tag{2.23}
\end{equation*}
$$

for all $u \in L_{2}$ and for all $h>0$ and integers $v \geqq 0$ such that $(v+1) k \leqq T$.
Proof. Since there is a constant c_{2} such that

$$
\left\|\left(L_{h}(t)-S_{h}(t)\right) u\right\| \leqq c_{2} h\|u\| \quad \text { for all } \quad u \in L_{2}, t \in J, h>0
$$

by (2.19) and (2.21) we have

$$
\begin{aligned}
\left\|S_{h}(t) u\right\|_{t} & \leqq\left\|L_{h}(t) u\right\|_{t}+\left\|\left(S_{h}(t)-L_{h}(t)\right) u\right\|_{t} \\
& \leqq\left\|L_{h}(t) u\right\|_{t}+c_{2} d_{2} h\|u\|
\end{aligned}
$$

$$
\leqq\left(1+c_{3} h\right)\|u\|_{t},
$$

where $c_{3}=c_{0}+c_{2} d_{2} / d_{1}$. Hence (2.21) is satisfied and (2.23) follows from the theorem.

By Theorem 2.1 and its corollary, in proving the stability of the scheme (2.3), the problem is to find a norm $\left\|\|\cdot\|_{t}(t \in J)\right.$ and a family $L_{h}(t) \in \mathscr{H}_{h}$ such that $L_{h}(t) \equiv S_{h}(t, h)$ in order to establish (2.21).

3. The subalgebra \mathscr{K}_{h} of \mathscr{H}_{h}

3.1. Definitions

Let \mathscr{K} be the set of all $N \times N$ matrix functions $p(x, t, \omega)$ defined on $R_{x}^{n} \times J$ $\times R_{\omega}^{n}$ with the properties:

1) $p(x, t, \omega)$ can be written as

$$
p(x, t, \omega)=p_{0}(x, t, \omega)+p_{\infty}(t, \omega)
$$

where $p_{0}(x, t, \omega)$ and $p_{\infty}(t, \omega)$ are bounded and measurable on $R_{x}^{n} \times J \times R_{\omega}^{n}$ and measurable on $R_{x}^{n} \times R_{\omega}^{n}$ for each $t \in J$,

$$
\lim _{|x| \rightarrow \infty} p_{0}(x, t, \omega)=0 \quad \text { for each } \quad(t, \omega) ;
$$

2) $p_{0}(x, t, \omega)$ is integrable as a function of x for each (t, ω);
3) $\hat{p}(\chi, t, \omega)$ is integrable as a function of χ for each (t, ω) and \int ess. $\sup _{\omega}\left|\hat{p}_{0}(\chi, t, \omega)\right| d \chi$ is bounded on J.

The Fourier transform $\hat{p}(\chi, t, \omega)$ of the element $p(x, t, \omega)$ of \mathscr{K} can be written as follows:

$$
\begin{equation*}
\hat{p}(\chi, t, \omega)=\hat{p}_{0}(\chi, t, \omega)+\delta(\chi) p_{\infty}(t, \omega) \tag{3.1}
\end{equation*}
$$

where $\delta(\chi)$ is the delta function. We define $\|\hat{p}(t)\|_{F}$ by

$$
\begin{equation*}
\|\hat{p}(t)\|_{F}=\int \underset{\omega}{\operatorname{ess} \cdot} \cdot \sup \left|\hat{p}_{0}(\chi, t, \omega)\right| d \chi+\underset{\omega}{\operatorname{ess} \cdot \sup }\left|p_{\infty}(t, \omega)\right| . \tag{3.2}
\end{equation*}
$$

Then we have the following two lemmas.
Lemma 3.1. If $p, q \in \mathscr{K}$ and $\alpha \in \boldsymbol{C}$, then $p+q, p q, \alpha p, p^{*} \in \mathscr{K}$ and

$$
\begin{gather*}
\widehat{p+q}(t)\left\|_{F} \leqq\right\| \hat{p}(t)\left\|_{F}+\right\| \hat{q}(t)\left\|_{F},\right\| \widehat{p q}(t)\left\|_{F} \leqq\right\| \hat{p}(t)\left\|_{F}\right\| \hat{q}(t) \|_{F}, \tag{3.3}\\
\|\widehat{\alpha p}(t)\|_{F}=|\alpha|\|\hat{p}(t)\|_{F}, \quad\left\|\widehat{p^{*}}(t)\right\|_{F}=\|\hat{p}(t)\|_{F} \tag{3.4}
\end{gather*}
$$

Lemma 3.2. Let $p \in \mathscr{K}$ and $u \in \mathscr{S}$. Then

$$
\begin{equation*}
\left\|\int \hat{p}\left(\xi-\xi^{\prime}, t, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}\right\| \leqq\|\hat{p}(t)\|_{F}\|\hat{u}\| \quad \text { for all } \quad t \in J, h>0 \tag{3.5}
\end{equation*}
$$

and for each $t \in J$ and $h>0$

$$
\begin{align*}
& \text { 1.i.m. } \kappa^{-1} \int e^{i x \cdot \xi} \int \hat{p}\left(\xi-\xi^{\prime}, t, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d \xi \tag{3.6}\\
& =\kappa^{-1} \int e^{i x \cdot \xi} p(x, t, h \xi) \hat{u}(\xi) d \xi
\end{align*}
$$

for almost all x.
With each $p \in \mathscr{K}$ we associate a family of operators $P_{h}(t)$ by the formula:

$$
\begin{align*}
& P_{h}(t) u(x)=1 . \text { i. m. } \kappa^{-1} \int e^{i x \cdot \xi} \int \hat{p}\left(\xi-\xi^{\prime}, t, h \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d \xi \tag{3.7}\\
& \qquad \text { for all } u \in \mathscr{S}, t \in J, h>0 .
\end{align*}
$$

Then by (3.5) $P_{h}(t)$ can be extended to the closure $\overline{\mathscr{S}}=L_{2}$ with preservation of norm and the extension is unique. Denoting this extension of $P_{h}(t)$ again by $P_{h}(t)$, we call $P_{h}(t)$ the family (of operators) associated with p and denote this mapping by ϕ i.e. $P_{h}(t)=\phi(p)$. Unless otherwise stated, we denote by $Q_{h}(t)$, $\tilde{L}_{h}(t)$, etc. the families associated with q, \tilde{l}, etc. respectively.

We note that by (3.6) $P_{h}(t) u(u \in \mathscr{S})$ can be written as follows:

$$
\begin{align*}
& P_{h}(t) u(x)=\kappa^{-1} \int e^{i x \cdot \xi} p(x, t, h \xi) \hat{u}(\xi) d \xi \tag{3.8}\\
& \text { for all } u \in \mathscr{S}, t \in J, h>0 .
\end{align*}
$$

Let $\mathscr{K}_{h}=\phi(\mathscr{K})$. Then we have
Lemma 3.3. The mapping ϕ is one-to-one.
By Lemma 3.1 \mathscr{K} forms an algebra with involution over \boldsymbol{C}. For $p, q \in \mathscr{K}$ and $\alpha \in \boldsymbol{C}$ we have

$$
\phi(p)+\phi(q)=\phi(p+q), \quad \alpha \phi(p)=\phi(\alpha p)
$$

because $\mathscr{K}_{h} \subset \mathscr{H}_{h}$. Let

$$
\phi(p) \circ \phi(q)=\phi(p q), \quad \phi(p)^{\sharp}=\phi\left(p^{*}\right) .
$$

Then \mathscr{K}_{h} forms an algebra with involution over \boldsymbol{C} and the mappings ϕ and ϕ^{-1} are morphisms [1].

3.2. Products and adjoints

We introduce the following three conditions.
Condition I. 1) $p \in \mathscr{K}$;
2) $\hat{p}_{0}(\chi, t, \omega)$ and $p_{\infty}(t, \omega)$ are absolutely continuous with respect to ω_{j} $(j=1,2, \ldots, n)$ and $\partial_{j} \hat{p}_{0}(\chi, t, \omega)$ and $\partial_{j} p_{\infty}(t, \omega)(j=1,2, \ldots, n)$ are measurable in $R_{\chi}^{n} \times R_{\omega}^{n}$ for each t;
3) $\int \underset{\omega}{\operatorname{ess} \cdot \sup }\left|\partial_{j} \hat{p}_{0}(\chi, t, \omega)\right| d \chi \quad$ and $\underset{\omega}{\operatorname{ess} \cdot \sup }\left|\partial_{j} p_{\infty}(t, \omega)\right|(j=1,2, \ldots, n)$ are bounded on J.

Condition II. $q \in \mathscr{K}$ and $\int \underset{\omega}{\operatorname{ess} \cdot \sup \left(|\chi|\left|\hat{q}_{0}(\chi, t, \omega)\right|\right) d \chi \text { is bounded on } J . ~ . ~ . ~}$
Condition III. 1) $r \in \mathscr{K}$;
2) $\hat{r}_{0}(\chi, t, \omega)$ is absolutely continuous with respect to $\omega_{j}(j=1,2, \ldots, n)$ and $\partial_{j} \hat{r}_{0}(\chi, t, \omega)(j=1,2, \ldots, n)$ are measurable in $R_{\chi}^{n} \times R_{\omega}^{n}$ for each t;
3) $\int \underset{\omega}{\operatorname{ess} \cdot \sup }\left(\left|\chi_{j}\right|\left|\partial_{j} \hat{r}_{0}(\chi, t, \omega)\right|\right) d \chi(j=1,2, \ldots, n)$ are bounded on J.

We have
Theorem 3.1. If p, q and r satisfy Conditions I, II and III respectively, then

$$
\begin{equation*}
P_{h}(t) Q_{h}(t) \equiv P_{h}(t) \circ Q_{h}(t), \quad R_{h}^{*}(t) \equiv R_{h}^{\#}(t) \tag{3.9}
\end{equation*}
$$

Corollary 3.1. If $a(x, t), b(\omega, t), p(x, t, \omega) \in \mathscr{K}$, then

$$
\begin{align*}
& A_{h}(t) P_{h}(t)=A_{h}(t) \circ P_{h}(t), \quad P_{h}(t) B_{h}(t)=P_{h}(t) \circ B_{h}(t), \tag{3.10}\\
& B_{h}^{*}(t)=B_{h}^{\sharp}(t) . \tag{3.11}
\end{align*}
$$

3.3. Construction of a new norm

We construct a norm $\|\cdot \cdot\|_{t}(t \in J)$ stated in Theorem 2.1.
Let ε and $R(R \geqq \varepsilon)$ be positive numbers and let $S(R, \varepsilon)=\{x| | x \mid<R+\varepsilon\}$. Let $\left\{x^{(i)}\right\}(i=1,2, \ldots, s)$ be all the lattice-points $\left(\varepsilon \eta_{1}, \varepsilon \eta_{2}, \ldots, \varepsilon \eta_{n}\right)$ contained in $S(R, \varepsilon)\left(\eta_{j}=m_{j} / \sqrt{n} ; m_{j}=0, \pm 1, \pm 2, \ldots ; j=1,2, \ldots, n\right)$ and let

$$
V_{0}=\{x| | x \mid>R\}, \quad V_{i}=\left\{x| | x-x^{(i)} \mid<\varepsilon\right\} \quad(i=1,2, \ldots, s) .
$$

Then we can construct a partition of unity $\left\{\alpha_{i}^{2}(x)\right\}_{i=0,1, \ldots, s}$ with the properties:

1) $\alpha_{i}(x) \geqq 0, \quad \alpha_{i}(x) \in C^{\infty}, \quad \operatorname{supp} \alpha_{i}(x) \subset V_{i} \quad(i=0,1, \ldots, s)$;
2) $\sum_{i=0}^{s} \alpha_{i}^{2}(x)=1$;
3) $\alpha_{0}(x)$ and all its derivatives are bounded uniformly with respect to R for each ε.

We introduce the following
Condition N. 1) $g \in \mathscr{K}$ and $D_{j} g(x, t, \omega)(j=1,2, \ldots, n)$ are bounded on $R_{x}^{n} \times J \times R_{\omega}^{n}$ and continuous on R_{x}^{n} for each ($\left.t, \omega\right) ; D_{j} g(x, t, \omega)(j=1,2, \ldots, n)$ are integrable as functions of x for each $(t, \omega) ; \widehat{D_{j} g}(\chi, t, \omega)(j=1,2, \ldots, n)$ are integrable as functions of χ for each (t, ω) and $\int \underset{\omega}{\operatorname{ess} \cdot \sup \left|\widehat{D_{j}} g(\chi, t, \omega)\right| d \chi(j=1,2, ~}$ \ldots, n) are bounded on J;
2) $\left\|\widehat{\alpha_{0} g_{0}}(t)\right\|_{F}$ converges to zero uniformly on J as $R \rightarrow \infty$.

Then we have the following lemma and theorem.
Lemma 3.4. If p and q satisfy Condition N , so also do $p+q, p q$ and p^{*}.
Theorem 3.2. Suppose

1) $g(x, t, \omega)$ satisfies Condition N ;
2) $g(x, t, \omega) \geqq e I \quad$ for some constant $\quad e>0$.

Then for sufficiently small ε and large R there exist positive constants $d_{j}(j=1,2)$ independent of u, t and h such that

$$
\begin{align*}
& d_{1}^{2}\|u\|^{2} \leqq \sum_{i=0}^{s} \operatorname{Re}\left(G_{h}(t) \alpha_{i} u, \alpha_{i} u\right) \leqq d_{2}^{2}\|u\|^{2} \tag{3.12}\\
& \qquad \text { for all } u \in L_{2}, t \in J, h>0 .
\end{align*}
$$

This theorem enables us to introduce the norm

$$
\begin{equation*}
\|u\|_{t}=\left\{\sum_{i=0}^{s} \operatorname{Re}\left(G_{h}(t) \alpha_{i} u, \alpha_{i} u\right)\right\}^{1 / 2} \quad \text { for all } \quad u \in L_{2}, t \in J, h>0, \tag{3.13}
\end{equation*}
$$

which has the property (2.19) by (3.12). (For simplicity the dependence of $\|\|\cdot\|\|_{t}$ on h is not expressed explicitly.)

To obtain sufficient conditions for (2.20), we introduce the following
Condition L. 1) $g \in \mathscr{K}$;
2) $\hat{g}_{0}(\chi, t, \omega)$ and $g_{\infty}(t, \omega)$ are absolutely continuous with respect to t; there exist measurable functions $\varphi_{0}(\chi, t, \omega)$ and $\varphi_{\infty}(t, \omega)$ in $R_{\chi}^{n} \times J \times R_{\omega}^{n}$ such that for each (χ, ω) and for almost all $t \in J$

$$
\partial_{t} \hat{g}_{0}(\chi, t, \omega)=\varphi_{0}(\chi, t, \omega), \quad \partial_{t} g_{\infty}(t, \omega)=\varphi_{\infty}(t, \omega) ;
$$

3) There exists a constant $M>0$ such that for almost all $t \in J$

$$
\int \text { ess } \cdot \sup \left|\varphi_{0}(\chi, t, \omega)\right| d \chi \leqq M, \quad \text { ess } \cdot \sup \left|\varphi_{\infty}(t, \omega)\right| \leqq M .
$$

We have
Lemma 3.5. If g satisfies Condition L , then there exists a positive constant c independent of u, t, t^{\prime} and h such that
(3.14) $\left\|\left(G_{h}\left(t^{\prime}\right)-G_{h}(t)\right) u\right\| \leqq c\left|t^{\prime}-t\right|\|u\| \quad$ for all $\quad u \in L_{2}, t, t^{\prime} \in J, h>0$.

Proof. By Lemma 3.2 it suffices to show that for some constant $c>0$

$$
\begin{equation*}
\left\|\hat{g}\left(t^{\prime}\right)-\hat{g}(t)\right\|_{F} \leqq c\left(t^{\prime}-t\right) \quad \text { for all } \quad t, t^{\prime} \in J \quad\left(t^{\prime} \geqq t\right) . \tag{3.15}
\end{equation*}
$$

From Condition L-2) it follows that for each (χ, ω)

$$
\begin{aligned}
\left|\hat{g}_{0}\left(\chi, t^{\prime}, \omega\right)-\hat{g}_{0}(\chi, t, \omega)\right| & =\left|\int_{t}^{t^{\prime}} \partial_{t} \hat{g}_{0}(\chi, \theta, \omega) d \theta\right| \\
& \leqq \int_{t}^{t^{\prime}}\left|\varphi_{0}(\chi, \theta, \omega)\right| d \theta
\end{aligned}
$$

Taking the essential suprema of both sides over R_{ω}^{n} and integrating them with respect to χ, we have by Condition L-3)

$$
\begin{align*}
\left\|\hat{g}_{0}\left(t^{\prime}\right)-\hat{g}_{0}(t)\right\|_{F} & \leqq \iint_{t}^{t^{\prime}} \operatorname{ess} \cdot \sup \left|\varphi_{0}(\chi, \theta, \omega)\right| d \theta d \chi \tag{3.16}\\
& \leqq \int_{t}^{t^{\prime}} M d \theta=M\left(t^{\prime}-t\right)
\end{align*}
$$

Similarly we have

$$
\begin{equation*}
\left\|g_{\infty}\left(t^{\prime}\right)-g_{\infty}(t)\right\|_{F} \leqq M\left(t^{\prime}-t\right) . \tag{3.17}
\end{equation*}
$$

Hence (3.15) holds with $c=2 M$ by (3.16) and (3.17).
Combining Theorem 3.2 with Lemma 3.5, we have
Theorem 3.3. Let g satisfy Conditions N and L and suppose $g(x, t, \omega) \geqq e I$ for some constant $e>0$. Then the norm $\left\|\|\cdot\|_{t}\right.$ given by (3.13) satisfies (2.19) and (2.20).

Proof. It suffices to show (2.20). By Lemma 3.5 for some constant c independent of u, t, t^{\prime} and h we have

$$
\begin{aligned}
\left|\|u\|_{t^{\prime}}^{2}-\|u\|_{t}^{2}\right| & =\left|\sum_{i=0}^{s} \operatorname{Re}\left(\left(G_{h}\left(t^{\prime}\right)-G_{h}(t)\right) \alpha_{i} u, \alpha_{i} u\right)\right| \\
& \leqq \sum_{i=0}^{s}\left\|\left(G_{h}\left(t^{\prime}\right)-G_{h}(t)\right) \alpha_{i} u\right\|\left\|\alpha_{i} u\right\| \\
& \leqq \sum_{i=0}^{s} c\left|t^{\prime}-t\right|\left\|\alpha_{i} u\right\|^{2}=c\left|t^{\prime}-t\right|\|u\|^{2} \\
& \text { for all } u \in L_{2}, t, t^{\prime} \in J, h>0 .
\end{aligned}
$$

The choice $t^{\prime}=t+k$ yields (2.20) with $d_{3}=c / d_{1}^{2}$ by (2.19).

3.4. Lax-Nirenberg Theorem

We have the following analogue of Lax-Nirenberg Theorem [3] which plays an important role in establishing (2.21).

Theorem 3.4. Suppose $p \in \mathscr{K}$ satisfies the conditions:

1) $\partial_{j} \hat{p}_{0}(\chi, t, \omega)$ and $\partial_{j} p_{\omega}(t, \omega)(j=1,2, \ldots, n)$ are continuous on R_{ω}^{n} for each (χ, t) and absolutely continuous with respect to $\omega_{k}(k=1,2, \ldots, n)$;
2) $\partial_{k} \partial_{j} \hat{p}_{0}(\chi, t, \omega)$ and $\partial_{k} \partial_{j} p_{\infty}(t, \omega)(j, k=1,2, \ldots, n)$ are measurable in $R_{\chi}^{n} \times R_{\omega}^{n} \quad$ for each $t ; \quad \int \operatorname{ess} \cdot \sup \left|\partial_{k} \partial_{j} \hat{p}_{0}(\chi, t, \omega)\right| d \chi \quad$ and $\quad \underset{\omega}{\operatorname{ess} \cdot \sup }\left|\partial_{k} \partial_{j} p_{\infty}(t, \omega)\right|$ $(j, k=1,2, \ldots, n)$ are bounded on J;
3) \int ess. $\sup \left(|\chi|^{2}\left|\hat{p}_{0}(\chi, t, \omega)\right|\right) d \chi$ is bounded on J;
4) $p(x, t, \omega) \geqq 0$.

Then there exists a positive constant c independent of u, t and h such that

$$
\begin{equation*}
\operatorname{Re}\left(P_{h}(t) u, u\right) \geqq-c h\|u\|^{2} \quad \text { for all } \quad u \in L_{2}, t \in J, h>0 . \tag{3.18}
\end{equation*}
$$

4. Products of families of operators

4.1. The family of operators Λ_{h}

In this section $s(\omega)$ denotes a real-valued vector function with the properties:

1) $s_{l}(\omega), \partial_{j} s_{l}(\omega)$ and $\partial_{k} \partial_{j} s_{l}(\omega)(j, k, l=1,2, \ldots, n)$ are bounded and continuous on R_{ω}^{n};
2) Zeros of $|s(\omega)|$ are isolated points.

It is readily seen that $|s(\omega)| I$ satisfies Condition I. Let $Z=\{\omega| | s(\omega) \mid=0\}$ and Λ_{h} be the family associated with $|s(\omega)| I$. Then by Corollary 3.1 we have Λ_{h} $=\Lambda_{h}^{\#}=\Lambda_{h}^{*}$.

Let $p(x, t, \omega)$ be an element of \mathscr{K} such that $p(x, t, \omega) /|s(\omega)|$ is bounded on $R_{x}^{n} \times J \times\left(R_{\omega}^{n}-Z\right)$. For any constant α let

$$
q_{\alpha}(x, t, \omega)= \begin{cases}p(x, t, \omega) /|s(\omega)| & \text { for } \omega \in R_{\omega}^{n}-Z \tag{4.1}\\ \alpha I & \text { for } \omega \in Z\end{cases}
$$

and suppose $q_{\alpha}(x, t, \omega) \in \mathscr{K}$. Then, since Z is a set of measure zero, we have for each t

$$
\begin{equation*}
\widehat{Q_{\alpha h}(t) u}(\xi)=\widehat{Q_{\beta h}(t) u}(\xi) \quad \text { a.e. } \tag{4.2}
\end{equation*}
$$

for all $u \in \mathscr{S}$, where $Q_{\alpha h}(t)$ and $Q_{\beta h}(t)$ are the families associated with q_{α} and q_{β}
$(\beta \neq \alpha)$ respectively. In the following we identify $q_{\alpha}(x, t, \omega)$ with $q_{\beta}(x, t, \omega)$ and denote them by $p(x, t, \omega) /|s(\omega)|$. Then we have $P_{h}(t)=P_{1 h}(t) \circ \Lambda_{h}$, where $P_{1 h}(t)$ is the family associated with $p /|s|$.

When $e(\omega)$ is a scalar function with isolated zeros such that $e(\omega) I \in \mathscr{K}$, $p(x, t, \omega) / e(\omega)$ can be defined similarly by replacing $|s(\omega)|$ by $e(\omega)$.

Now we introduce the following conditions.
Condition I'. 1) $p \in \mathscr{K}$;
2) $\hat{p}_{0}(\chi, t, \omega)$ is bounded on $R_{\chi}^{n} \times J \times\left(R_{\omega}^{n}-Z\right)$;
3) $\partial_{j} l_{0}(\chi, t, \omega)$ and $\partial_{j} l_{\infty}(t, \omega)(j=1,2, \ldots, n)$ are bounded on $R_{\chi}^{n} \times J \times$ $\left(R_{\omega}^{n}-Z\right)$ and continuous on $R_{\omega}^{n}-Z$ for each (χ, t), where $l_{0}(\chi, t, \omega)=\hat{p}_{0}|s|, l_{\infty}(t, \omega)$ $=p_{\infty}|s|$;
4) \int ess. $\sup \left|\partial_{j} l_{0}(\chi, t, \omega)\right| d \chi(j=1,2, \ldots, n)$ are bounded on J.

Condition III'. 1), 2) the same as $\mathrm{I}^{\prime}-1$), $\mathrm{I}^{\prime}-2$) respectively;
3) $\partial_{j} l_{0}(\chi, t, \omega)(j=1,2, \ldots, n)$ are bounded on $R_{\chi}^{n} \times J \times\left(R_{\omega}^{n}-Z\right)$ and continuous on $R_{\omega}^{n}-Z$ for each (χ, t);
4) $\int \underset{\omega}{\text { ess. }} \underset{\omega}{ } \sup \left(\left|\chi_{j}\right|\left|\partial_{j} l_{0}(\chi, t, \omega)\right|\right) d \chi(j=1,2, \ldots, n)$ are bounded on J.

Condition IV. $\quad p \in \mathscr{K}$ and $\iint_{\omega} \operatorname{ess}_{\omega} \cdot \sup \left(|\chi|^{2}\left|\hat{p}_{0}(\chi, t, \omega)\right|\right) d \chi$ is bounded on J.
Condition V. 1) p satisfies Condition I^{\prime};
2) $\partial_{k} m_{j 0}(\chi, t, \omega)$ and $\partial_{k} m_{j \infty}(t, \omega)(j, k=1,2, \ldots, n)$ are bounded on $R_{\chi}^{n} \times J$ $\times\left(R_{\omega}^{n}-Z\right)$ and continuous on $R_{\omega}^{n}-Z$ for each (χ, t), where $m_{j 0}(\chi, t, \omega)=\left(\partial_{j} l_{0}\right)|s|$, $m_{j \omega}(t, \omega)=\left(\partial_{j} l_{\infty}\right)|s|, l_{0}=\hat{p}_{0}|s|, l_{\infty}=p_{\infty}|s| ;$
3) $\int \underset{\omega}{\text { ess }} \cdot \sup \left|\partial_{k} m_{j 0}(\chi, t, \omega)\right| d \chi(j, k=1,2, \ldots, n)$ are bounded on J.

We have the following lemmas.
Lemma 4.1. (i) If p satisfies Condition I^{\prime}, then $p|s|$ satisfies Condition I.
(ii) If p satisfies Condition III', then $p|s|$ satisfies Condition III.

Lemma 4.2. (i) If p satisfies Condition I^{\prime} and q satisfies Condition II, then

$$
\begin{equation*}
P_{h}(t) Q_{h}(t) \Lambda_{h} \equiv P_{h}(t) \circ Q_{h}(t) \circ \Lambda_{h} . \tag{4.3}
\end{equation*}
$$

(ii) If p satisfies Condition III', $^{\prime}$, then

$$
\begin{equation*}
\left(P_{h}(t) \Lambda_{h}\right)^{*} \equiv P_{h}^{*}(t) \circ \Lambda_{h} . \tag{4.4}
\end{equation*}
$$

Lemma 4.3. If p satisfies Conditions IV and V , then $p(x, t, \omega)|s(\omega)|^{2}$ satisfies conditions 1), 2) and 3) of Theorem 3.4.

4.2. Subalgebras \mathscr{M} and \mathscr{L} of \mathscr{K}

Let \mathscr{M} be the set of all elements of \mathscr{K} that satisfy Conditions I', II and III' and let the set \mathscr{L} consist of all elements of \mathscr{M} that satisfy Conditions IV and V. For instance $|s(\omega)| I$ and $\left(s_{j}(\omega) /|s(\omega)|\right) I(j=1,2, \ldots, n)$ belong to \mathscr{M} and \mathscr{L}.

Lemma 4.4. (i) If p and q satisfy Condition II, so also do $p+q, p q$ and p^{*}.
(ii) If $p, q \in \mathscr{M}$, then $p+q, p q, p^{*} \in \mathscr{M}$.
(iii) If $p, q \in \mathscr{L}$, then $p+q, p q, p^{*} \in \mathscr{L}$.

Lemma 4.5. Let $g(x, t, \omega)$ satisfy Conditions I' and II, and let

$$
\begin{equation*}
l(x, t, \omega)=c(\omega) I+q(x, t, \omega)|s(\omega)| \tag{4.5}
\end{equation*}
$$

where $q(x, t, \omega) \in \mathscr{M}$ and $c(\omega)$ is a scalar function satisfying Condition I. Then

$$
\begin{equation*}
L_{h}^{*}(t) G_{h}(t) L_{h}(t) \equiv L_{h}^{\#}(t) \circ G_{h}(t) \circ L_{h}(t) . \tag{4.6}
\end{equation*}
$$

Corollary 4.1. Under the assumption of Lemma 4.5 let

$$
\begin{equation*}
g(x, t, \omega)=w^{*}(x, t, \omega) w(x, t, \omega) \tag{4.7}
\end{equation*}
$$

where $w, w^{-1} \in \mathscr{K}$. Then

$$
\begin{align*}
& \begin{aligned}
& G_{h}(t)-L_{h}^{*}(t) G_{h}(t) L_{h}(t) \equiv G_{h}(t)-L_{h}^{\#}(t) \circ G_{h}(t) \circ L_{h}(t) \\
&=W_{h}^{\#}(t) \circ\left(I_{h}-\tilde{L}_{\tilde{h}}^{*}(t) \circ \tilde{L}_{h}(t)\right) \circ W_{h}(t), \\
& g-l^{*} g l=w^{*}\left(I-\tilde{l}^{*} l\right) w, \quad \tilde{l}=w l w^{-1} .
\end{aligned} \tag{4.8}
\end{align*}
$$

4.3. Integrability of Fourier transforms

We introduce
Condition VI. 1) $p(x, t, \omega)$ can be written as

$$
p(x, t, \omega)=p_{0}(x, t, \omega)+p_{\infty}(t, \omega),
$$

where $p_{0}(x, t, \omega)$ and $p_{\infty}(t, \omega)$ are bounded and measurable on $R_{x}^{n} \times J \times R_{\omega}^{n}$ and measurable on $R_{x}^{n} \times R_{\omega}^{n}$ for each t,

$$
\lim _{|x| \rightarrow \infty} p_{0}(x, t, \omega)=0 \quad \text { for each } \quad(t, \omega)
$$

2) $D_{l}^{m} p_{0}(x, t, \omega)(l=1,2, \ldots, n ; m=0,1, \ldots, n+3)$ are continuous on $R_{x}^{n} \times J$ $\times\left(R_{\omega}^{n}-Z\right)$ and continuous on $R_{x}^{n} \times J$ for each $\omega \in Z ; \sup _{\omega}\left|D_{l}^{m} p_{0}(x, t, \omega)\right|$ and $\int \sup _{\omega}\left|D_{l}^{m} p_{0}(x, t, \omega)\right| d x(l=1,2, \ldots, n ; m=0,1, \ldots, n+3)$ are bounded on $R_{x}^{n} \times J$
and on J respectively;
3) $\left\{\left(D_{l}^{q} \partial_{j} p_{0}(x, t, \omega)\right)|s(\omega)|\right\}$ and $\left\{\left(\partial_{j} p_{\infty}(t, \omega)\right)|s(\omega)|\right\}(j, l=1,2, \ldots, n ; q=0$, $1, \ldots, n+2)$ are bounded and continuous on $R_{x}^{n} \times J \times\left(R_{\omega}^{n}-Z\right)$;
4) $\int \sup _{\omega \neq z}\left(\left|D_{l}^{q} \partial_{j} p_{0}(x, t, \omega)\right||s(\omega)|\right) d x(j, l=1,2, \ldots, n ; q=0,1, \ldots, n+2)$ are bounded on J;
5) $\left\{\left(D_{l}^{r} \partial_{k} \partial_{j} p_{0}(x, t, \omega)\right)|s(\omega)|^{2}\right\}$ and $\left\{\left(\partial_{k} \partial_{j} p_{\infty}(t, \omega)\right)|s(\omega)|^{2}\right\}(j, k, l=1,2, \ldots$, $n ; r=0,1, \ldots, n+1)$ are bounded and continuous on $R_{x}^{n} \times J \times\left(R_{\omega}^{n}-Z\right)$;
6) $\int \sup _{\omega \neq Z}\left(\left|D_{l}^{r} \partial_{k} \partial_{j} p_{0}(x, t, \omega)\right||s(\omega)|^{2}\right) d x(j, k, l=1,2, \ldots, n ; r=0,1, \ldots, n+1)$ are bounded on J;
7) $\int_{|x| \geqq R} \sup _{\omega}\left|D_{l}^{r} p_{0}(x, t, \omega)\right| d x(l=1,2, \ldots, n ; r=0,1, \ldots, n+1)$ converge to zero uniformly on J as $R \rightarrow \infty$;
8) $\partial_{t} p_{0}(x, t, \omega)$ and $\partial_{t} p_{\infty}(t, \omega)$ are bounded on $R_{x}^{n} \times J \times R_{\omega}^{n} ; D_{l}^{r} \partial_{t} p_{0}(x, t, \omega)$ $(l=1,2, \ldots, n ; r=0,1, \ldots, n+1)$ are continuous on $R_{x}^{n} \times J \times\left(R_{\omega}^{n}-Z\right)$ and continuous on $R_{x}^{n} \times J$ for each $\omega \in Z ; \sup _{\omega}\left|D_{l}^{r} \partial_{t} p_{0}(x, t, \omega)\right|$ and $\int \sup _{\omega}\left|D_{l}^{r} \partial_{t} p_{0}(x, t, \omega)\right| d x(l=1,2, \ldots, n ; r=0,1, \ldots, n+\stackrel{\omega}{1})$ are bounded on $R_{x}^{n} \times J$ and on J respectively.

We have
Lemma 4.6. (i) If p satisfies Conditions VI-1) and VI-2), then p satisfies Conditions II and IV.
(ii) If p satisfies Conditions VI-1)-VI-4), then $p \in \mathscr{M}$.
(iii) If p satisfies Conditions VI-1)-VI-6), then $p \in \mathscr{L}$.

Corollary 4.2. Let $a(x, t)$ be an $N \times N$ matrix such that

$$
\begin{equation*}
a(x, t)=a_{0}(x, t)+a_{\infty}(t), \tag{4.10}
\end{equation*}
$$

where $a_{0}(x, t)$ and $a_{\infty}(t)$ are bounded on $R_{x}^{n} \times J$ and $\lim _{|x| \rightarrow \infty} a_{0}(x, t)=0$ for each t. Suppose $D_{l}^{m} a_{0}(x, t)(l=1,2, \ldots, n ; m=0,1, \ldots, n+1+p ; p=0,1,2)$ are bounded and continuous on $R_{x}^{n} \times J$ and $\int\left|D_{l}^{m} a_{0}(x, t)\right| d x$ are bounded on J. Then $\int|\chi|{ }^{p}\left|\hat{a}_{0}(\chi, t)\right| d \chi(p=0,1,2)$ are bounded on J.

Lemma 4.7. (i) If g satisfies Conditions VI-1), VI-2) and VI-7), then it satisfies Condition N.
(ii) If g satisfies Conditions VI-1), VI-2) and VI-8), then it satisfies Condition L .

Proof. We have only to prove (ii). By Lemma $4.6 g \in \mathscr{K}$, and g satisfies Condition L-1).

By Condition VI-8) we have for any fixed (χ, ω)

$$
\begin{align*}
& e^{-i x \cdot x} g_{0}\left(x, t^{\prime}, \omega\right)-e^{-i x \cdot x} g_{0}(x, t, \omega) \tag{4.11}\\
& \quad=\int_{t}^{t^{\prime}} e^{-i x \cdot x} \partial_{t} g_{0}(x, \theta, \omega) d \theta \quad \text { for all } t, t^{\prime} \in J
\end{align*}
$$

Integrating both sides of (4.11) with respect to x, we have

$$
\hat{g}_{0}\left(\chi, t^{\prime}, \omega\right)-\hat{g}_{0}(\chi, t, \omega)=\int_{t}^{t^{\prime}} \widehat{\partial_{t} g_{0}}(\chi, \theta, \omega) d \theta \quad \text { for all } \quad t, t^{\prime} \in J .
$$

Hence $\hat{g}_{0}(\chi, t, \omega)$ is absolutely continuous with respect to t, so that for each (χ, ω) and for almost all $t \in J$

$$
\begin{equation*}
\partial_{t} \hat{g}_{0}(\chi, t, \omega)=\widehat{\partial_{t} g_{0}}(\chi, t, \omega) \tag{4.12}
\end{equation*}
$$

Since $\widehat{\partial_{t} g_{0}}(\chi, t, \omega)$ is measurable on $R_{\chi}^{n} \times J \times R_{\omega}^{n}, g_{0}(x, t, \omega)$ satisfies Condition L-2) with $\varphi_{0}(\chi, t, \omega)=\widehat{\partial_{t} g_{0}}(\chi, t, \omega)$ by (4.12). Similarly g_{∞} satisfies Condition L-2) with $\varphi_{\infty}(t, \omega)=\partial_{t} g_{\infty}(t, \omega)$.

By the argument similar to that of Lemma 4.6 in [5] it can be shown that Condition L-3) is satisfied.

4.4. Products of families of operators

To prove the boundedness of $L_{h}(v k) L_{h}((v-1) k) \cdots L_{h}(0)$, in view of Theorem 2.1, it suffices to show that $L_{h}(t)$ satisfies (2.21). We have

Theorem 4.1. Let $g(x, t, \omega) \in \mathscr{M}$ satisfy conditions of Theorem 3.3 and let

$$
\begin{align*}
& l(x, t, \omega)= \tag{4.13}\\
& \begin{aligned}
g(x, t, \omega)- & c(\omega) I+q(x, t, \omega)|s(\omega)| \\
& =a(x, t, \omega) g(x, t, \omega) l(x, t, \omega)
\end{aligned} \tag{4.14}\\
&
\end{align*}
$$

where $q \in \mathscr{M}$ and $c(\omega)$ and $e(\omega)$ are scalar functions satisfying Condition I . Suppose

1) $a \in \mathscr{L}$ and $a(x, t, \omega) \geqq 0$;
2) $b(x, t, \omega)$ satisfies Conditions II and N ;
3) $b(x, t, \omega) \geqq \beta I$ for some $\beta>0$.

Then for some $\quad c_{0} \geqq 0$

$$
\begin{equation*}
\left\|L_{h}(t) u\right\|_{t}^{2} \leqq\left(1+c_{0} h\right)\|u\|_{t}^{2} \quad \text { for all } \quad u \in L_{2}, t \in J, h>0, \tag{4.15}
\end{equation*}
$$

where $\left\|\|\cdot\|_{t}\right.$ is the norm given by (3.13).
Proof. Let $\left\{\alpha_{i}^{2}(x)\right\}_{i=0,1, \ldots, s}$ be the partition of unity given in 3.3 and let $\alpha_{i}=\phi\left(\alpha_{i} I\right)(i=0,1, \ldots, s)$. Then $\alpha_{i}(x) u(x)=\left(\alpha_{i} u\right)(x)(i=0,1, \ldots, s)$ and by Theo-
rem 3.2 there exist positive constants $d_{j}, \varepsilon_{j}(j=1,2), \varepsilon$ and R such that

$$
\begin{align*}
& d_{1}^{2}\|u\|^{2} \leqq \sum_{i=0}^{s} \operatorname{Re}\left(G_{h}(t) \alpha_{i} u, \alpha_{i} u\right) \leqq d_{2}^{2}\|u\|^{2}, \tag{4.16}\\
& \varepsilon_{1}^{2}\|u\|^{2} \leqq \sum_{i=0}^{s} \operatorname{Re}\left(B_{h}(t) \alpha_{i} u, \alpha_{i} u\right) \leqq \varepsilon_{2}^{2}\|u\|^{2} . \tag{4.17}
\end{align*}
$$

By Lemma 4.5

$$
L_{h}^{*}(t) G_{h}(t) L_{h}(t) \equiv L_{h}^{\#}(t) \circ G_{h}(t) \circ L_{h}(t),
$$

and for some $c_{1} \geqq 0$

$$
\begin{align*}
\left|\left(\left(L_{h}^{*}(t) G_{h}(t) L_{h}(t)-L_{h}^{\#}(t) \circ G_{h}(t) \circ L_{h}(t)\right) u, u\right)\right| & \leqq c_{1} h\|u\|^{2} \tag{4.18}\\
& \text { for all } \quad u \in L_{2}, t \in J, h>0 .
\end{align*}
$$

Since $\alpha_{i}(x)(i=0,1, \ldots, s)$ satisfy Condition II, by Theorem 3.1 we have $L_{h}(t) \alpha_{i}$ $\equiv \alpha_{i} L_{h}(t)(i=0,1, \ldots, s)$. Hence for some $c_{2} \geqq 0$
(4.19) $\quad\left|\left(G_{h}(t) \alpha_{i} L_{h}(t) u, \alpha_{i} L_{h}(t) u\right)-\left(G_{h}(t) L_{h}(t) \alpha_{i} u, L_{h}(t) \alpha_{i} u\right)\right|$

$$
\leqq c_{2} h\|u\|^{2}(i=0,1, \ldots, s) \quad \text { for all } \quad u \in L_{2}, t \in J, h>0
$$

Since by definition

$$
\left\|L_{h}(t) u\right\|_{t}^{2}=\sum_{i=0}^{s} \operatorname{Re}\left(G_{h}(t) \alpha_{i} L_{h}(t) u, \alpha_{i} L_{h}(t) u\right),
$$

by (4.18) and (4.19) we have

$$
\begin{align*}
\left\|L_{h}(t) u\right\|_{t}^{2} & \leqq \sum_{i=0}^{s} \operatorname{Re}\left(G_{h}(t) L_{h}(t) \alpha_{i} u, L_{h}(t) \alpha_{i} u\right)+c_{3} h\|u\|^{2} \tag{4.20}\\
& \leqq \sum_{i=0}^{s} \operatorname{Re}\left(\left(L_{h}^{\#}(t) \circ G_{h}(t) \circ L_{h}(t)\right) \alpha_{i} u, \alpha_{i} u\right)+c_{4} h\|u\|^{2},
\end{align*}
$$

where $c_{3}=(s+1) c_{2}, c_{4}=c_{1}+c_{3}$. Hence
(4.21) $\quad\|u\|_{t}^{2}-\left\|L_{h}(t) u\right\|_{t}^{2}$

$$
\geqq \sum_{i=0}^{s} \operatorname{Re}\left(\left(G_{h}(t)-L_{h}^{\#}(t) \circ G_{h}(t) \circ L_{h}(t)\right) \alpha_{i} u, \alpha_{i} u\right)-c_{4} h\|u\|^{2} .
$$

The condition (4.14) yields

$$
\begin{equation*}
G_{h}(t)-L_{h}^{\sharp}(t) \circ G_{h}(t) \circ L_{h}(t)=A_{h}(t) \circ \Lambda_{h}^{2}+B_{h}(t) \circ E_{h}^{\sharp} \circ E_{h}, \tag{4.22}
\end{equation*}
$$

where $E_{h}=\phi(e I)$. By Lemma 4.3 and Theorem 3.4 from condition 1) it follows that for some $c_{5} \geqq 0$
(4.23) $\quad \operatorname{Re}\left(\left(A_{h}(t) \circ \Lambda_{h}^{2}\right) u, u\right) \geqq-c_{5} h\|u\|^{2} \quad$ for all $\quad u \in L_{2}, t \in J, h>0$.

By Theorem 3.1 and its corollary we have $E_{h} \alpha_{i} \equiv \alpha_{i} E_{h}(i=0,1, \ldots, s)$ and

$$
\begin{aligned}
B_{h}(t) \circ E_{h}^{\#} \circ E_{h} & =\left(E_{h}^{\#} \circ B_{h}(t)\right) \circ E_{h}=\left(E_{h}^{\#} \circ B_{h}(t)\right) E_{h} \\
& \equiv E_{h}^{\#} B_{h}(t) E_{h}=E_{h}^{*} B_{h}(t) E_{h},
\end{aligned}
$$

so that

$$
\begin{align*}
\alpha_{1}^{*}\left(B_{h}(t) \circ E_{h}^{*} \circ E_{h}\right) \alpha_{i} & \equiv\left(E_{h} \alpha_{i}\right)^{*} B_{h}(t)\left(E_{h} \alpha_{i}\right) \tag{4.24}\\
& \equiv\left(\alpha_{i} E_{h}\right)^{*} B_{h}(t)\left(\alpha_{i} E_{h}\right) .
\end{align*}
$$

By (4.17) and (4.24) we have for some $c_{6} \geqq 0$

$$
\begin{align*}
& \sum_{i=0}^{s} \operatorname{Re}\left(\left(B_{h}(t) \circ E_{h}^{\#} \circ E_{h}\right) \alpha_{i} u, \alpha_{i} u\right) \tag{4.25}\\
& \quad \geqq \sum_{i=0}^{s}\left\{\operatorname{Re}\left(B_{h}(t) \alpha_{i} E_{h} u, \alpha_{i} E_{h} u\right)-c_{6} h\|u\|^{2}\right\} \\
& \quad \geqq \varepsilon_{1}^{2}\left\|E_{h} u\right\|^{2}-c_{7} h\|u\|^{2},
\end{align*}
$$

where $c_{7}=(s+1) c_{6}$. Hence by (4.21)-(4.23) and (4.25)

$$
\|u\|_{t}^{2}-\left\|L_{h}(t) u\right\|_{t}^{2} \geqq \varepsilon_{1}^{2}\left\|E_{h} u\right\|^{2}-c_{8} h\|u\|^{2} \geqq-c_{8} h\|u\|^{2},
$$

where $c_{8}=c_{4}+c_{5}+c_{7}$. Thus (4.15) holds by (4.16) with $c_{0}=c_{8} / d_{1}^{2}$.

5. Two algebras of difference operators

5.1. Algebra \mathscr{F}_{h}

Let \mathscr{A}_{0} be the set of all $N \times N$ matrix functions $a(x, t)$ defined on $R_{x}^{n} \times J$ with the properties:

1) $a(x, t)$ can be written as

$$
a(x, t)=a_{0}(x, t)+a_{\infty}(t),
$$

where $a_{0}(x, t)$ and $a_{\infty}(t)$ are bounded and measurable on $R_{x}^{n} \times J$ and $\lim _{|x| \rightarrow \infty} a_{0}(x, t)$ $=0$ for each t;
2) $a_{0}(x, t)$ is integrable as a function of x for each t;
3) $\int|\chi|^{p}\left|\hat{a}_{0}(\chi, t)\right| d \chi(p=0,1,2)$ are bounded on J.

We denote by α an n-tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ of integers, i.e. $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. Let \mathscr{A} be the set of all matrices $a(x, t, \omega)$ such that $a(x, t, \omega)=\sum_{\alpha} a_{\alpha}(x, t) e^{i \alpha \cdot \omega}$, where $a_{\alpha} \in \mathscr{A}_{0}$ and the summation is over a finite set of α. It is clear that $a(x, t, \omega)$ satisfies Conditions I, II and III. Let

$$
\begin{equation*}
a(x, t, \omega)=\sum_{\alpha} a_{\alpha}(x, t) e^{i \alpha \cdot \omega}, \quad b(x, t, \omega)=\sum_{\beta} b_{\beta}(x, t) e^{i \beta \cdot \omega} . \tag{5.1}
\end{equation*}
$$

Then

$$
\begin{align*}
& a(x, t, \omega)+b(x, t, \omega)=\sum_{\gamma}\left(a_{\gamma}(x, t)+b_{\gamma}(x, t)\right) e^{i \gamma \cdot \omega} \tag{5.2}\\
& a(x, t, \omega) b(x, t, \omega)=\sum_{\gamma}\left(\sum_{\alpha+\beta=\gamma} a_{\alpha}(x, t) b_{\beta}(x, t)\right) e^{i \gamma \cdot \omega} \tag{5.3}\\
& a^{*}(x, t, \omega)=\sum_{\alpha} a_{\alpha}^{*}(x, t) e^{-i \alpha \cdot \omega} \tag{5.4}
\end{align*}
$$

Hence \mathscr{A} is a subalgebra of \mathscr{K} with involution.
Since for $a(x, t) \in \mathscr{A}_{0}$

$$
\left\|a(x, t) T_{h}^{\alpha} u(x)\right\| \leqq\left(\sup _{x, t}|a(x, t)|\right)\|u\| \quad \text { for all } \quad u \in L_{2}, t \in J, h>0,
$$

the family $a(x, t) T_{h}^{\alpha}$ belongs to \mathscr{H}_{h}. We define a mapping ψ from \mathscr{A} into \mathscr{H}_{h} by

$$
\begin{equation*}
\psi\left(\sum_{\alpha} a_{\alpha}(x, t) e^{i \alpha \cdot \omega}\right)=\sum_{\alpha} a_{\alpha}(x, t) T_{h}^{\alpha}, \tag{5.5}
\end{equation*}
$$

and let $\mathscr{A}_{h}=\psi(\mathscr{A})$.
For $\sum_{\alpha} a_{\alpha}(x, t) e^{i \alpha \cdot \omega} \in \mathscr{A}$ let $A_{h}=\phi\left(\sum_{\alpha} a_{\alpha}(x, t) e^{i \alpha \cdot \omega}\right)$. Then for each $u \in \mathscr{S}$ and $t \in J$

$$
\begin{aligned}
\kappa \int e^{i x \cdot \xi} & \sum_{\alpha} a_{\alpha}(x, t) T_{h}^{\alpha} u(x) d x \\
& =\int \sum_{\alpha} \widehat{a_{\alpha 0}}\left(\xi-\xi^{\prime}, t\right) e^{i \alpha \cdot h \xi^{\prime}} \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}+\sum_{\alpha} a_{\alpha \infty}(t) e^{i \alpha \cdot h \xi} \hat{u}(\xi) \\
& =\int \sum_{\alpha} \hat{a}_{\alpha}\left(\xi-\xi^{\prime}, t\right) e^{i \alpha \cdot h \xi^{\prime}} \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime}=\widehat{A_{h}(t) u}(\xi) \quad \text { a.e. }
\end{aligned}
$$

so that for $u \in \mathscr{S}$ we have in L_{2}

$$
\begin{equation*}
\sum_{\alpha} a_{\alpha}(x, t) T_{h}^{\alpha} u(x)=A_{h}(t) u(x) \tag{5.6}
\end{equation*}
$$

It is clear that (5.6) holds for all $u \in L_{2}$, so that $\sum_{\alpha} a_{\alpha}(x, t) T_{h}^{\alpha}$ and $A_{h}(t)$ can be identified. Hence ψ is the restriction of ϕ to \mathscr{A} and is a one-to-one mapping from \mathscr{A} onto \mathscr{A}_{h}. We call $\sum_{\alpha} a_{\alpha}(x, t) e^{i \alpha \cdot \omega}$ the symbol of $\sum_{\alpha} a_{\alpha}(x, t) T_{h}^{\alpha}$.

Let $A_{h}(t), B_{h}(t) \in \mathscr{A}_{h}$ and let

$$
\begin{equation*}
A_{h}(t)=\sum_{\alpha} a_{\alpha}(x, t) T_{h}^{\alpha}, \quad B_{h}(t)=\sum_{\beta} b_{\beta}(x, t) T_{h}^{\beta} . \tag{5.7}
\end{equation*}
$$

Then their symbols $a(x, t, \omega)$ and $b(x, t, \omega)$ are given by (5.1). Since $\mathscr{A}_{h} \subset \mathscr{K}_{h}$, the families $A_{h}(t)+B_{h}(t), A_{h}(t) \circ B_{h}(t)$ and $A_{h}^{\#}(t)$ can be defined in \mathscr{K}_{h}. By (5.2)(5.4) we have

$$
\begin{equation*}
A_{h}(t)+B_{h}(t)=\sum_{\gamma}\left(a_{\gamma}(x, t)+b_{\gamma}(x, t)\right) T_{h}^{\gamma}, \tag{5.8}
\end{equation*}
$$

$$
\begin{align*}
& A_{h}(t) \circ B_{h}(t)=\sum_{\gamma}\left(\sum_{\alpha+\beta=\gamma} a_{\alpha}(x, t) b_{\beta}(x, t)\right) T_{h}^{\gamma}, \tag{5.9}\\
& A_{h}^{\#}(t)=\sum_{\alpha} a_{\alpha}^{*}(x, t) T_{h}^{-\alpha} . \tag{5.10}
\end{align*}
$$

Hence \mathscr{A}_{h} is a subalgebra of \mathscr{K}_{h} with involution and it follows that ψ and ψ^{-1} are morphisms.

Lemma 5.1. Let $F_{j h}(t) \in \mathscr{A}_{h}(j=1,2, \ldots, k)$ and let

$$
\begin{equation*}
F_{h}(t)=F_{1 h}(t) F_{2 h}(t) \cdots F_{k h}(t), \quad L_{h}(t)=F_{1 h}(t) \circ F_{2 h}(t) \circ \cdots \circ F_{k h}(t) . \tag{5.11}
\end{equation*}
$$

Then $F_{h}(t) \equiv L_{h}(t)$ and $F_{h}^{*}(t) \equiv L_{h}^{\#}(t)$.
Let \mathscr{F}_{h} be the subalgebra of \mathscr{H}_{h} generated by \mathscr{A}_{h}. Then $F_{h}(t) \in \mathscr{F}_{h}$ can be expressed as

$$
\begin{equation*}
F_{h}(t)=\sum_{r} F_{1 h}^{(r)}(t) F_{2 h}^{(r)}(t) \cdots F_{k h}^{(r)}(t) \quad\left(F_{j h}^{(r)}(t) \in \mathscr{A}_{h}\right) \tag{5.12}
\end{equation*}
$$

Corresponding to this we put

$$
\begin{align*}
& L_{h}(t)=\sum_{r} F_{1 h}^{(r)}(t) \circ F_{2 h}^{(r)}(t) \cdots \cdots F_{k h}^{(r)}(t), \tag{5.13}\\
& l(x, t, \omega)=\sum_{r} f_{1}^{(r)} f_{2}^{(r)} \cdots f_{k}^{(r)}, \tag{5.14}
\end{align*}
$$

where $f_{j}^{(r)}(x, t, \omega)$ is the symbol of $F_{j h}^{(r)}(t)$. Then $L_{h}(t) \in \mathscr{A}_{h}, F_{h}(t) \equiv L_{h}(t)$ and $l(x, t, \omega)$ is the symbol of $L_{h}(t)$. In the following we call $l(x, t, \omega)$ a symbol belonging to $F_{h}(t)$.

5.2. Algebra \mathscr{G}_{h}

Let \mathscr{B}_{0} be the set of all $N \times N$ matrix functions $b(x, t, \mu)$ defined on $R_{x}^{n} \times J$ $\times I_{\infty}$ with the properties:

1) $b(x, t, 0) \in \mathscr{A}_{0}$;
2) $b(x, t, \mu)$ can be written as

$$
b(x, t, \mu)=b_{0}(x, t, \mu)+b_{\infty}(t, \mu),
$$

where $b_{0}(x, t, \mu)$ and $b_{\infty}(t, \mu)$ are bounded and measurable on $R_{x}^{n} \times J$ for each μ and

$$
\lim _{|x| \rightarrow \infty} b_{0}(x, t, \mu)=0 \quad \text { for each } \quad(t, \mu) ;
$$

3) For each $(t, \mu) b_{0}(x, t, \mu)$ is integrable as a function of x;
4) $\hat{b}_{0}(\chi, t, \mu)$ is integrable as a function of χ for each (t, μ);
5) There exists a constant $c \geqq 0$ such that

$$
\int\left|\hat{b}_{0}(\chi, t, \mu)-\hat{b}_{0}(\chi, t, 0)\right| d \chi \leqq c \mu
$$

$$
\left|b_{\infty}(t, \mu)-b_{\infty}(t, 0)\right| \leqq c \mu \quad \text { for all } \quad t \in J, \mu \geqq 0
$$

For instance $\Delta_{j \mu} a(x, t)(j=1,2, \ldots, n)$ belong to \mathscr{B}_{0} for $a(x, t) \in \mathscr{A}_{0}$.
We have
Lemma 5.2. Let $b(x, t, \mu) \in \mathscr{B}_{0}$ and let $B_{h}(t)$ be the family associated with $b(x, t, 0) e^{i \alpha \cdot \omega}$. Then $b(x, t, h) T_{h}^{\alpha} \in \mathscr{H}_{h}$ and

$$
\begin{equation*}
b(x, t, h) T_{h}^{\alpha} \equiv B_{h}(t) \tag{5.15}
\end{equation*}
$$

Let \mathscr{B}_{h} be the set of all finite sums of families of the form $\sum_{\alpha} b_{\alpha}(x, t, h) T_{h}^{\alpha}$ ($b_{\alpha}(x, t, \mu) \in \mathscr{B}_{0}$) and let \mathscr{G}_{h} be the subalgebra of \mathscr{H}_{h} generated by \mathscr{B}_{h}. It is clear that $\mathscr{A}_{0} \subset \mathscr{B}_{0}$ and $\mathscr{F}_{h} \subset \mathscr{G}_{h}$.

Let $E_{h}(t, h) \in \mathscr{G}_{h}$. Then it can be expressed as

$$
\begin{equation*}
E_{h}(t, h)=\sum_{r} E_{1 h}^{(r)}(t, h) E_{2 h}^{(r)}(t, h) \cdots E_{k h}^{(r)}(t, h) \quad\left(E_{j h}^{(r)}(t, h) \in \mathscr{B}_{h}\right), \tag{5.16}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{j h}^{(r)}(t, \mu)=\sum_{\alpha} e_{j \alpha}^{(r)}(x, t, \mu) T_{h}^{\alpha} \quad\left(e_{j \alpha}^{(r)}(x, t, \mu) \in \mathscr{B}_{0}\right) \tag{5.17}
\end{equation*}
$$

By the definition of \mathscr{F}_{h} and by Lemma 5.2

$$
E_{h}(t, 0) \in \mathscr{F}_{h}, \quad E_{h}(t, h) \equiv E_{h}(t, 0)
$$

Thus we have
Theorem 5.1. Let $S_{h}(t, h)$ be the difference operator (2.5) with

$$
\begin{equation*}
c_{\alpha m_{j}}(x, t, \mu) \in \mathscr{B}_{0} \quad(j=1,2, \ldots, v) \tag{5.18}
\end{equation*}
$$

Then

$$
S_{h}(t, h) \in \mathscr{G}_{h}, \quad S_{h}(t, 0) \in \mathscr{F}_{h} .
$$

Let $L_{h}(t)$ be the family associated with a symbol belonging to $S_{h}(t, 0)$. Then

$$
L_{h}(t) \in \mathscr{A}_{h}, \quad S_{h}(t, h) \equiv S_{h}(t, 0) \equiv L_{h}(t)
$$

By this theorem and Corollary 2.1, in proving the stability of the scheme (2.3) under the condition (5.18) the problem is to establish (2.21) for $L_{h}(t)$.

Let

$$
\begin{equation*}
s(x, t, \omega)=\sum_{m} \prod_{j=1}^{y} c_{m_{j}}(x, t, \omega) \tag{5.19}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{m_{j}}(x, t, \omega)=\sum_{\alpha} c_{\alpha m_{j}}(x, t, 0) e^{i \alpha \cdot \omega}, \quad c_{\alpha m_{j}}(x, t, \mu) \in \mathscr{B}_{0} \tag{5.20}
\end{equation*}
$$

Then $s(x, t, \omega)$ is a symbol belonging to $S_{h}(t, 0)$.
Remark. The results obtained in Sections $2-5$ are also valid when, for any $h_{0}>0$, the parameters h and μ are restricted to ($0, h_{0}$] and [$0, h_{0}$] respectively.

6. Stability of difference schemes

6.1. Assumptions and lemmas

Let

$$
\begin{equation*}
A(x, t, \omega)=\sum_{j=1}^{n} A_{j}(x, t) \omega_{j} \tag{6.1}
\end{equation*}
$$

and let $\Delta_{j h}(j=1,2, \ldots, n)$ be the difference operators such that $s_{j}(\omega)(j=1,2, \ldots$, n) satisfy (2.11).

We denote by ω^{\prime} a point on the unit spherical surface in R_{ω}^{n}. Suppose the following conditions are satisfied:

Condition A. $A_{j}(x, t)(j=1,2, \ldots, n)$ are bounded and continuous on R_{x}^{n} $\times J$ and can be written as

$$
A_{j}(x, t)=A_{j 0}(x, t)+A_{j \infty}(t) \quad(j=1,2, \ldots, n)
$$

where $A_{j 0}(x, t)$ converges to 0 uniformly on J as $|x| \rightarrow \infty$.
Condition B. 1) $D_{l}^{m} A_{j 0}(x, t), D_{l}^{r} \partial_{t} A_{j 0}(x, t)$ and $\partial_{t} A_{j \omega}(t)(j, l=1,2, \ldots, n$; $m=0,1, \ldots, n+3 ; r=0,1, \ldots, n+1)$ are bounded and continuous on $R_{x}^{n} \times J$;
2) $\int\left|D_{l}^{m} A_{j 0}(x, t)\right| d x$ and $\int\left|D_{l}^{r} \partial_{t} A_{j 0}(x, t)\right| d x(j, l=1,2, \ldots, n ; m=0,1, \ldots$, $n+3 ; r=0,1, \ldots, n+1)$ are bounded on J;
3) $\int_{|x| \geq R}\left|D_{i}^{r} A_{j 0}(x, t)\right| d x \quad(j, l=1,2, \ldots, n ; r=0,1, \ldots, n+1)$ converge to zero uniformly on J as $R \rightarrow \infty$.

Condition C. 1) Eigenvalues of $A\left(x, t, \omega^{\prime}\right)$ are all real and their multiplicities are independent of x, t and ω^{\prime};
2) There exists a constant $\delta>0$ independent of x, t and ω^{\prime} such that

$$
\left|\lambda_{i}\left(x, t, \omega^{\prime}\right)-\lambda_{j}\left(x, t, \omega^{\prime}\right)\right| \geqq \delta \quad(i \neq j ; i, j=1,2, \ldots, s)
$$

where $\lambda_{i}\left(x, t, \omega^{\prime}\right)(i=1,2, \ldots, s)$ are all the distinct eigenvalues of $A\left(x, t, \omega^{\prime}\right)$;
3) Elementary divisors of $A\left(x, t, \omega^{\prime}\right)$ are all linear.

By Corollary $4.2 A_{j}(x, t)(j=1,2, \ldots, n)$ belong to \mathscr{A}_{0}. Let

$$
\begin{equation*}
P_{h}(t)=\sum_{j=1}^{n} A_{j}(x, t) \Delta_{j h} \tag{6.2}
\end{equation*}
$$

$$
\begin{align*}
& p(x, t, \omega)=\sum_{j=1}^{n} A_{j}(x, t) s_{j}(\omega), \tag{6.3}\\
& p_{z}(x, t, \omega)=\sum_{j=1}^{n} A_{j}(x, t) s_{j}(\omega) /|s(\omega)|, \tag{6.4}\\
& e_{r}(x, t, \omega ; \lambda)=\sum_{j=0}^{r}(i \lambda p)^{j} / j!. \tag{6.5}
\end{align*}
$$

Then $P_{h}(t) \in \mathscr{A}_{h}$ and $i p(x, t, \omega)$ is the symbol of $P_{h}(t) . \quad$ By Lemmas 4.6 and 4.7 $p_{z}(x, t, \omega)$ belongs to \mathscr{L} and satisfies Condition N .

We have the following lemmas.
Lemma 6.1. There exists an element $g(x, t, \omega)$ of \mathscr{L} satisfying the conditions of Theorem 3.3 such that

$$
\begin{equation*}
\left\{g(x, t, \omega) p_{z}(x, t, \omega)\right\}^{*}=g(x, t, \omega) p_{z}(x, t, \omega) \quad \text { for } \quad \omega \in R_{\omega}^{n}-Z . \tag{6.6}
\end{equation*}
$$

Lemma 6.2. There exist elements $w(x, t, \omega)$ and $w^{-1}(x, t, \omega)$ of \mathscr{L} satisfying Condition N such that

$$
\begin{equation*}
g(x, t, \omega)=w^{*}(x, t, \omega) w(x, t, \omega) . \tag{6.7}
\end{equation*}
$$

For $a \in \mathscr{K}$ we denote $w a w^{-1}$ by \tilde{a}. By these lemmas \tilde{p}_{z} and \tilde{p} are hermitian matrices on $R_{x}^{n} \times J \times\left(R_{\omega}^{n}-Z\right)$ and on $R_{x}^{n} \times J \times R_{\omega}^{n}$ respectively. By Lemma 3.4 \tilde{p}_{z} satisfies Condition N and by Lemma 4.4 it belongs to \mathscr{L}.

In the following we assume that $S_{h}(t, h) \in \mathscr{G}_{h}$ and denote by $l(x, t, \omega ; \lambda)$ a symbol belonging to $S_{h}(t, 0)$. Let the difference scheme (2.3) approximate (1.1) with accuracy of order $r(r \geqq 1)$ and put

$$
d=r+k, \quad k= \begin{cases}1 & \text { if } r \text { is odd } \tag{6.8}\\ 2 & \text { if } r \text { is even. }\end{cases}
$$

We denote by λ_{0}, c_{1} and c_{2} positive constants and by $e(\omega)$ a scalar function such that $e(\omega) I \in \mathscr{K}$.

Let $P[\lambda ; \mathscr{L}]$ be the set of all polynomials in λ of the form

$$
a(x, t, \omega ; \lambda)=\sum_{j=0}^{m} \lambda^{j} a_{j}(x, t, \omega), \quad a_{j}(x, t, \omega) \in \mathscr{L} \quad(j=0,1, \ldots, m),
$$

and denote by $P[\lambda ; p]$ the set of all polynomials in λ and $p(x, t, \omega)$. The set $P[\lambda ; \mathscr{M}]$ is defined similarly. We use the notation

$$
a(x, t, \omega) / e(\omega)=\sum_{j=0}^{m} \lambda^{j} a_{j} / e \in \mathscr{K} \quad(\text { or } \mathscr{L}, \mathscr{M}),
$$

if $a_{j}(x, t, \omega) / e(\omega) \in \mathscr{K}($ or $\mathscr{L}, \mathscr{M})(j=0,1, \ldots, m)$.

6.2. Stability theorems

We have the following theorems.

Theorem 6.1. Friedrichs' scheme is stable, if $\lambda \rho\left(p_{z}(x, t, \omega)\right) \leqq 1 / \sqrt{n}$. The modified Lax-Wendroff scheme is stable, if $\lambda \rho\left(p_{z}(x, t, \omega)\right) \leqq 2 / \sqrt{n}$.

Theorem 6.2. Let $l(x, t, \omega ; \lambda)=e_{r}$, where $r=4 m-1$ or $4 m(m \geqq 1)$. Then the scheme (2.3) is stable for sufficiently small λ.

Theorem 6.3. Let $l(x, t, \omega ; \lambda)=e_{r}-(\lambda p)^{m} v(\lambda p)^{m}$, where $r \geqq 2 m(m \geqq 1)$ and $v(x, t, \omega ; \lambda) \in P[\lambda ; \mathscr{L}]$. Suppose

1) $|s(\omega)|^{\sigma} \leqq c_{1} e(\omega)$;
2) $v_{1}(x, t, \omega ; \lambda)=v / e \in \mathscr{K}$;
3) $u(x, t, \omega ; \lambda) \geqq c_{2} e(\omega) I \quad$ for $\lambda \leqq \lambda_{0}$,
where $\sigma=d-2 m$ and $u=\tilde{v}^{*}+\tilde{v}-\tilde{v}^{*}(\lambda \tilde{p})^{2 m} \tilde{v}$. Then the scheme (2.3) is stable for sufficiently small λ.

Theorem 6.4. Let

$$
\begin{equation*}
l(x, t, \omega ; \lambda)=e_{r}-(i \lambda p)^{2 m+1} a-(\lambda p)^{m+1} v(\lambda p)^{m+1} \tag{6.9}
\end{equation*}
$$

where $r \geqq 2 m+2(m \geqq 0), v(x, t, \omega ; \lambda) \in P[\lambda ; \mathscr{L}]$ and $a(\omega)$ is a real-valued scalar function such that $a(\omega) I \in \mathscr{L}$ and $(a(\omega) / e(\omega)) I \in \mathscr{K}$. Suppose conditions 1$)$, 2) and 3) of Theorem 6.3 are satisfied, where $\sigma=d-2 m-2$,

$$
u=\tilde{v}^{*}+\tilde{v}+(-1)^{m} 2 a I-\tilde{b}^{*}(\lambda \tilde{p})^{2 m} \tilde{b}, \quad b=(-1)^{m}(i a)+\lambda p v .
$$

Then the scheme (2.3) is stable for sufficiently small λ.
Corollary 6.1. Let $l(x, t, \omega ; \lambda)=e_{r}-(i \lambda p)^{r-1} e$, where $r=4 m+1$ or $4 m+2$ ($m \geqq 1$). Suppose $e(\omega), \partial_{j} e(\omega)$ and $\partial_{k} \partial_{j} e(\omega)(j, k=1,2, \ldots, n)$ are bounded and continuous on R_{ω}^{n} and $|s(\omega)|^{2} \leqq c_{1} e(\omega)$. Then the scheme (2.3) is stable for suffciently small λ.

Theorem 6.5. Let $l(x, t, \omega ; \lambda)=e_{r}-\lambda^{2 m} v$, where $r \geqq 2 m(m \geqq 0, r \geqq 1)$,

$$
\begin{aligned}
& v(x, t, \omega ; \lambda)=a+\lambda^{\alpha} b \quad(\alpha \geqq 0), \\
& a(x, t, \omega ; \lambda) \in P[\lambda ; \mathscr{L}], \quad b(x, t, \omega ; \lambda) \in P[\lambda ; \mathscr{L}], \\
& a_{1}(x, t, \omega ; \lambda)=a /|s|^{2} \in \mathscr{L}, \quad b_{1}(x, t, \omega ; \lambda)=b /|s| \in \mathscr{L} .
\end{aligned}
$$

Suppose

1) $\tilde{b}^{*}+\tilde{b}=0 ;$
2) $|s(\omega)|^{d-2} \leqq c_{1} e(\omega)$;
3) $a_{2}(x, t, \omega ; \lambda)=a_{1} / e \in \mathscr{K}, \quad b_{2}(x, t, \omega ; \lambda)=b_{1} / e \in \mathscr{K}$;
4) $u(x, t, \omega ; \lambda) \geqq c_{2} e|s|^{2} I \quad$ for $\lambda \leqq \lambda_{0}$,
where $u=\tilde{a}^{*}+\tilde{a}-\lambda^{2 m} \tilde{v}^{*} \tilde{v}$. Then the scheme (2.3) is stable for sufficiently small λ.

Theorem 6.6. Let $l(x, t, \omega ; \lambda)=e_{r}-\lambda^{\alpha} v$, where

$$
\begin{aligned}
& v(x, t, \omega ; \lambda)=m I+\lambda^{\beta} a+\lambda^{\gamma} b \quad(\beta, \gamma \geqq 0), \\
& m(\omega ; \lambda)=\sum_{j=0}^{\mu} \lambda^{j} m_{j}(\omega) I, \quad \gamma \geqq \alpha \geqq 0 \\
& a(x, t, \omega ; \lambda) \in P[\lambda ; \mathscr{M}], \quad b(x, t, \omega ; \lambda) \in P[\lambda ; \mathscr{M}] \\
& a_{1}(x, t, \omega ; \lambda)=a /|s| \in \mathscr{M}, \quad b_{1}(x, t, \omega ; \lambda)=b /|s| \in \mathscr{M},
\end{aligned}
$$

$m_{j}(\omega)(j=0,1, \ldots, \mu)$ are scalar functions satisfying Condition I. Suppose

1) $\tilde{b}^{*}+\tilde{b}=0$;
2) $e(\omega)$ satisfies Condition I;
3) $|s(\omega)|^{d} \leqq c_{1} e^{2}(\omega), \quad\left|m_{j}(\omega)\right| \leqq c_{1} e^{2}(\omega) \quad(j=0,1, \ldots, \mu)$;
4) $a_{2}(x, t, \omega ; \lambda)=a / e^{2} \in \mathscr{K}, b_{2}(x, t, \omega ; \lambda)=b|s| / e^{2} \in \mathscr{K}$ and a_{2}, b_{1} and b_{2} satisfy Conditions N and II;
5) $u(x, t, \omega ; \lambda) \geqq c_{2} e^{2} I \quad$ for $\lambda \leqq \lambda_{0}$,
where $u=\left(m^{*}+m\right) I+\lambda^{\beta}\left(\tilde{a}^{*}+\tilde{a}\right)-\lambda^{\alpha} \tilde{v}^{*} \tilde{v}$. Then the scheme (2.3) is stable for sufficiently small λ.

Theorem 6.7. For a regularly hyperbolic system with real coefficients let

$$
\begin{equation*}
l(x, t, \omega ; \lambda)=I+i \lambda p(x, t, \omega)+\lambda^{2} q(x, t, \omega ; \lambda)|s(\omega)|^{2} \tag{6.10}
\end{equation*}
$$

where q is a polynomial in λ with coefficients satisfying Condition VI. Suppose

$$
\begin{equation*}
\rho(l(x, t, \omega ; \lambda)) \leqq 1 \quad \text { for } \quad \lambda \leqq \lambda_{0} . \tag{6.11}
\end{equation*}
$$

Then the scheme (2.3) is stable for sufficiently small λ.

7. Examples of schemes

In this section Conditions A, B and C are assumed. To construct difference schemes with accuracy of order $r(r=3,4)$, we assume that $\partial_{t}^{q} A_{j 0}(x, t)$ and
$\partial_{t}^{q} A_{j \infty}(t)(q=0,1, \ldots, r-1 ; j=1,2, \ldots, n)$ are bounded and continuous on $R_{x}^{n} \times J$ together with their partial derivatives up to the $(n+3) r d$ order with respect to x and that $\int\left|D_{l}^{m} \partial_{t}^{q} A_{j 0}(x, t)\right| d x(j, l=1,2, \ldots, n ; m=0,1, \ldots, n+3 ; q=0,1, \ldots, r-1)$ are bounded on J.

We introduce the following difference operators:

$$
\begin{aligned}
& \Delta_{1 j h}=\left(T_{j h}-T_{j h}^{-1}\right) / 2, \quad \Delta_{2 j h}=\left[8\left(T_{j h}-T_{j h}^{-1}\right)-\left(T_{j h}^{2}-T_{j h}^{-2}\right)\right] / 12, \\
& \delta_{j h}=\left(T_{j h}+T_{j h}^{-1}-2 I\right) / 4 \quad(j=1,2, \ldots, n), \\
& P_{m h}(t)=\sum_{j=1}^{n} A_{j}(x, t) \Delta_{m j h} \quad(m=1,2), \\
& K_{1 h}(t, \mu)=F_{1 h}(t, \mu)+4 \sum_{j=1}^{n} A_{j}^{2} \delta_{j h}, \\
& K_{2 h}(t, \mu)=F_{2 h}(t, \mu)+4 \sum_{j=1}^{n} A_{j}^{2} \delta_{j h}\left(1-\delta_{j h} / 3\right), \\
& L_{h}(t, \mu)=F_{2 h}(t, \mu)+\sum_{j=1}^{n} A_{j}^{2} \Delta_{1 j h}^{2}\left(1-4 \delta_{j h} / 3\right), \\
& E_{1 h}=\sum_{j=1}^{n} \Delta_{1 j h}^{2} \sum_{k=1}^{n} \delta_{k h} / n^{2}, \quad E_{2 h}=\sum_{j=1}^{n} \delta_{j h}^{2} / n, \\
& E_{3 h}=\sum_{j=1}^{n} \Delta_{1 j h}^{2} \sum_{k=1}^{n} \delta_{k h}^{2} / n^{2}, \quad E_{4 h}=\sum_{j=1}^{n} \delta_{j h}^{3} / n, \\
& W_{1 h}(t, h)=M_{1 h}(t, h), \quad W_{2 h}(t, h)=M_{2 h}(t, h)+\lambda^{2} G_{h}(t, h) / 24,
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{m h}(t, h)= Q_{m h}(t) / 2+\lambda\left\{2 Q_{1 h}(t) P_{m h}(t)+P_{m h}(t) Q_{1 h}(t)+h R_{h}(t)\right\} / 6, \\
& F_{m h}(t, \mu)= \sum_{j \neq k} A_{j} \Delta_{m j h}\left(A_{k} \Delta_{m k h}\right)+\sum_{j=1}^{n} A_{j}\left(\Delta_{m j \mu} A_{j}\right) \Delta_{m j h} \quad(m=1,2), \\
& G_{h}(t, h)=\left(P_{1 h}(t)\right)^{2} Q_{1 h}(t)+2 P_{1 h}(t) Q_{1 h}(t) P_{1 h}(t)+3 Q_{1 h}(t)\left(P_{1 h}(t)\right)^{2} \\
& \quad+h\left\{P_{1 h}(t) R_{h}(t)+3\left(Q_{1 h}(t)\right)^{2}+3 R_{h}(t) P_{1 h}(t)\right\}+h^{2} V_{h}(t), \\
& Q_{m h}(t)= \sum_{j=1}^{n}\left(\partial_{t} A_{j}(x, t)\right) \Delta_{m j h} \quad(m=1,2), \\
& R_{h}(t)=\sum_{j=1}^{n}\left(\partial_{t}^{2} A_{j}(x, t)\right) \Delta_{1 j h}, \quad V_{h}(t)=\sum_{j=1}^{n}\left(\partial_{t}^{3} A_{j}(x, t)\right) \Delta_{1 j h} .
\end{aligned}
$$

Since by Corollary $4.2 \partial_{t}^{q} A_{j}(x, t) \in \mathscr{A}_{0}$ and $\Delta_{m j \mu} A_{j}(x, t) \in \mathscr{B}_{0}(j=1,2, \ldots, n$; $q=0,1, \ldots, r-1 ; m=1,2), P_{m h}(t)(m=1,2)$ belong to \mathscr{A}_{h} and $F_{m h}(t, h)$, $K_{m h}(t, h), h W_{m h}(t, h)(m=1,2)$ and $L_{h}(t, h)$ belong to \mathscr{G}_{h}.

We consider the following difference operators:

$$
\begin{align*}
S_{h}(t)= & I-E_{1 h}+\lambda P_{2 h}(t)+\lambda^{2} P_{2 h}(t) P_{1 h}(t) / 2+\left(\lambda P_{1 h}(t)\right)^{3} / 6 \tag{7.1}\\
& +\lambda^{2} h W_{1 h}(t, h), \\
S_{h}(t, h) & =I-E_{2 h}+\lambda P_{2 h}(t)+\left(\lambda P_{1 h}(t)\right)^{2} / 2+\lambda^{3} K_{1 h}(t, h) P_{1 h}(t) / 6 \tag{7.2}
\end{align*}
$$

$$
+\lambda^{2} h W_{1 h}(t, h)
$$

$$
\begin{align*}
S_{h}(t, h)= & I+E_{3 h}+\lambda\left\{I+\lambda P_{2 h}(t) / 2+\lambda^{2} L_{h}(t, h) / 6\right. \tag{7.3}\\
& \left.+\left(\lambda P_{1 h}(t)\right)^{3} / 24\right\} P_{2 h}(t)+\lambda^{2} h W_{2 h}(t, h) \\
S_{h}(t, h)= & I+E_{4 h}+\lambda\left\{I+\lambda P_{2 h}(t) / 2+\lambda^{2} K_{2 h}(t, h) / 6\right. \tag{7.4}\\
& \left.+\lambda^{3} K_{1 h}(t, h) P_{1 h}(t) / 24\right\} P_{2 h}(t)+\lambda^{2} h W_{2 h}(t, h) .
\end{align*}
$$

Then by Theorems 6.5 and 6.6 the schemes (2.3) with the operators (7.1)-(7.4) are stable for sufficiently small λ.

References

[1] N. Bourbaki, Théories spectrales, Hermann, Paris, 1967.
[2] D. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
[3] P. D. Lax and L. Nirenberg, On stability for difference schemes; a sharp form of Gårding's inequality, Comm. Pure Appl. Math. 19 (1966), 473-492.
[4] J. Peetre and V. Thomée, On the rate of convergence for discrete initial-value problems, Math. Scand. 21 (1967), 159-176.
[5] H. Shintani and K. Tomoeda, Stability of difference schemes for nonsymmetric linear hyperbolic systems with variable coefficients, Hiroshima Math. J. 7 (1977), 309-378.
[6] V. Thomée, Stability theory for partial difference operators, SIAM Rev. 11 (1969), 152-195.

Department of Mathematics, Faculty of Science, Hiroshima University

